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Abstract
Fragment spaces are an efficient way to model large chemical spaces using a handful of small fragments and a few connec-
tion rules. The development of Enamine’s REAL Space has shown that large spaces of readily available compounds may be 
created this way. These are several orders of magnitude larger than previous libraries. So far, searching and navigating these 
spaces is mostly limited to topological approaches. A way to overcome this limitation is optimization via metaheuristics which 
can be combined with arbitrary scoring functions. Here we present Galileo, a novel Genetic Algorithm to sample fragment 
spaces. We showcase Galileo in combination with a novel pharmacophore mapping approach, called Phariety, enabling 3D 
searches in fragment spaces. We estimate the effectiveness of the approach with a small fragment space. Furthermore, we 
apply Galileo to two pharmacophore searches in the REAL Space, detecting hundreds of compounds fulfilling a HSP90 and 
a FXIa pharmacophore.

Keywords  Fragment-based drug design · Evolutionary algorithm · Pharmacophore matching · Molecular optimization · 
Fragment evolution

Introduction

The identification of novel leads with a desired pharmaco-
logical effect is one of the fundamental challenges in modern 
drug development. The traditional approach is high-through-
put screening (HTS), which is the physical screening of large 
chemical compound libraries against a target structure. This 

approach has proven to be ineffective in terms of invested 
resources compared to acquired hits [1]. An alternative 
approach is virtual screening, where compound libraries 
are screened in silico. Only a small number of structures 
that appear promising are screened physically afterwards. 
This strategy has proven to increase the success rate and 
decrease resource investment [2]. In an ideal scenario, the 
target structure would be compared to an exhaustive enumer-
ation of all possible molecular structures with a certain num-
ber of non-hydrogen atoms. However, this approach would 
require immense computing resources due to the complex-
ity and size of chemical space. Fragment-based drug design 
(FBDD) was introduced to tackle this problem [3, 4]. In the 
virtual approach FBDD involves in silico screening of a few 
small molecules (fragments) against a target structure and 
combining fragments with high affinity to larger compounds 
[5, 6]. This approach is fundamentally different from clas-
sical (virtual) screening in that one is not limited to an enu-
merated library of known compounds. On the computational 
side, combinatorial descriptions of molecules can be utilized 
to create novel compounds [7].

Fragment spaces are an efficient and elegant way 
to describe such a virtual, combinatorial library [8, 9]. 
They consist of a number of fragments with pre-defined 
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attachment points of specific types, so called linker atoms. 
A set of connection rules defines which linker atoms may 
be connected to each other. The chemical space spanned 
by these fragments and rules includes all molecules that 
may be created by all valid combinations of fragments. 
Fragment spaces can be created retrosynthetically, i.e. 
by breaking down larger compounds according to prede-
fined rules [10, 11]. They can also be created in a forward 
fashion by providing the fragments and combining them 
with known reactions given by synthesis protocols from 
literature and lab notebooks [12, 13]. This approach gained 
a lot of attention in recent years and many pharmaceuti-
cal companies created their inhouse fragment spaces in 
this manner [14]. Enamine’s REAL Space of purchasable 
make-on-demand compounds is designed in this way, cov-
ering more than 29 billion compounds [15].

Due to their combinatorial properties, searching in 
fragment spaces still poses a difficult challenge [16]. 
The classical approach of an exhaustive enumeration is 
only feasible for small fragment spaces or when strongly 
restricting the possible combinations. Otherwise a com-
binatorial explosion will occur, making the enumeration 
infeasible [17]. Moreover, due to their size, fully enumer-
ated spaces not only consume a lot of memory, which 
would negate the advantages of using a fragment space in 
the first place. They also are very cost-intensive in terms 
of computing time and energy consumption. Fortunately, 
the combinatorial nature of fragment spaces allows for a 
number of sophisticated search methods. Several meth-
ods published in the last two decades have been reviewed 
recently [18]. Many of these methods combine frag-
ment spaces with pre-existing functionality and—mostly 
topological—descriptors.

Rarey et al. used tree-shaped descriptors called Feature 
Trees to describe molecular features as a reduced graph. 
These allowed them to efficiently evaluate the similar-
ity of fragments in a space using a dynamic programming 
approach [8].

Describing molecules as trees is a common approach. 
Lauck et al. used a tree-based molecular representation to 
exhaustively enumerate molecules that fulfill given physico-
chemical criteria [7].

DOGS was developed as a way to automate multi-step 
synthesis of small moleculular building blocks in silico. 
DOGS first builds initial candidates by exhaustively grow-
ing from a number of seed fragments. These initial candi-
dates are then used in another exhaustive growing step dur-
ing which fragments are added to them until an optimum 
with respect to a topological similarity value is found, or 
the molecular weight exceeds a set threshold. It also allows 
to represent molecules as tree-shaped reduced graphs [19].

Schneider et al. developed TOPAS, an evolutionary algo-
rithm that iteratively modifies a selected parent structure 

that is similar to a query structure with respect to a vector 
representation of the molecules’ topologies [20].

Fechner et al. employed an evolutionary strategy that 
modifies molecules by fragmenting them in a retro-synthesis 
step, which is followed by a synthesis step that recombines 
compatible fragments. This allows them to generate a broad 
spectrum of molecules that are similar to a known reference 
molecule [21].

Ehrlich et al. developed a method which allows them to 
search fragment spaces for products containing a desired 
substructure. This is achieved by fragmenting the query 
structure into subsubstructures which are then matched 
against the fragments. Compatible fragments that contain 
adjacent subsubstructures may then be combined into a 
molecule that contains the desired substructure [22]. This 
method was extended to allow recursively defined patterns 
[23].

Spacelight is a recent tool which is able to find molecules 
with optimal topological similarity to a query structure in a 
few seconds. This requires a preprocessing step in which tra-
ditional fragment spaces are converted to so-called topologi-
cal fragment spaces. A query structure is then partitioned 
in every possible way, resulting in a number of topology 
graphs. These topology graphs are then used to query the 
topological fragment space [24].

SpaceMACS was developed to find the maximum com-
mon induced substructures (MCIS) between a given query 
molecule and molecules that are encoded in a fragment 
space without the need to enumerate the products. This is 
achieved by first matching substructures of the query to frag-
ments. Compatible fragments that extend such a substructure 
match may then be combined to a larger molecule with an 
MCIS that bridges multiple fragments [25].

Many of these methods attempt to use classical molecular 
descriptors with the hope that they behave additively with 
respect to the combination of fragments. Recent work has 
shown that this is not necessarily the case and that descrip-
tors like the Connected Subgraph Fingerprint (CSFP), that 
were specially tailored for fragments and their combination, 
may perform better and are therefore more desirable for this 
use-case [26]. As of today, the most frequently applied top-
ological search methods like fingerprint-based similarity, 
(maximum common) substructure, and reduced graphs can 
be considered as solved.

While all of these attempts show that the search in frag-
ment spaces is an attractive alternative to virtual screen-
ing of enumerated spaces, one type of common task still 
poses a challenge. Using three-dimensional (3D) informa-
tion like shape and spatial arrangement of functional groups 
in the area of fragment spaces proves difficult due to their 
increased computational cost. Many of the previously men-
tioned methods only support the integration of 3D descrip-
tors by applying them to enumerated molecules, i.e. products 
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generated by combining fragments. Some noteworthy 
examples of methods that integrate 3D descriptors directly 
into the search procedure are FlexNovo [27], Recore- 
[28], PhDD [29], LigBuilder [30], S4MPLE [31], Open-
Growth [32], the SEED2XR protocol [33], NAOMInext [34] 
and CONTOUR, which was recently used to successfully 
discover 11�-HSD1 inhibitors [35].

The majority of 3D search methods are based on struc-
tural alignments, pharmacophore mapping or molecular 
docking. In this work, we are focusing on pharmacophore 
models [36]. 3D pharmacophore models have proven to be 
particularly useful as filters for virtual screening [37, 38]. 
Due to their abstract character and the limitation to elemen-
tary information, hit identification routines are less compu-
tationally demanding and can be completed faster. Further-
more, it is even possible to identify structurally diverse hits 
that still have the potential to bind to the desired target [39, 
40]. Pharmacophore modeling techniques are well estab-
lished in modern drug discovery. The method is discussed 
in several reviews and their successful application is proven 
by different examples [41–45].

Previously, Lippert et al. [46] presented Qsearch, a first 
attempt to integrate 3D pharmacophore queries in frag-
ment space search. Qsearch is based on a simulated anneal-
ing approach, which has proven to be capable of finding 
molecules that fulfill a pharmacophore query in fragment 
spaces. However, the method was applied only to retrosyn-
thetic fragment spaces with less than 6000 fragments. In 
addition, Qsearch uses an undecoration step, which removes 
functional groups from hit structures [46]. This leads to 
structures that are not encoded in the given fragment space, 
resulting in the loss of knowledge about possible synthesis 
pathways.

In this paper we present Galileo (Genetic Algorithm for 
LIgand and LEad Optimization), a new approach which 
utilizes a Genetic Algorithm (GA) to search for products 
encoded in a fragment space optimizing an arbitrary fitness 
function. GAs are common strategies to solve combinatorial 
optimization problems in computer science [47]. Previous 
work has shown that they can be used to efficiently search 
fragment spaces that were specifically designed for a given 
application [48, 49]. Galileo is the first GA which directly 
operates on chemical fragment spaces. As a consequence, 
hits produced by Galileo operating on the REAL Space can 
be directly purchased. The most critical aspect of all de novo 
design methods, namely the quest for easily synthesizable 
molecules, can therefore be considered as solved.

Additionally, we introduce Phariety, a pharmacophore 
mapping algorithm which we use as a fitness function within 
Galileo in an attempt to directly integrate well-established 
three-dimensional search criteria into the fragment space 
search. Lastly, we apply Galileo and Phariety to two frag-
ment spaces including the REAL Space, and show that they 

are able to retrieve hundreds of molecules that are both syn-
thetically accessible and obeying target pharmacophores.

Methods

Galileo is a standard GA tailored to deal with combinatorial 
fragment spaces. It implements classical genetic operators 
like crossover and mutation in a chemistry-aware fashion 
such that all molecules created are valid fragment space 
products. The GA can be combined with arbitrary fitness 
functions. Here, we will demonstrate the functionality of 
Galileo in the context of pharmacophore searching. In the 
following, we will first describe the Galileo engine includ-
ing structure encoding and operators. We then summarize 
Phariety which roughly follows the backtracking strategy 
introduced by Kurogi and Gunar [50].

Genetic algorithm for searching in fragment spaces

Galileo is a classical GA operating on fragment spaces. A 
general workflow is shown in Fig. 1. The NAOMI frame-
work [51] is used as the underlying cheminformatics engine.

Representing fragment combinations

GAs require a representation for valid solutions to an opti-
mization problem called chromosomes in this context. Tra-
ditionally, bitvectors have been applied for this task. There 
are several ways one could represent a molecule via a bitvec-
tor (e.g. by serializing the covalent bonds). In order to take 
a molecule’s fragmentation and corresponding connection 
rules into account, we represent molecules in chromosomes 
as fragment trees as described by Lauck et al. [7]: fragments 
(genes) are represented as vertices with potential attachment 
points that represent the linker atoms. Two vertices are adja-
cent if and only if the fragments are connected via a bond 
that is valid with respect to the connection rules. We con-
sider any kind of molecule that may be created by such a 
combination of fragments a valid solution.

The optimization problem is defined by the scoring or 
fitness function assigning a numerical score (fitness) to each 
molecule in the solution set. They are described below.

Initialization

The population is randomly initialized. This is done by creat-
ing random fragment trees using the following procedure: 

1.	 pick a random fragment from the fragment space
2.	 enumerate all linker atoms of this fragment
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3.	 retrieve all fragments from the fragment space that are 
compatible with at least one linker atom

4.	 enumerate all fragment/compatible linker combinations
5.	 select a random combination of fragment and linker 

atom
6.	 attach the selected fragment to the corresponding linker 

atom
7.	 repeat steps 2–6 considering all fragments in the tree 

until the tree is saturated (no open attachment points 
left) or until a user-defined number of fragments is 
reached

This randomized growing procedure is repeated until the 
desired population size is reached.

Crossover

Modern fragment spaces often contain a large number of 
connection rules. Many of these correspond to only a single 
reaction with a very specific chemical environment around 
the linker atoms. As such, the number of compatible linker 
types for any given linker type is orders of magnitude less 
than the number of linker types. A naive approach to per-
form a crossover between two chromosomes by randomly 
picking two chromosomes and randomly picking one edge 
each in both fragment trees is therefore unlikely to produce 
any valid offspring. We therefore decided on this alternative 
approach:

To perform a crossover between two chromosomes, all 
edges in the first Fragment Tree are enumerated. Each of 
these edges are considered in turn. The tree is cut along 
one of these edges. All edges of the second tree that have 

at least one attachment point that is compatible to either 
side of the cut are enumerated. For each of these compat-
ible edges, the second tree is cut along that edge. Lastly, 
all combinations of subtrees of the first and second tree 
that result in valid Fragment Trees are created, resulting in 
anywhere between 1 and 4 ⋅ n ⋅ m child trees, where n and 
m are the number of edges in the first and second Fragment 
Tree, respectively (see also Fig. 2). This is repeated for all 
pair-wise combinations of chromosomes in the selection 
(see below for the selection methods).

Fig. 1   General workflow of 
Galileo. The fitness calculation 
is done either via an external 
fitness function or one of the 
integrated ones. Phariety has 
been directly integrated into 
Galileo

Fig. 2   Example of one possible crossover between Asp-Val and 
Cys-Phe dipeptides. The fragments are split along the peptide bond. 
Only two of the possible children are valid (Val-Phe and Cys-Asp). 
The other two children are invalid because the linker atom types are 
incompatible
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To improve the performance of this step, we use an 
early-abort strategy where a chromosome combination is 
only considered if they have at least one compatible linker 
pair.

Mutation

Three mutation operators have been implemented, namely 
Replacement, Insertion and Deletion. All three modify a 
single fragment of a fragment tree, i.e. a single vertex or 
a gene in the GA context. They either replace an arbitrary 
fragment with a different compatible fragment, add a frag-
ment to a linker atom or in between two other fragments, 
or remove a fragment with at most two adjacent fragments 
respectively. In case the removed fragment is connected 
to two fragments, these fragments must have compatible 
linker atoms such that they can be connected directly. An 
overview of the different possibilities is shown in Fig. 3.

Replacement

Any fragment in a fragment tree may be replaced by another 
fragment that is compatible to all of the adjacent vertices of 
the original fragment. The procedure is as follows: 

1.	 Pick a random fragment from the fragment tree and 
remove it.

2.	 For each new linker atom, select all fragments from the 
fragment space with at least one compatible linker atom.

3.	 Calculate the intersection of all sets obtained in step 2.

4.	 Filter out all fragments that have fewer linker atoms than 
the number of surrounding fragments.

5.	 Remove the original fragment from the candidate set.
6.	 Assign a probability to each candidate fragment that’s 

proportional to its similarity to the original fragment.
7.	 Select a random fragment according to the probability 

mass function (PMF) from step 6.
8.	 Consider the selected fragment: Calculate all valid linker 

atom assignments and pick a random one. If no valid 
assignment could be found, remove the fragment, adjust 
the PMF accordingly and go to step 7.

9.	 Connect the new fragment according to the picked 
assignment.

Step 3 is required to remove all fragments that can never be 
a potential candidate because they can’t be connected to all 
surrounding fragments. Step 4 is required as there may be 
linker types that are compatible with more than one of the 
surrounding linker atoms. After having obtained all poten-
tial candidate fragments, the valid assignments have to be 
calculated, i.e a matching between the linker atoms of the 
candidate fragment and the linker atoms of the surround-
ing fragments. To calculate these matchings, we build an 
unweighted bipartite graph. The first set of vertices repre-
sents the linker atoms of the candidate fragment:

The second set of vertices represents the linker atoms of the 
surrounding fragments:

(1)V1 = {u ∶ u is linker atom of candidate}

(2)V2 = {v ∶ v is linker atom of surrounding fragment}

Fig. 3   Mutation operations on 
a fragment tree. a Replacement 
of a fragment. Any fragment 
within a tree may be replaced; 
b i Addition of a terminal 
fragment; b ii Addition of a 
non-branching fragment; c i 
Deletion of a terminal fragment; 
c ii Deletion of a non-branching 
fragment. New fragments and 
edges are marked in solid green, 
removed ones are dashed in red
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There is an edge (u, v) between two vertices if and only if the 
linker atom types of u and v are compatible with each other. 
An assignment for the fragment can then be obtained by 
calculating a maximum matching M on the described graph. 
The assignment is valid if and only if |M| = |V1| . If there is 
more than one valid assignment, all of them are considered.

The reasoning behind the similarity measurement in step 
6 is to prevent the creation of extremely dissimilar com-
pounds via mutation. For this we calculate the Tanimoto 
coefficient between the CSFP2.5 [26] fingerprints of the 
candidate fragments and the original fragment. We chose 2 
and 5 as the lower and upper bounds because fragments are 
typically small in size and higher bounds would therefore 
result in very specific fingerprints. The fingerprints for the 
fragments are preprocessed and available in a database.

Insertion

The insertion operator enumerates all linker atoms and edges 
of a given fragment tree and picks one of them randomly. 
In case a linker atom was picked, the same growing proce-
dure described above for the Initialization is performed to 
add a new terminal fragment. If an edge was picked, the 
tree is split at this edge and a random new fragment that is 
compatible to both linker atoms is chosen according to the 
procedure described in the replacement operator.

Deletion

A fragment may be deleted either if it is a terminal fragment 
or if it has exactly two adjacent vertices with compatible 
linker atoms. In the first case, the vertex is simply removed. 
In the second case, the fragment is removed and the sur-
rounding fragments are connected via the now unused linker 
atoms.

Selection

A number of different classical selection methods were 
implemented, namely: Roulette Wheel Selection (RWS), 
Stochastic Universal Sampling (SUS), Rank Selection 
(RS), Tournament Selection (TS) and Random Selection 
(RAND). The first four have been exhaustively described 
in previous works [52]. RAND simply chooses a number of 
chromosomes from the population at random without con-
sidering their fitness. The chosen selection method selects 
a user-defined fraction of the current population which is 
copied over to the next generation. Afterwards, the offspring 
generated via the crossover procedure is appended to the 
new population (see Crossover). The rest of the popula-
tion is filled with mutations of the Fragment Trees that are 
already present in the new population. To not completely 

lose the possibility of further exploration of the solution 
space, a user-defined fraction of the population is filled with 
new random fragment trees in the same way as during the 
initialization.

Scoring

Galileo provides an interface that allows arbitrary external 
programs to be used for scoring, as long as they fulfill four 
criteria: They 

1.	 are scriptable, i.e. they provide a command-line interface
2.	 take an SDF file as input
3.	 assign a positive score (incl. 0) to every molecule
4.	 print the scores in the same order as the input molecules

Additionally, Galileo provides a number of built-in func-
tions that may be used in addition to external programs. This 
includes the pharmacophore-mapping procedure described 
later, as well as a number of simple functions that model 
physicochemical properties. Each property is converted into 
a score employing one-dimensional Gaussians with a user-
defined mean and variance. The supported physicochemical 
properties are:

•	 molecular weight
•	 calculated logP [53]
•	 number of hydrogen-bond donors/acceptors
•	 number of nitrogen/oxygen atoms
•	 number of (aromatic) rings

The built-in functions also include the possibility to define a 
target molecule and score the population by Tanimoto simi-
larity [54] to this target. As molecular fingerprints, ECFP4 
[55] and CSFP2.5 [26] descriptors are available. All inter-
nal scoring functions may be combined and weighted. The 
combined score is calculated by a linear combination of the 
weighted scores, normalized by the sum of weights.

Pharmacophore mapping

In order to demonstrate the capabilities of Galileo with 
respect to 3D searching, we developed and implemented 
the pharmacophore mapping routine Phariety which is sub-
sequently described. Just as Galileo, Phariety is built on top 
of the NAOMI framework [51]. The algorithm consists of 
three main steps, which are discussed in detail in the follow-
ing paragraphs. In addition to the integration into Galileo, 
Phariety is available as an independent command line tool 
for pharmacophore search in virtual compound libraries.
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Preprocessing

The first step of Phariety is a preprocessing step, during 
which unsuitable molecules are eliminated. In case only 
a molecule’s topology is given, a set of low-energy con-
formations can be generated using the tool Conformator 
[56]. Functional groups with specific interaction types are 
identified for every molecule. To ensure the compatibility 
with other pharmacophore mapping tools, like Catalyst, 
Phase and LigandScout [57–59], Greene’s algorithm [60] 
is used for the identification of hydrophobic interactions. 
For interaction types like hydrogen-bond donors and accep-
tors, aromatic interactions, and charged interactions, the 
NAOMI interaction model is used. The model was derived 
and extended from the interaction assessment used in FlexX 
[61]. The assessment is based on a geometric analysis of the 
overlap of interaction surfaces of two interaction partners 
and their deviation from optimal interaction geometries. The 
latter are defined by Rarey et al. [61]. The interaction sur-
faces of a functional group are used to describe the relative 
geometric position of possible interaction partners. A topol-
ogy and geometry analysis of molecular substructures, as 
described by Bietz [62], is used to assign interaction points 
to functional groups. Direction vectors are also derived from 
the analysis of the geometric arrangement of the functional 
groups. After the assignment of corresponding interaction 
points to every functional group, a quick compatibility test is 
performed. Here, number and types of the generated interac-
tion points of a given candidate are tested for their compat-
ibility with the query pharmacophore feature points. The 
test verifies that the candidate structure contains at least the 
same number of interaction points of the same type for each 
interaction type of the query pharmacophore model. Note 
that the candidate structure may have more features than the 
query pharmacophore model, which offers the possibility of 
a partial mapping.

Mapping algorithm

The feature points of the query pharmacophore are mapped 
onto the interaction points of the candidate molecules using 
a depth-first walk with backtracking, a strategy introduced 
by Kurogi and Gunar [50]. This greedy algorithm starts with 
a randomly chosen query pharmacophore feature point and 
attempts to find a valid compatible interaction point of the 
candidate molecule. The algorithm places the query pharma-
cophore feature points in a random order and uses a classical 
backtracking strategy by assigning compatible interaction 
points of the candidate molecule one by one. The moment 
the algorithm runs out of options for a feature point it traces 
back one step and attempts to find an alternative mapping for 
the last feature point. The process stops when either a valid 

mapping is found for every point, or all possible combina-
tions have been tested (see Fig. 4). It is possible to search 
for either the first or the best mapping. If the latter is cho-
sen, the algorithm continues after the first valid mapping 
and enumerates all possible remaining combinations. The 
compatibility test between pharmacophore feature points 
and candidate molecule interaction points consists of a fea-
ture type check and a geometric check. The latter includes 
the comparison of all distances between the new matched 
feature point/ interaction point pair and the already mapped 
points. The deviation between the two distances in the phar-
macophore query and the candidate molecule has to be less 
than or equal to the sum of the two radii of the involved 
query pharmacophore feature points plus an optional, user-
defined tolerance value (see also Fig. A1).

Postfiltering

A subsequent post-filtering step is performed for all valid 
assignments. It consists of three tests which verify all con-
straints of the query pharmacophore model. First, the candi-
date molecule is transformed onto the query pharmacophore 
model using Kabsch’s algorithm [63, 64]. Afterwards, the 
first test checks whether the centers of the interaction points 
are localized within the spheres of the corresponding phar-
macophore feature points, while allowing a user-defined 
deviation (see Mapping Algorithm above). The second test 
verifies whether potentially defined directions of query phar-
macophore points are compatible with the corresponding, 
mapped interactions of the candidate molecule. The angle 
between the corresponding directions has to be less than a 
user-defined threshold. A special case are terminal and rotat-
able acceptor and donor interactions points. Those interac-
tion points are rotated onto the query feature points before 
checking the angular constraint. Note that this may cause a 
minor deviation in the hydrogen coordinates of the returned 
conformation from the original. The third test verifies that 
the heavy atoms of the transformed candidate molecule do 
not overlap with exclusion volume spheres if any are defined 
in the query pharmacophore. The van-der-Waals radii of the 
heavy atoms are used for this overlap test. A partial overlap 
may be allowed by the user.

Score calculation

A score in the range of [0, 1] is calculated for mappings 
that pass all postfiltering steps, where 1 means an ideal 
mapping without deviation, and 0 means that no valid 
mapping is possible. The latter is only returned if one of 
the checks in the postfiltering step fails or no mapping 
can be found in the first place. The score is a weighted 
linear combination of two normalized terms: the distance 

Journal of Computer-Aided Molecular Design (2023) 37:1–16 7



	

1 3

deviation ( sdistance ) and the direction angle deviation 
( sdirection):

Let i ↦ m(i) be the mapping of the query feature point i.

where ri and rj are the radii of query feature points i and 
j, d(i,j) is the distance between the query feature points i, j 
and dm(i),m(j) is the distance between the mapped interaction 
points m(i), m(j) of the candidate molecule.

where n is the total number of regarded angles between 
direction vectors, ∠(vi, vm(i)) is the smaller angle between 
the direction vector vi of the query feature point i and the 
direction vector vm(i) of its mapped interaction point m(i) of 
the target.

The weights are user-defined and must add up to 1.0. 
The weight of the angle deviation term is set to 0.0 if no 
direction information exists. Per default, both weights are 
set to 0.5. The final score is given by:

where wdis is the weight for the distance deviation term and 
wdir is the weight for the angle deviation term.

(3)sdistance =
1∑

(i,j)(ri + rj + �)
⋅

�

(i,j)

�d(i,j) − d(m(i),m(j))�

(4)sdirection =
1

� ⋅ n
⋅

∑

i

∠(vi, vm(i))

(5)stotal = 1 − (wdis ⋅ sdistance + wdir ⋅ sdirection)

The algorithm returns a score for each candidate molecule 
and, if possible, the corresponding conformation superposed 
onto the query pharmacophore model.

Results

For our validation and experiments we used a version of 
the REAL Space which encodes an estimated 19 × 109 mol-
ecules [13]. This fragment space contains fragments that 
are based on commercially available substances and syn-
thesis protocols by Enamine Ltd. Additionally, we used a 
smaller fragment space which we call ZB SampleSpace. The 
space consists of two sets of educts, all commercially avail-
able from Sigma-Aldrich [65], combined with the software 
CoLibri [66]. The first set contains 12,541 reactants with 
a molecular weight in the range of 250 to 400 Dalton. The 
reactants from this list represent late-stage intermediates 
for which a number of synthesis steps have already been 
performed. The second set of 2205 reactants contain mol-
ecules with significantly more functional groups and lower 
molecular weight, typically used for final derivatization. The 
molecular weight of these reactants are in a range of 10 up 
to 175 Dalton. The functional groups that occur in the sets 
are shown in the Supplementary Information (Tables A1 
and A2). The standard set of 120 reactions of CoLibri was 
used for space generation. For further information on the 
generation of chemical fragment spaces see [12, 66]. A 

Fig. 4   Workflow of Pha-
riety’s mapping algorithm. 
Query pharmacophore model 
(top) with underlying ligand 
structure. X ia points stands for 
all interaction points of the cor-
responding type of a candidate 
molecule. The algorithm stops 
if one valid mapping is found or 
all possibilities are checked and 
no mapping can be found
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fully enumerated version of this space contains 11,178,764 
molecules.

Phariety benchmark

To evaluate the performance of Phariety, we recreated the 
experiment of Spitzer et al. [67]. We rebuilt two pharmaco-
phore models of two targets of the maximum unbiased vali-
dation (MUV) dataset [68]: heat shock protein 90 (HSP90, 
PDB: 2BT0 [69]) and factor XIa (FXIa, PDB: 2FDA [70]). 
Heat shock protein 90 is a molecular chaperone, which takes 
part in the folding, activation and stabilization of proteins. 
The activated form of factor XI is a serine protease involved 
in the blood coagulation cascade. For further details on the 
targets we refer to Spitzer et al. [67] As stated by Spitzer 
et al., the MUV data set was chosen due to three different 
reasons. First, it contains only known active and experimen-
tally verified inactive compounds for each target. Further-
more, the given inactive compounds are structurally close to 
the active compounds, whereby artificial enrichment should 
be prevented. Lastly, the size of the data set is convenient for 
the given application. Both targets were chosen due to the 
existence of comprehensive X-ray data including complexes 
with drug-like ligands. Moreover, the interactions between 
ligand and protein allowed Spitzer et al. to create query phar-
macophore models with only a few hydrophobic features. 
As concluded by Wolber et al. [71], the interpretation of 
hydrophobic features differs greatly between different phar-
macophore mapping algorithms. Therefore, Spitzer et al. 
tried to focus on more comparable features, like hydrogen-
bond features [67]. We used Phariety and the pharmacoph-
ore module of the Chemical Computing Group’s Molecular 
Operating Environment (MOE) [72] for the recreation of 
the unmodified pharmacophore queries of Spitzer et al. The 
queries were derived directly from their protein-ligand com-
plex structures taken from the PDB. Both queries consist 
of one hydrogen-bond donor, two hydrogen-bond acceptors 
and one hydrophobic feature point. As expected, MOE and 
our pharmacophore generation routine place the hydropho-
bic features slightly differently. The remaining features are 
placed at the same coordinates. The resulting models are 
shown in the Supplementary Information (see Figs. A2–A5). 
The hydrophobic feature of FXIa has a radius of 1.5 Å. The 
hydrophobic feature of HSP90 has a radius of 2.0 Å and the 
hydrogen bond feature has a radius of 1.25 Å. All remaining 
features have a radius of 1.0 Å.

Following the example of Spitzer et al. [67], no informa-
tion about directions of the hydrogen bond features were 
included in this initial experiment. However, each query 
includes information about the exclusion volume. The exclu-
sion volume spheres were placed around each heavy atom 
of the corresponding protein’s binding site using MOE. 

This resulted in 324 spheres for FXIa and 353 for HSP90 
respectively. We used the default generated radii of MOE for 
the exclusion volumes. These ranged from 1.3 to 1.95 Å for 
both queries. In Phariety, the van-der-Waals radii of ligand 
heavy atoms are not allowed to clash with the exclusion vol-
ume spheres. However, MOE only regards the center of the 
ligand heavy atoms and does not take their van-der-Waals 
radii into account. For comparison purposes, we extended 
Phariety accordingly. For each query model, a multi-con-
former screening library was generated from the active as 
well as the inactive compounds of the MUV data set using 
Conformator [56]. Starting with the 30 known active com-
pounds and 15,000 decoy compounds for each target, we 
ended with 4177 active and 2,735,282 inactive conforma-
tions for HSP90, and 5178 active and 2,750,353 inactive 
conformations for FXIa respectively. We used the generated 
multi-conformer libraries for both applications. Together 
with the described models we started the applications with 
default settings and compared the resulting hit lists.

As concluded by Spitzer et al., different pharmacoph-
ore hit retrieval algorithms and different chemical feature 
definitions lead to differences in the resulting hit lists. We 
confirmed this regarding MOE and Phariety, as shown in 
Table 1 (see also Fig. A6). Nevertheless, both algorithms 
retrieve a similar amount of hits, which also corresponds 
with the results of Spitzer et al. The high proportion of com-
mon hits demonstrates that the performance of Phariety is in 
line with widely used pharmacophore search tools.

To roughly evaluate the runtime requirements, the process 
time for searching 2,750,353 small molecules against the 
FXIa target was measured. Phariety needed on average 0.032 
ms per conformation. In comparison, the runtime of MOE 
is in the same ballpark with 0.047 ms per conformation. 
For both applications we did not include the time for pre-
processing the conformations, which includes loading of the 
structures and generation of the pharmacophore points. The 
run time analysis was performed on an Intel Core i5–8500 
processor with six 3.00 GHz cores.

Galileo validation

To validate Galileo, we first performed a proof of concept 
experiment in which we want to compare the performance 
of Galileo with that of random sampling. For this experi-
ment we chose three well-known drugs: Rivaroxaban (an 
anticoagulant), Imatinib (cancer medication) and Lopinavir 
(an HIV protease inhibitor). We attempted to find similar 
compounds that are encoded in the REAL Space. For the 
fitness function, we evaluated the Tanimoto similarity of the 
CSFP2.5 fingerprints between the respective target and the 
population molecules. We set the population size to 10,000. 
To evaluate the influence of the genetic operators on the 
population, we increased the number of generations of the 
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GA for every run by one, starting at 1, up to a maximum of 
50. We executed Galileo 10 times for each target structure 
and generation number. Afterwards, we evaluated the best 
fitting molecule, as well as the mean and minimum of the top 
50 best fitting molecules after removing duplicates.

We compared these results to a random sampling of the 
fragment space. This was done by setting the number of gen-
erations for Galileo to 0, which effectively is equal to a ran-
dom sampling of the fragment space. To accommodate for 
the potential random sampling included in the advancement 
of a generation, the population size for the random sampling 
was increased proportionally to the number of generations 
in Galileo. This way, the total number of molecules that we 
encounter during the execution of the GA and the random 
sampling was equal.

To figure out the best possible similarity value, we addi-
tionally converted the REAL Space to a topological frag-
ment space and used the three target structures as queries for 
SpaceLight [24]. The combined results can be seen in Fig. 5. 
The raw output data for all of these experiments, including 

used computational resources and elapsed time, is available 
in the Supplementary Information.

We expected the GA and the random sampling to perform 
very similarly on average for a low number of generations. 
With an increasing number of generations, we expected 
to see the GA outperform the random sampling due to 
the nature of the GA—i.e. prefering fitter molecules dur-
ing selection and modfying these fitter molecules to slowly 
accumulate more and more molecules with a high fitness 
value. The results show that on average, this is indeed the 
case. For the top 50 mean and minimum, the GA signifi-
cantly outperforms random sampling after a critical number 
of generations for all three target molecules.

We conclude that Galileo may be considered a valid alter-
native to naive enumeration of a fragment space, even for 
easy to calculate fitness functions.

Using Galileo with Phariety

To show the performance of Galileo in 3D searches, we first 
performed a pharmacophore search with the HSP90 and 
FXIa pharmacophores on the fully enumerated ZB SampleS-
pace using Phariety. For this experiment we did not include 
exclusion volumes, and included direction information for 
the hydrogen-bond features. The direction vectors as gener-
ated by our interaction model are shown as smaller spheres 
in Figs. 6 (bottom) and 7 (bottom). 

After this initial search, we executed Galileo with the ZB 
SampleSpace, the same pharmacophores, and Phariety as the 
fitness function. We chose 20 and 20,000 as the number of 

Table 1   Results of the benchmark experiment of phariety and MOE

The displayed numbers are recovered molecules of the corresponding 
dataset, not conformers

HSP90 FXIa

Active Decoys Actives Decoys

MOE 5 1958 2 715
Phariety 6 1751 5 1024
Common hits 4 1207 2 447

Fig. 5   Results for the Galileo validation experiment. The mean and 
minimum fitness of the top 50 molecules (after removing duplicates) 
observed in the random sampling and last generation of the GA are 

shown. The smoothed lines and confidence intervals are generated via 
LOESS over 10 runs for each number of generations
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generations and population size respectively. The experiment 
was repeated 5 times. Additionally, we randomly sampled 
4 × 105 products from the fragment space as a baseline. This 
was also repeated 5 times. Phariety was set up with default 
parameters, a single conformer for each molecule and an 
allowed angle deviation of 40 degrees.

Out of a total of 452 hits for FXIa, Galileo was able to 
retrieve 55 hits ( ≈ 12% ) across all five runs. 14 unique hits 
were recovered during the best run. The average hit rate was 
2.7% . In contrast, the random sampling recovered 46 unique 
hits across the five runs. The average hit rate in the final 
population of Galileo and the random sampling can be seen 
in Fig. A7, top-right.

We repeated the same experimental setup with the HSP90 
pharmacophore. This time however, we left out the direc-
tional constraints because an inspection of the enumerated 
space revealed that only two of the products match the phar-
macophore with directional constraints. With this modified 

pharmacophore, a total of 247,251 hits were found in the 
enumerated ZB SampleSpace using Phariety ( ≈ 2.2% of the 
space). Out of these, Galileo recovered 19,207 unique hits 
across all five runs ( ≈ 7.8% ). Meanwhile, random sampling 
recovered 40,187 hits ( ≈ 16.3% ). The average hit rates in the 
last population can be seen in Fig. A7, bottom-right.

While the results for the HSP90 runs might seem unex-
pected at first, one has to keep in mind that the used phar-
macophore is very unspecific. As a consequence, a lot of 
structures match this query and the probability that the ran-
dom sampling finds a match is high. As an aside, Galileo is 
designed to optimize the initial structures towards the query 
and not return a broad selection of compounds. While a 
search with an unspecific query is possible, it does not fit the 
the expected application scenarios of Galileo. Users might 
want to consider different approaches for such scenarios.

Lastly, we let Galileo optimize products from the REAL 
Space. The experimental setup was the same as before, with 

Fig. 6   Query pharmacophore 
model for HSP90 (bottom) and 
two examples from the hit list of 
the REAL Space (top). Direc-
tion information are displayed 
as smaller spheres in the same 
color as their corresponding 
feature. The hydrogen bond 
acceptor features are displayed 
in cyan, the hydrogen bond 
donor features in magenta and 
the hydrophobic features in 
green. The query pharmacoph-
ore model is superposed and 
visualized onto both example 
hits. The example hit conform-
ers were generated after the 
sampling using Phariety. All 3D 
representations and structure 
diagrams are generated using 
MOE
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the exception that the population size was increased by a factor 
of 10 for both Galileo and the random sampling to accom-
modate for the increase in the size of the fragment space. We 

also used the unmodified version of the HSP90 pharmaco-
phore without exclusion volume and with directional con-
straints. Since a full enumeration of the REAL Space is nearly 

Fig. 7   Query pharmacophore 
model for FXIa (bottom) and 
two examples from the hit list of 
the REAL Space (top). Direc-
tion information are displayed 
as smaller spheres in the same 
color as their corresponding 
feature. The hydrogen bond 
acceptor features are displayed 
in cyan, the hydrogen bond 
donor features in magenta and 
the hydrophobic features in 
green. The query pharmacoph-
ore model is superposed and 
visualized onto both example 
hits. The example hit conform-
ers were generated after the 
sampling using Phariety. All 3D 
representations and structure 
diagrams are generated using 
MOE

Fig. 8   Fitness distribution of molecules generated by Galileo and ran-
dom sampling. Molecules are taken from the final population of Gal-
ileo and the random sampling after sampling the REAL Space and 
dropping duplicates

Fig. 9   Fitness distribution of molecules generated by Galileo and ran-
dom sampling. Molecules are taken from the final population of Gali-
leo and the random sampling after sampling the ZB SampleSpace and 
dropping duplicates
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impossible, we only compared the results to the baseline, i.e. 
random sampling of the fragment space. For FXIa, a total of 
820 unique hits were retrieved by Galileo with an average of 
approximately 193 unique hits per run. The total mean score 
was approximately 0.78 (median ≈ 0.80 ). For HSP90, Galileo 
found a total of 17 hits with an mean and median score of 
approximately 0.70. The average hit number across the runs 
was 3.4. In comparison, the random sampling found 380 and 
17 hits for FXIa and HSP90 respectively. The average hit num-
ber in the final population can be seen in Fig. A7, left.

The distribution of scores for both experiments can be 
seen in Figs. 8 and 9.

A selection of the hits for HSP90 and FXIa from the 
REAL Space can be seen in Figs. 6 and 7 respectively. We 
expected the hits to mostly fulfill the pharmacophore model, 
while having a low structural similarity to the original ligand 
structure. All interaction points were indeed occupied by 
corresponding functional groups. However, the directional-
ity of hydrogen bond acceptors and donors was often not 
satisfactory. This highlights that the balance between the 
distance term and the direction term is important to obtain 
a reasonable score.

Discussion

Pharmacophore searching is one of the key technologies for 
ligand-based virtual screening. So far, most available meth-
ods were only able to screen existing libraries. Here, we 
presented a novel approach based on a GA which enables to 
search for molecules obeying a pharmacophore in a combi-
natorial fragment space for the first time.

In large spaces like the REAL Space, Galileo is the first 
3D geometric search engine. Even for small spaces, the 
approach demonstrates its substantial run time advantage: 
Searching the fully enumerated ZB SampleSpace with the 
pharmacophore mapping routine took approximately 1 
week for each pharmacophore, whereas each run of Gali-
leo for this space was completed in just 2 days for FXIa 
and 1 day for HSP90. The random sampling took approxi-
mately 3 days to complete. A big advantage of Galileo is 
that it decouples the search process from the fitness func-
tion. In this paper, we demonstrated the performance of 
Galileo on pharmacophore searching, however other 3D 
search methods like structural alignments or even molec-
ular docking can be used with a reasonable amount of 
computing power. Even for cases in which the fitness func-
tion is simple or unspecific (e.g. fingerprint similarity or 
pharmacophores without directional constraints), Galileo 
is still preferable over exhaustive enumeration or random 
sampling because the number of molecules that have to be 
held in memory or written to disk is significantly lower, 

the quality of the acquired hits (i.e. their score) is higher, 
and the runtime is significantly lower (see Figs. A8–A13).

The decoupling of the fitness function from the search 
process comes with well-known disadvantages. First of 
all, GAs are randomized and heuristic. Therefore, a perfor-
mance guarantee of any kind cannot be given. Second, spe-
cific properties of the fitness function might not be usable. 
Galileo in combination with Phariety, for example, cannot 
make use of the very restrictive exclusion volumes usually 
being part of pharmacophore models. This is due to the fact 
that it is very unlikely that the GA manages to create prod-
ucts from fragments that both match the pharmacophore and 
don’t clash with the exclusion volume at the same time.

So far, Galileo doesn’t create conformers and depends 
on the scoring function to create them if required. This also 
means that any 3D information is lost upon exiting the scor-
ing function and doesn’t carry over to the next generation. 
Upon execution of a mutation or crossover operation, the 
fragment tree changes and a new conformation would have 
to be generated either way due to potential clashes created 
by naive connection of two 3D-fragments. Galileo remedies 
this issue somewhat by caching scores for products that have 
been encountered before.

Additionally, Galileo currently does not evaluate the fit-
ness of the individual fragments that make up a molecule. 
This is due to the fact that we designed Galileo to be as 
generic as possible. However, it may be interesting to evalu-
ate the fitness of fragments for a more directed optimization. 
This is something we wish to address in the future.

In summary, Galileo is a starting point for 3D search-
ing in fragment spaces. We believe that it is already of 
high value for drug design projects building on fragment 
spaces like the REAL Space. Since highly effective and 
efficient algorithms have been developed for topological 
searching in fragment spaces [24, 73], Galileo should be 
considered as the baseline system for better algorithms to 
be developed in the future.
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