Skip to main content
Log in

Encoding mu-opioid receptor biased agonism with interaction fingerprints

  • Published:
Journal of Computer-Aided Molecular Design Aims and scope Submit manuscript

Abstract

Opioids are potent painkillers, however, their therapeutic use requires close medical monitoring to diminish the risk of severe adverse effects. The G-protein biased agonists of the μ-opioid receptor (MOR) have shown safer therapeutic profiles than non-biased ligands. In this work, we performed extensive all-atom molecular dynamics simulations of two markedly biased ligands and a balanced reference molecule. From those simulations, we identified a protein–ligand interaction fingerprint that characterizes biased ligands. Then, we built and virtually screened a database containing 68,740 ligands with proven or potential GPCR agonistic activity. Exemplary molecules that fulfill the interacting pattern for biased agonism are showcased, illustrating the usefulness of this work for the search of biased MOR ligands and how this contributes to the understanding of MOR biased signaling.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

Our manuscript has data included as electronic supplementary information.

Code availability

Not applicable.

References

  1. Santos R et al (2016) A comprehensive map of molecular drug targets. Nat Rev Drug Discov 16(1):19–34. https://doi.org/10.1038/nrd.2016.230

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Madariaga-Mazón A, Marmolejo-Valencia AF, Li Y, Toll L, Houghten RA, Martinez-Mayorga K (2017) Mu-Opioid receptor biased ligands: A safer and painless discovery of analgesics? Drug Discov Today 22(11):1719–1729. https://doi.org/10.1016/j.drudis.2017.07.002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Domazet I et al (2015) Characterization of angiotensin II molecular determinants involved in AT1 receptor functional selectivity. Mol Pharmacol 87(6):982–995. https://doi.org/10.1124/mol.114.097337

    Article  CAS  PubMed  Google Scholar 

  4. McCorvy JD et al (2018) Structural determinants of 5-HT2B receptor activation and biased agonism. Nat Struct Mol Biol 25(9):787–796. https://doi.org/10.1038/s41594-018-0116-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Zhang H et al (2015) Structural basis for ligand recognition and functional selectivity at angiotensin receptor. J Biol Chem 290(49):29127–29139. https://doi.org/10.1074/jbc.M115.689000

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Hothersall JD et al (2017) Residues W320 and Y328 within the binding site of the μ-opioid receptor influence opiate ligand bias. Neuropharmacology 118:46–58. https://doi.org/10.1016/j.neuropharm.2017.03.007

    Article  CAS  PubMed  Google Scholar 

  7. Cheng JX, Cheng T, Li WH, Liu GX, Zhu WL, Tang Y (2018) Computational insights into the G-protein-biased activation and inactivation mechanisms of the μ opioid receptor. Acta Pharmacol Sin 39(1):154–164. https://doi.org/10.1038/aps.2017.158

    Article  CAS  PubMed  Google Scholar 

  8. Huang W et al (2015) Structural insights into µ-opioid receptor activation. Nature. https://doi.org/10.1038/nature14886

    Article  PubMed  PubMed Central  Google Scholar 

  9. Bermudez M et al (2017) Ligand-specific restriction of extracellular conformational dynamics constrains signaling of the M2 muscarinic receptor. ACS Chem Biol 12(7):1743–1748. https://doi.org/10.1021/acschembio.7b00275

    Article  CAS  PubMed  Google Scholar 

  10. Ring AM et al (2013) Adrenaline-activated structure of β 2-adrenoceptor stabilized by an engineered nanobody. Nature 502(7472):575–579. https://doi.org/10.1038/nature12572

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Capper MJ, Wacker D (2018) Structural Biology: A complex story of receptor signalling. Nature 558(7711):529–530. https://doi.org/10.1038/d41586-018-05503-4

    Article  CAS  PubMed  Google Scholar 

  12. Devree BT et al (2016) Allosteric coupling from G protein to the agonist-binding pocket in GPCRs. Nature 535(7610):182–186. https://doi.org/10.1038/nature18324

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Manglik A et al (2016) Structure-based discovery of opioid analgesics with reduced side effects. Nature 537(7619):185–190. https://doi.org/10.1038/nature19112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Bermudez M, Bock A (2019) Does divergent binding pocket closure drive ligand bias for class A GPCRs? Trends Pharmacol Sci 40(4):236–239. https://doi.org/10.1016/j.tips.2019.02.005

    Article  CAS  PubMed  Google Scholar 

  15. Liu W et al (2012) Structural basis for allosteric regulation of GPCRS by sodium ions. Science 337(6091):232–236. https://doi.org/10.1126/science.1219218

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Yabaluri N, Medzihradsky F (2002) Regulation of μ-opioid receptor in neural cells by extracellular sodium. J Neurochem 68(3):1053–1061. https://doi.org/10.1046/j.1471-4159.1997.68031053.x

    Article  Google Scholar 

  17. Pert CB, Pasternak G, Snyder SH (1973) Opiate agonists and antagonists discriminated by receptor binding in brain. Science 182(4119):1359–1361. https://doi.org/10.1126/science.182.4119.1359

    Article  CAS  PubMed  Google Scholar 

  18. Xu W et al (1999) Functional role of the spatial proximity of Asp114(2.50) in TMH 2 and Asn332(7.49) in TMH 7 of the μ opioid receptor. FEBS Lett 447(2–3):318–324. https://doi.org/10.1016/S0014-5793(99)00316-6

    Article  CAS  PubMed  Google Scholar 

  19. Fenalti G et al (2014) Molecular control of δ-opioid receptor signalling. Nature 506(7487):191–196. https://doi.org/10.1038/nature12944

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Miller-Gallacher JL et al (2014) The 2.1 Å resolution structure of cyanopindolol-bound β1-adrenoceptor identifies an intramembrane Na+ ion that stabilises the ligand-free receptor. PLoS ONE. https://doi.org/10.1371/journal.pone.0092727

    Article  PubMed  PubMed Central  Google Scholar 

  21. Hu X, Wang Y, Hunkele A, Provasi D, Pasternak GW, Filizola M (2019) Kinetic and thermodynamic insights into sodium ion translocation through the μ-opioid receptor from molecular dynamics and machine learning analysis. PLOS Comput Biol. https://doi.org/10.1371/journal.pcbi.1006689

    Article  PubMed  PubMed Central  Google Scholar 

  22. Marmolejo-Valencia AF, Martínez-Mayorga K (2017) Allosteric modulation model of the mu opioid receptor by herkinorin, a potent not alkaloidal agonist. J Comput Aided Mol Des 31(5):467–482. https://doi.org/10.1007/s10822-017-0016-7

    Article  CAS  PubMed  Google Scholar 

  23. DeWire SM et al (2013) A G protein-biased ligand at the μ-opioid receptor is potently analgesic with reduced gastrointestinal and respiratory dysfunction compared with morphines. J Pharmacol Exp Ther 344(3):708–717. https://doi.org/10.1124/jpet.112.201616

    Article  CAS  PubMed  Google Scholar 

  24. Kruegel AC et al (2016) Synthetic and receptor signaling explorations of the mitragyna alkaloids: mitragynine as an atypical molecular framework for opioid receptor modulators. J Am Chem Soc 138(21):6754–6764. https://doi.org/10.1021/jacs.6b00360

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Kennedy NM et al (2018) Optimization of a series of Mu Opioid Receptor (MOR) agonists with high G protein signaling bias. J Med Chem. https://doi.org/10.1021/acs.jmedchem.8b01136

    Article  PubMed  PubMed Central  Google Scholar 

  26. Koehl A et al (2018) Structure of the µ-opioid receptor–G i protein complex. Nature. https://doi.org/10.1038/s41586-018-0219-7

    Article  PubMed  PubMed Central  Google Scholar 

  27. “Chemical Computing Group (CCG) | Research.” https://www.chemcomp.com/Research-Citing_MOE.htm (Accessed Jun. 29, 2021).

  28. Bartuzi D, Kaczor AA, Matosiuk D (2015) Activation and allosteric modulation of human μ opioid receptor in molecular dynamics. J Chem Inf Model 55(11):2421–2434. https://doi.org/10.1021/acs.jcim.5b00280

    Article  CAS  PubMed  Google Scholar 

  29. Jo S, Kim T, Iyer VG, Im W (2008) CHARMM-GUI: A web-based graphical user interface for CHARMM. J Comput Chem 29(11):1859–1865. https://doi.org/10.1002/jcc.20945

    Article  CAS  PubMed  Google Scholar 

  30. Salomon-Ferrer R, Case DA, Walker RC (2013) An overview of the Amber biomolecular simulation package. WIREs Comput Mol Sci 3(2):198–210. https://doi.org/10.1002/wcms.1121

    Article  CAS  Google Scholar 

  31. Götz AW, Williamson MJ, Xu D, Poole D, Le Grand S, Walker RC (2012) Routine microsecond molecular dynamics simulations with AMBER on GPUs. 1. Generalized born. J Chem Theory Comput 8(5):1542–1555. https://doi.org/10.1021/ct200909j

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Gatica EA, Cavasotto CN (2012) Ligand and decoy sets for docking to G protein-coupled receptors. J Chem Inf Model 52(1):1–6. https://doi.org/10.1021/ci200412p

    Article  CAS  PubMed  Google Scholar 

  33. Mansour A et al (2002) Key residues defining the μ-opioid receptor binding pocket: a site-directed mutagenesis study. J Neurochem 68(1):344–353. https://doi.org/10.1046/j.1471-4159.1997.68010344.x

    Article  Google Scholar 

  34. Manglik A et al (2012) Crystal structure of the mu-opioid receptor bound to a morphinan antagonist. Nature. https://doi.org/10.1038/nature10954

    Article  PubMed  PubMed Central  Google Scholar 

  35. Yuan S, Vogel H, Filipek S (2013) The role of water and sodium ions in the activation of the μ-opioid receptor. Angew Chem Int Ed 52(38):10112–10115. https://doi.org/10.1002/anie.201302244

    Article  CAS  Google Scholar 

  36. Marmolejo-Valencia AF, Madariaga-Mazón A, Martinez-Mayorga K (2021) Bias-inducing allosteric binding site in mu-opioid receptor signaling. SN Appl Sci. https://doi.org/10.1007/s42452-021-04505-8

    Article  Google Scholar 

  37. Pasternak GW (2014) Opioids and their receptors: Are we there yet? Neuropharmacology. https://doi.org/10.1016/j.neuropharm.2013.03.039

    Article  PubMed  Google Scholar 

  38. Yudin Y, Rohacs T (2019) The G-protein-biased agents PZM21 and TRV130 are partial agonists of μ-opioid receptor-mediated signalling to ion channels. Br J Pharmacol. https://doi.org/10.1111/bph.14702

    Article  PubMed  PubMed Central  Google Scholar 

  39. Harding WW et al (2005) Neoclerodane diterpenes as a novel scaffold for μ opioid receptor ligands. J Med Chem 48(15):4765–4771. https://doi.org/10.1021/jm048963m

    Article  CAS  PubMed  Google Scholar 

  40. Wang Y et al (2008) 2-Methoxymethyl-salvinorin B is a potent κ opioid receptor agonist with longer lasting action in vivo than salvinorin A. J Pharmacol Exp Ther 324(3):1073–1083. https://doi.org/10.1124/jpet.107.132142

    Article  CAS  PubMed  Google Scholar 

  41. Pedersen MH, Pham J, Mancebo H, Inoue A, Asher WB, Javitch JA (2021) A novel luminescence-based β-arrestin recruitment assay for unmodified receptors. J Biol Chem. https://doi.org/10.1016/j.jbc.2021.100503

    Article  PubMed  PubMed Central  Google Scholar 

  42. Ortega A, Blount JF, Manchand PS (1982) Salvinorin, a new trans-neoclerodane diterpene from Salvia divinorum (Labiatae). J Chem Soc Perkin. https://doi.org/10.1039/p19820002505

    Article  Google Scholar 

  43. Hernández-Alvarado RB, Madariaga-Mazón A, Ortega A, Martinez-Mayorga K (2020) DARK classics in chemical neuroscience: Salvinorin A. ACS Chem Neurosci 11(23):3979–3992. https://doi.org/10.1021/acschemneuro.0c00608

    Article  CAS  Google Scholar 

  44. Groer CE et al (2007) An opioid agonist that does not induce μ-opioid receptor - Arrestin interactions or receptor internalization. Mol Pharmacol 71(2):549–557. https://doi.org/10.1124/mol.106.028258

    Article  CAS  PubMed  Google Scholar 

  45. Kane BE, Nieto MJ, McCurdy CR, Ferguson DM (2006) A unique binding epitope for salvinorin A, a non-nitrogenous kappa opioid receptor agonist. FEBS J 273(9):1966–1974. https://doi.org/10.1111/j.1742-4658.2006.05212.x

    Article  CAS  PubMed  Google Scholar 

  46. Schneider S, Provasi D, Filizola M (2016) How oliceridine (TRV-130) binds and stabilizes a μ-opioid receptor conformational state that selectively triggers G protein signaling pathways. Biochemistry 55(46):6456–6466. https://doi.org/10.1021/acs.biochem.6b00948

    Article  CAS  PubMed  Google Scholar 

  47. Lipiński PFJ, Jarończyk M, Dobrowolski JC, Sadlej J (2019) Molecular dynamics of fentanyl bound to μ-opioid receptor. J Mol Model 25(5):1–17. https://doi.org/10.1007/s00894-019-3999-2

    Article  CAS  Google Scholar 

  48. Hulme EC (2013) GPCR activation: A mutagenic spotlight on crystal structures. Trends Pharmacol Sci 34(1):67–84. https://doi.org/10.1016/j.tips.2012.11.002

    Article  CAS  PubMed  Google Scholar 

  49. Kaiser A, Hempel C, Wanka L, Schubert M, Hamm HE, Beck-Sickinger AG (2018) G protein preassembly rescues efficacy of W 6.48 toggle mutations in neuropeptide Y 2 receptor. Mol Pharmacol 93(4):387–401. https://doi.org/10.1124/mol.117.110544

    Article  CAS  PubMed  Google Scholar 

  50. Schmid CL et al (2017) Bias factor and therapeutic window correlate to predict safer opioid analgesics. Cell. https://doi.org/10.1016/j.cell.2017.10.035

    Article  PubMed  PubMed Central  Google Scholar 

  51. Kenakin T (2011) Functional selectivity and biased receptor signaling. J Pharmacol Exp Ther 336(2):296–302. https://doi.org/10.1124/jpet.110.173948

    Article  CAS  PubMed  Google Scholar 

  52. Black JW, Leff P (1983) Operational models of pharmacological agonism. Proc R Soc Lond B Biol Sci 220(1219):141–162. https://doi.org/10.1098/rspb.1983.0093

    Article  CAS  PubMed  Google Scholar 

  53. Harrison C, Traynor JR (2003) The [35S]GTPγS binding assay: Approaches and applications in pharmacology. Life Sci 74(4):489–508. https://doi.org/10.1016/j.lfs.2003.07.005

    Article  CAS  PubMed  Google Scholar 

  54. Remy I, Michnick SW (2007) Application of protein-fragment complementation assays in cell biology. Biotechniques 42(2):137–145. https://doi.org/10.2144/000112396

    Article  CAS  PubMed  Google Scholar 

  55. Pil J, Tytgat J (2003) Serine 329 of the μ-opioid receptor interacts differently with agonists. J Pharmacol Exp Ther 304(3):924–930. https://doi.org/10.1124/jpet.102.040113

    Article  CAS  PubMed  Google Scholar 

  56. Granier S et al (2012) Structure of the δ-opioid receptor bound to naltrindole. Nat Lond 485(7398):400–404

    Article  CAS  Google Scholar 

  57. Che T et al (2018) Structure of the nanobody-stabilized active state of the kappa opioid receptor. Cell 172(1–2):55–67. https://doi.org/10.1016/j.cell.2017.12.011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Kapoor A, Martinez-Rosell G, Provasi D, De Fabritiis G, Filizola M (2017) Dynamic and kinetic elements of μ-opioid receptor functional selectivity. Sci Rep 7(1):1–15. https://doi.org/10.1038/s41598-017-11483-8

    Article  CAS  Google Scholar 

  59. Sader S, Anant K, Wu C (2018) To probe interaction of morphine and IBNtxA with 7TM and 6TM variants of the human μ-opioid receptor using all-atom molecular dynamics simulations with an explicit membrane. Phys Chem Chem Phys 20(3):1724–1741. https://doi.org/10.1039/c7cp06745c

    Article  CAS  PubMed  Google Scholar 

  60. Kobilka BK, Deupi X (2007) Conformational complexity of G-protein-coupled receptors. Trends Pharmacol Sci 28(8):397–406. https://doi.org/10.1016/j.tips.2007.06.003

    Article  CAS  PubMed  Google Scholar 

  61. Vaidehi N, Kenakin T (2010) The role of conformational ensembles of seven transmembrane receptors in functional selectivity. Curr Opin Pharmacol 10(6):775–781. https://doi.org/10.1016/j.coph.2010.09.004

    Article  CAS  PubMed  Google Scholar 

  62. Wingler LM et al (2019) Angiotensin analogs with divergent bias stabilize distinct receptor conformations. Cell 176(3):468–478. https://doi.org/10.1016/j.cell.2018.12.005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Wolf A, Kirschner KN (2013) Principal component and clustering analysis on molecular dynamics data of the ribosomal L11·23S subdomain. J Mol Model 19(2):539–549. https://doi.org/10.1007/s00894-012-1563-4

    Article  CAS  PubMed  Google Scholar 

  64. Granier S, Kobilka B (2012) A new era of GPCR structural and chemical biology. Nat Chem Biol 8(8):670–673. https://doi.org/10.1038/nchembio.1025

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. A. Malvezzi, L. Rezende, M. A. Izidoro, M. Sedenho, L. Juliano and A. T.-do Amaral, “Uncovering false positives on a virtual screening search for cruzain inhibitors” Bioorg Med Chem Lett, 2008, doi: https://doi.org/10.1016/j.bmcl.2007.10.068.

  66. Jorgensen WL (2004) The many roles of computation in drug discovery. Science 303(5665):1813–1818. https://doi.org/10.1126/science.1096361

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by Instituto de Química. The computations were supported by the Dirección General de Cómputo y de Tecnologías de Información y Comunicación (DGTIC)-UNAM, providing Miztli computer resources under grant LANCAD-UNAM-DGTIC-367. RBH-A acknowledges CONACyT (957374) for scholarship, FC-V acknowledges a scholarship from QUIBIC Group, UNAM. KM-M thanks DGAPA-PASPA and AN thanks NIDA (Grant: R33DA044425) for financial support. Authors thank Dr. Alan Grossfield and Dr. Rogelio Rodríguez-Sotres for insightful discussions. To the developers of ChemAxon, DataWarrior, Amber MD package, VMD/NAMD for kindly providing academic licenses of their software.

Funding

DGAPA, UNAM, Programa de Apoyos para la Superación del Personal Académico (PASPA).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Abraham Madariaga-Mazón or Karina Martinez-Mayorga.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

Not applicable.

Consent for publication

Not applicable

Consent to participate

Not applicable

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 3466 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hernández-Alvarado, R.B., Madariaga-Mazón, A., Cosme-Vela, F. et al. Encoding mu-opioid receptor biased agonism with interaction fingerprints. J Comput Aided Mol Des 35, 1081–1093 (2021). https://doi.org/10.1007/s10822-021-00422-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10822-021-00422-5

Keywords

Navigation