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The result of computational operations performed at the single cell level are coded into sequences
of action potentials (APs). In the cerebral cortex, due to its columnar organization, large number of
neurons are involved in any individual processing task. It is therefore important to understand how
the properties of coding at the level of neuronal populations are determined by the dynamics of single
neuron AP generation. Here we analyze how the AP generating mechanism determines the speed
with which an ensemble of neurons can represent transient stochastic input signals. We analyze a
generalization of the f-neuron, the normal form of the dynamics of Type-I excitable membranes.
Using a novel sparse matrix representation of the Fokker-Planck equation, which describes the
ensemble dynamics, we calculate the transmission functions for small modulations of the mean
current and noise noise amplitude. In the high-frequency limit the transmission function decays
as w~ ', where 7y surprisingly depends on the phase 6, at which APs are emitted. If at 6, the
dynamics is insensitive to external inputs, the transmission function decays as (i) w™> for the case
of a modulation of a white noise input and as (ii) w™2 for a modulation of the mean input current
in the presence of a correlated and uncorrelated noise as well as (iii) in the case of a modulated
amplitude of a correlated noise input. If the insensitivity condition is lifted, the transmission function
always decays as w™!, as in conductance based neuron models. In a physiologically plausible regime
up to 1kHz the typical response speed is, however, independent of the high-frequency limit and is
set by the rapidness of the AP onset, as revealed by the full transmission function. In this regime
modulations of the noise amplitude can be transmitted faithfully up to much higher frequencies
than modulations in the mean input current. We finally show that the linear response approach

used is valid for a large regime of stimulus amplitudes.

I. INTRODUCTION

Neurons are the basic building blocks of neural net-
works and thus constitute the computational units of the
brain. They dynamically transform synaptic inputs into
output action potential (AP) sequences. To conceive the
complex computational capabilities of the brain, it is cru-
cial to understand this transformation and to identify
simple neuron models which accurately reproduce the dy-
namical features of cortical neurons.

Here we study this mapping in a reduced neuron
model. This model is obtained by a generalization of
the #-neuron m, @], which is a canonical phase oscil-
lator model of excitable neuronal membranes exhibiting
Type-I excitability. Phase oscillator models have a long
history in physics and biology E, |ﬂ, m, @] and re-
cently they were introduced in theoretical neuroscience

|. In contrast to integrate-and-fire models, which are
phenomenological models of cortical neurons, they can
be derived from the limit cycle dynamics of conductance
based neuron models, reducing the complex dynamics
which usually incorporates many degrees of freedom to
a single phase variable. This reduction is an important
prerequisite for analytical studies of either the dynamics
of single neurons or of neural networks.

Cortical neurons in vivo are subject to an immense
synaptic bombardment, resulting in large fluctuations of
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their membrane potential (MP) ﬂ, [d, ] and irregular
action potential firing m] Because the exact compu-
tational role of these fluctuations is largely unknown, it
was suggested to treat them as a random process, divid-
ing the synaptic input into a mean input current and a
random fluctuating contribution E] with a given cor-
relation time 7.. The fluctuations can serve as a po-
tentially independent information channel because when
the afferent activity of a neuron changes, not only the
mean input is affected, but also the amplitude of the

ﬂuctuationsﬁ, 7% N @]

The stationary response properties of the classical 6-
neuron subject to fluctuating input currents were calcu-
lated in m, m] for a temporally uncorrelated input and
in [§] for a temporally correlated input current. Both
studies showed that the #-neuron can reproduce the sta-
tionary response properties exhibited by many cortical
neurons, i.e. a square-root dependence of the firing rate
on the input current close to threshold for small noise
amplitudes [37] and irregular firing in the noise driven
regime. Despite its success to reproduce the stationary
firing behavior of cortical neurons, the #-neuron lacks a
crucial dynamical feature: The fast action potential up-
stroke exhibited by conductance based neuron models.
Here we study a generalization of the classical #-neuron
with an adjustable action potential onset speed, intro-
ducing a phenomenological term which mimics the fast
activation of sodium channels.

We derive the time dependent response in the pres-
ence of temporally correlated noise to a modulation in
the mean input current and a modulation in the noise
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amplitude. For both modulation paradigms we calcu-
late the high frequency limit. In this limit, the response
amplitude decays as w™7, where the integer exponent ~y
is completely independent of the action potential onset
dynamics and surprisingly only depends on the oscilla-
tor phase 6, at which an action potential is emitted: If
at 05 the dynamics is insensitive to external inputs, the
transmission function decays as (i) w™2 for the case of
a modulation of an uncorrelated noise amplitude and as
(ii) w2 for a modulation of the mean input current in
the presence of a correlated and uncorrelated noise as
well as (iii) in the case of a modulated amplitude of a
correlated noise input. If the insensitivity condition is
lifted, the transmission function always decays as w™!,
as in conductance based neuron models.

The full transmission function is then calculated via
the eigenvalues and eigenfunctions of the Fokker-Planck
operator, which describes the dynamics of the ensem-
ble averaged probability density function. The eigenval-
ues and eigenfunctions are computed using a high per-
formance iterative scheme, the Arnoldi method @, %],
from a novel sparse matrix representation of the Fokker-
Planck operator. This method allows for a fast compu-
tation and high numerical precision, hard to achieve by
direct numerical simulations.

We then demonstrate that the response amplitudes for
the classical #-neuron typically exhibit a cut-off behav-
ior, where the cut-off frequency, which is closely linked
to the spectral properties of the Fokker-Planck operator,
is approximately given by the neurons stationary firing
rate. Stimulations at frequencies larger than the cut-
off frequency are strongly damped. For an increasing
action potential onset speed at a fixed stationary rate,
stimuli with much larger frequencies can be transmitted
almost unattenuated. We show that the response ampli-
tude for the case of a noise modulation typically decays
much slower than in the case of a mean input current
modulation.

The impact of noise on the dynamic response prop-
erties was previously almost exclusively studied in
integrate-and-fire models [2d, 39]. The first studies were
pioneered by Knight M], who considered a simple in-
tegrator model, in which the firing threshold is drawn
randomly, every time an action potential occurs. These
results were then extended to models, where the reset
voltage was also drawn randomly, and to models in which
the the input changed either very slowly, or to spike re-
sponse models, where the input is assumed to change very
fast [16]). Recently, the impact of current noise on the
dynamical response of the leaky integrate-and-fire model
was investigated B, , ﬂ, E, @] In these studies it was
shown that integrate-and-fire models driven by a synap-
tic fluctuating input exhibit a linear response amplitude
which does not decay to zero in the high frequency limit.
This lead some to the conclusion that cortical neurons
can transmit information instantaneously [d, 23]. Only
recently, this interpretation was questioned by two stud-
ies m, m] which demonstrated that the unattenuated
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Figure 1: Phase plane of a type-I single compartment conduc-
tance based model (Morris-Lecar model [28]) in the excitable
regime (filled dot: stable fixed point, open dots: unstable
fixed points). Gray lines are the nullclines, denoted by w = 0
and V = 0. Black lines are stable and unstable manifolds
of the saddle and the node. The excitable dynamics can be
reduced to a phase oscillator with one degree of freedom pa-
rameterized by the angle 9.

transmission of high frequency signals in integrate-and-
fire models are more a consequence of the oversimplifica-
tion of the model rather than property of real neurons.

II. MATERIAL AND METHODS
A. Model

The model is based on the normal form of the dynam-
ics of type-I membranes at the bifurcation to repetitive
firing. Conductance based neuron models which exhibit
Type-I excitability typically undergo a saddle-node bi-
furcation of codimension one, when brought to repetitive
firing. A center-manifold reduction at the bifurcation
point leads to the following normal form [3€]:

cv=LW-v)VY4(Iw-1), (1)
Vo

which is a dynamical equation for the MP V' of the neu-
ron. The input current relative to the rheobase I.. of the
neuron is denoted by I(t). The constants A and V* can
be deduced from a given multidimensional conductance
based model. It is convenient to introduce dimensionless
quantities Vand I:

Vo= (V-V) /W 2)
It) = (I(t) = 1) / (gV%) (3)
and the effective time constant:

T=Clg (4)



The rescaled dynamics is then given by:
TV =V241(t) (5)

For I(t) > 0, the MP has a finite “blow-up” time, mean-
ing that it needs a finite time to get from —oo to +o0,
where both ends of the real axis are identified, turning the
model into a phase oscillator. The normal form Eq. @)
is equivalent to a phase oscillator, the §-neuron |11, [18].
Its equation of motion,

70 = (1 — cos ) + I(t) (1 4 cos ) (6)

is found by substituting V' = tan (6/2) with the angle
variable € in the interval (—m,7].

In the model, a spike is emitted each time 6 reaches
the value 65. By choosing 6, = m, the original #-neuron is
obtained. Figure[llillustrates schematically the reduction
of a conductance based neuron model to a phase oscillator
model.

Although the #-neuron is the normal form of the dy-
namics at the bifurcation, it lacks the rapid AP onset
exhibited by conductance based neuron models and real
neurons. To account for this dynamical feature we gen-
eralized the model to reflect the rapid depolarization of
the membrane resulting from the fast kinetics of sodium
conductances in the following way:

TV = V24 1(t) + a (1 + tanh(8V)), (7)

where we introduced two additional parameters o and
B. The sigmoidal term phenomenologically models the
part of the sodium channel activation curve, which is
not included in the V2-term of the normal form. The
parameter « controls the sodium peak conductance and
the parameter 3 the width of this activation curve. Both
parameters control the rapidness of the AP onset. As for
the normal form an equivalent phase oscillator equation
can be found by substituting V' = tan (6/2):

70 = (1—cosf) + (1+cosb) - (8)
+{I(t) + o (1 + tanh(B tan (0/2))}

B. Fluctuating input currents

In vivo, neurons are subject to an ongoing synaptic
bombardment, resulting in a fluctuating MP. To model
this situation, we assume a temporally fluctuating input
current,

I(t) = Iy + o2(t), (9)

composed of a mean Iy and a stationary fluctuating part
oz(t), where z(t) is an Ornstein-Uhlenbeck process with
a given correlation function (z(t)z(¥')) = exp (—t/7c).
Thus z(t) obeys the Langevin equation [15],

e (t) =~z + V() (10)

with (n(t)) = 0 and {(n(t)n(t')) = 6(t —t'). Eq. (@) and
Eq. @) describe a realization of the dynamics of a sin-
gle neuron. Since the input is fluctuating and we are
interested in coding at population level it is natural to
consider an ensemble of such units, described by the time
dependent probability density function P(6, z,t). Its dy-
namics is determined by the Fokker-Planck equation [32]:

O P(0,z,t) = LP(0,z,1), (11)
with,

L = =779 {(1 — cos0)
+ (lo + 0z + a (1 + tanh (B tan (6/2))))

(1 +cosh)} + 71,10, (z—i— %@) . (12)

The boundary conditions for P(8, z,t) are periodic in the
0- and natural in the z-direction.

C. Time dependent firing rate

The ensemble averaged firing rate is given by the prob-
ability current across the line 8 = 6, with positive veloc-
ity. At s = 7 the dynamics is independent of the input
current I(t) and the rate is equal to the probability cur-
rent through the entire line 6 = :

v(t) = 2/00 dz P(m, z,t) (13)

— 00

Although quite convenient for analytical considerations,
the definition of this spike-phase is, however, rather arbi-
trary. In the normal form, the point 6, = 7 corresponds
to the point V' = oo, where the model reflects least the
dynamics at the bifurcation. To assess if this particu-
lar choice has any influence on the dynamical response
properties of the model, we also calculate the firing rate
at s = m — §. The probability current through this line
is given by:

Jp = 771 /OO P(0s,2,t) ((1 — cosbs) (14)

— 00

+(Io + 0z + a1 + tanh(B tan(0s/2)))) dz

The rate is, however, not exactly given by the flux
Jy. There is a contribution from trajectories, which are
driven back below the threshold due to the external fluc-
tuations. For a correlated input current, however, the
introduced error is exponentially small. This can be seen
in Eq. (/). For small values of §, the probability distri-
bution P(6,6) around 7 — § is a Gaussian with a mean
value 2 — 62 and a width o §2. The negative part of this
Gaussian is proportional to:

0 r—(2_ 682 2
(2775402)_1/2/ exp (—%) de  (15)

— 00



For all practical purposes (6 < 0.5 and ¢ < 1), this inte-
gral is smaller than 10~ !°. We will see, however, that the
definition ; = 7 in the classical f-neuron qualitatively
changes the dynamic response of the model in the high
frequency limit.

D. Parameter choice

Before discussing the stationary and dynamical proper-
ties of the generalized #-neuron we would like to define a
biologically plausible parameter regime. The parameters
which we need to fix are the time constant 7, the mean
input current Iy, the strength of the fluctuating input o
and the synaptic input correlation time 7.. An estimate
of the correlation time of the MP is given by approximat-
ing the dynamics for Iy < 0 near the stable fixed point
by an Ornstein-Uhlenbeck process. Straightforward lin-
earization around the stable fixed point at —+/Iy then
yields:

-1
Trelax ~ T (2 IO) (16)

In the subthreshold noise-driven regime, which we will
discuss in the following, we choose Iy = —0.1. The time
constant 7 is then adapted via Eq. ([H]), to achieve a re-
laxation time of approximately 5ms, which leads to values
for 7 of approximately 3ms.

The parameters a and [ parameterize the sodium ac-
tivation curve, which, in conductance based models, de-
termines the speed at the action potential onset. For the
following numerical treatment we keep /3, which mediates
the width of the activation curve and is an intrinsic phys-
iological parameter, fixed to a value of 20. The parame-
ter «, which represents the sodium peak conductance, is
changed in the range from 0 to 1.

Figure B shows three sample realizations of Eqs. &
@) for different values of the parameter «. If the input
current is positive for a sufficient amount of time, action
potentials are initiated. With increasing values of « the
sharpness at the onset increases, while the subthreshold
fluctuations are not affected.

E. Dynamic Response Theory

For time-dependent input currents eI(t), the Fokker-
Planck operator L(0,z,t) can always be split into two
parts:

L(0,2,t) = Lo(0, 2) + L1 (6, 2, 1), (17)

where ﬁ0(9,z) is the time-independent part and
L1(0,z,t) contains all time-dependencies of the exter-
nal input. In the following we require that the time-
dependent inputs are small in magnitude, i.e. ¢ < 1.
We then expand the general time-dependent solution in

Time (ms)

Figure 2: Increasing « leads to a sharper action potential
onset. (a) Sample MP trajectories for « = 0, @ = 0.1 and
a = 1. The inset shows the deterministic part of Eq. ([@).
(b) Fluctuating input current I(¢). Parameters: 7. = 1.5ms,
o =0.3, Iy = —0.1 and B = 20. Right before AP onsets the
trajectories are virtually identical.

powers of ¢ :
Prp(6,2,t) = Py(0,2) + eP(0,2,t) + O(*)  (18)

Inserting this solution into the Fokker-Planck equation
and keeping only terms up to linear order in ¢ leads to
a dynamical equation for the time dependent part of the
density P(6, z,1):

P, z,t) = Lo(0,2)P(0, z, )+ L1(0, z,t) Py (0, z) (19)
Formally the solution of this equation is given by:

t R o
P(e,z,t)z/ L= (0, 2 )P0, =)t (20)

In the following we will consider stimuli of the type:
L1(0,2,t) = 'L (0, 2) (21)

Eq. @) can then be readily solved, yielding:
P9, 2,1) = Z _%*

Pe(0,z)e™" 22

SR @)
k

The ¢, are the expansion coefficients of L (0, z)Py(6, 2)

into the eigenfunctions P (0, z) of Lo(#,2). The time-

dependent firing rate is given by Eq. ([3)):

v(t) = 771 /OO dz ((1 — cos#y)

— 00
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Figure 3: Sketch of the population response paradigm. An ensemble of neurons receives a modulated noisy input current or
a current, where the noise amplitude is modulated. The noise realization which each neuron receives is different, leading to
different MP traces and AP sequences. The output quantity is the population averaged firing rate in the interval [t,t + dt),

v(t).

+ (Ip + 0z + a(1 + tanh(S tan(65/2)))))
: (PO(HS, z) + P (0, z,t))
= vy + evy (w)eWHHeW@) (23)

In the following we will consider two types of external
stimulations:

1. Modulations in the mean input current:
Ip — Iy + gelwt

2. Modulations in the noise amplitude:

o — o+ ee™t

F. High frequency limit

In this section we sketch how to analytically calculate
the asymptotic decay of v1(w) in the limit w — oco. In-
serting Eq. ([22) into Eq. ([[@) leads to:

(iw - ﬁo) P, 2, t)e ™t = L1 Py(0,2)  (24)

If the right hand side vanishes at § = 6,, P(6,z,t) has
to decay at least as w™2. Differentiation of Eq. (IH) with
respect to ¢ and subsequent reinsertion leads to:

(w2 +f/0) P(G,Z,t) = —ﬁoﬁlPo(H,z) (25)

If now the right hand side vanishes at 6 = 6, Eq. [[d)
has to be differentiated again, until, after reinsertion, the
right hand side is different from zero.

G. Matrix Method

As demonstrated the dynamical response properties of
the generalized f-neuron to small time-dependent inputs

are completely determined by the spectrum and eigen-
functions of the Fokker-Planck operator L. To compute
the dynamical response properties in the presence of a
temporally correlated noise current for arbitrary stimu-
lation frequencies we expand L into a complete orthonor-
mal basis leading to a sparse matrix representation for
which we compute the eigenvalues and eigenfunctions nu-
merically. This approach has the advantage that the re-
sponse properties can be computed with very high accu-
racy. The two subtleties we will have to deal with are
that (1) the resulting matrix is very large in the parame-
ter regime we are interested in (up to 10° x 10°) and (2)
the operator L is not Hermitian and thus standard di-
agonalization procedures such as the Lanczos algorithm
can not be applied. We solved both problems by using a
basis-set, which results in a very sparse matrix represen-
tation, and by using a high performance iterative scheme,
the Arnoldi method m], to compute the eigenfunctions
and the spectrum of this matrix to a high numerical ac-
curacy.

H. Eigenvalues and eigenfunctions for a correlated
noise input

1. Matriz equation

We first replace the probability density P(6, z,t) in an
eigenmode Ansatz with e** Py (0, 2). Inserting this into
Eq. () the exponential cancels:

MePy(6,2) = LP,(0, 2) (26)

Due to the imposed boundary conditions, the set {\x},
i.e. the spectrum of L(#), z) is discrete. There is, however,
a macroscopic drift in the system, meaning that detailed
balance is not fulfilled and thus L is not Hermitian [13].
This means that the resulting spectrum {)\;} and the
corresponding eigenfunctions Py (6, z) are complex. By
complex conjugation of Eq. ([Z8) it is easy to show that



to every eigenvalue Ay with the corresponding eigenfunc-
tion Py(6,z), an eigenvalue A; with the eigenfunction
P}(9, z) exists. This guarantees that a real solution can
always be constructed. The solution with A\g = 0 corre-
sponds to the stationary density and the time dependent
solution can always be given in terms of eigenfunctions
and eigenvalues [32]:

P(6‘, Z,t) = ei(t_to)‘Pinitial(eu Z)
> apeM T P(0, 2) (27)
k

with Piitial (0, 2) = >, axPr(0, z). Although the eigen-
functions of L form a basis, it is important to note that
they are not orthogonal. An important property is that
the mean value of all eigenfunctions except Py(,z) is
ZeTr0:

“ao [ dzpy,2) =0 (28)
L],

To actually compute the spectrum and eigenfunctions we
expand P(6,z) into a set of complete orthonormal func-
tions:

P(0,2) =Y anmtnm(0,2) (29)
m=0
with
¢n7m(9,z) = (2m+1 /71'T/27'c’m!)71/2
emH,, (\/270/7,2) el (30)

This expansion obeys the imposed boundary conditions.
In the #-directions it consists of plane waves, while in
the z-direction harmonic-oscillator functions are used [13]
with the Hermite polynomials H,,(z) [1]. We now in-
sert Eq. 3) in Eq. ([@). Moultiplying from left with
Yy e (0, 2) and integrating over the whole domain leads

to a matrix eigenvalue equation for the (a, m):

Aan,m = (_iT_l(l + Io)n - T;lm) An,m
+(27) i = To)n (an—1.m + Gnt1,m)
no
1
+§(m +1) (@n-1,m+1 + Ant1,m+1)

—|—%(m +1) (an—1,m-1+ an+1,m1)>
+ (VZrre) " Vm+ D(m +2) dnmya

K
. 1 .
—T 1@ (an,mco =+ 5 Z (’LCk + Sk) An—k,m

+ (iCx — Sk) Gntke,m

= Z Ln,m;n’,m’an’,m’- (31)

n’,m’

The coefficients Crand S; denote the Fourier compo-
nents of (14 cosf) tanh (S tan (6/2)) of the expansion in
cos (k6) and sin (k) up to order K. To solve this eigen-
value problem numerically we have to restrict the indices
n and m to

ne{-N...N}, me{0...M} (32)

Since the stationary density is very peaked for realistic
firing rates, we need many plane wave basis functions,
i.e. up to N ~ 10*. With M = 50 the matrix that we
have to diagonalize will be of size 10 x 10°. To only rep-
resent this matrix in full form would require 3.8-103GB of
storage capacity. We note, however, that the matrix L in
Eq. &) is very sparse, for a = 0 it connects an element
an,m even only to the elements ap+1 m+1and ap m42. For
a > 0 the number of nonzero entries in L solely depends
on the number of Fourier components K of the AP on-
set term of the generalized model. In general, however,
the number of elements in the matrix L is only of order
N x M, i.e. very sparse compared to its full size N2 x M?2.
This makes it possible to use a high performance itera-
tive algorithm, the Arnoldi-method é, B4] to solve this
eigenvalue problem numerically. The time-dependent fir-
ing rate v(t) is calculated using Eq. (23).

III. RESULTS
A. High frequency limit
1. Dynamics insensitive at action potential (6s = )

For both types of input modulations the modulus of the
right hand side of Eq. (4] vanishes at § = w. Therefore
the P(6,z,t) has to be at least of order w2, such that
the left hand side vanishes for w — oco. Differentiation of
Eq. (M@ and subsequent reinsertion leads to:

(w2 + io) P, 2,t) = —LoliPy(8,2)  (33)

The right hand side does not vanish at § = 7 in the
case of a mean current modulation and in the case of a
modulation in the noise amplitude. Since both sides have
to be real valued, the modulus of P(6, z) has to be o w2
and the phase p(w) goes to —.

In the limit 7. — 0, i.e. an uncorrelated input current,
the same argument holds in the case of a mean current
modulation. For a modulation in the noise amplitude,
the right hand side of Eq. [B3)) is zero, resulting even in
a w3 decay and a phase lag of 37 /2.

2. Generic case (05 # m)

For 0, = m — ¢, § > 0 the right hand side of Eq. (Z4)
does not vanish. This means that for large frequencies
the rate modulation 14 (w) decays as w™! and the relative



|| f-neuron |
O, =7 0s #
Noise correlation |[7. > 07 — 0|7 > 0|7 — 0
Mean modulation|| w™2 | w2 | w™ ! | w7t
Noise modulation|| w™2 | w™ | w™! | w™!

| LIF model | CB models |

Te > 0|7 = 0|7 > 0|7 = 0

0 o2 ot | o1

Mean modulation|| w

Noise modulation|| w® W Wt | Wt

Table I: High frequency behavior of the generalized #-neuron,
the leaky integrate-and-fire model [4, 2] and conductance
based models. The response of a conductance based model
for 7. > 0 and a mean current modulation was studied in [14].
The asymptotic response of the conductance based model in
the other cases follows from the same argument as for the
asymptotic response of the #-neuron and was confirmed by
direct numerical simulations (data not shown)

phase shift ¢(w) is —m/2, which is the same asymptotic
decay as in conductance based neuron models. Table
M summarizes the high frequency behavior of the gener-
alized @-neuron and compares it to the high-frequency
limit of conductance based model neurons and the clas-
sical leaky integrate-and-fire model.

We would like to point out, that the w™2 and w™3
decay of the classical §-neuron is only due to (i) the in-
sensitivity of the dynamics to inputs at & = 7 and the
symmetric up- and downstroke of the action potential
around 0s = w. Here, both conditions are lifted by defin-
ing the spike phase at a different value than 7. Another
way to induce a w™!-decay would be to change the right
hand side of Eq. @), such that L; Py does not vanish at
0 = m, e.g. by introducing high order terms in cosé.
This would however require a structural change of the
oscillator dynamics. A second important point to note
is the independence of the high-frequency limit from the
dynamics at the action potential onset.

B. Linear response transmission Functions

Using the matrix method described above, we com-
puted the linear responses to modulations in the mean
input current and to modulations in the noise amplitude.
Figure Bl summarizes the response amplitude curves for
the #-neuron model, the generalized f-neuron model and
compares them to direct numerical simulations of the re-
sponse of the leaky integrate-and-fire (LIF) model.

The #-neuron exhibits a cut-off behavior in its response
amplitude to both types of input modulations. Frequen-
cies up to the stationary firing rate can be transmit-
ted unattenuated larger frequencies are strongly damped.
For an increasing onset speed and fixed stationary rate
the resonance maximum shifts only to slightly larger fre-

quencies, a dramatic change, however, occurs at interme-
diate frequencies up to 1kHz. In this regime the response
amplitude is substantially lifted to much larger transmis-
sion amplitudes. This effect is much more pronounced for
the case of a modulation in the noise amplitude than for
modulations in the mean input current, leading to an
undamped response for frequencies up to 200Hz. The
LIF model, on the other hand, shows a completely arti-
ficial response behavior. The transmission function, for
both types of modulations does not decay at all, even
for frequencies up to 1kHz. For modulations in the noise
amplitude, the transmission function can even grow for
increasing stimulation frequencies.

C. Nonlinear response for large stimulation
amplitudes

So far we have only considered the linear response
transmission function, which is strictly speaking only
valid in the limit in which the stimulation amplitude goes
to zero. Here we show, however, that the linear response
covers a large range of input amplitudes. In principle,
we could use the same matrix method employed for the
linear response theory, taking into account higher order
Floquet modes [31]. Here we explore this regime, how-
ever, by direct numerical simulation of Eq. ). Figure
Bl shows the amplitude of the first four Fourier modes of
the rate response as a function of the overall amplitude of
the rate modulation. For both types of modulations, the
first Fourier component clearly dominates the response
up to amplitudes close to the mean rate, where nonlin-
earities are naturally expected, as there are no negative
firing rates. This demonstrates that the linear response
theory, although rigorously valid for small modulation
amplitudes only, predicts the response in a large dynam-
ical range of input amplitudes.

IV. SUMMARY AND DISCUSSION

The dynamical response properties of the generalized
f-neuron with adjustable AP onset speed were calculated
in the presence of a fluctuating correlated background
noise. Methodologically we introduced a new approach
which is based on the expansion of the corresponding
Fokker-Planck operator to a complete set of orthonormal
functions, leading to a sparse matrix representation. We
then computed the eigenvalues and eigenfunctions of this
matrix using an iterative scheme, the Arnoldi method.
The high frequency limit was calculated analytically. It
turned out, that the response amplitude decays as w™7,
where v depends on the kind of stimulation and, surpris-
ingly, the phase at which a spike is emitted. As soon
as this point differs from 7, where the dynamics is in-
sensitive to external inputs, the exponent ~ is 1, giving
the same asymptotic response behavior as conductance
based neuron models. Using the eigenvalues and eigen-
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Figure 4: Response amplitude for increasing values of the action potential onset speed. In the left column the response of the
0-neuron for modulations in the mean input current and the noise amplitude is shown for different values of the stationary
firing rate. The response exhibits a cut-off behavior, frequencies larger than the stationary firing rate are strongly damped.
The middle column shows the response of the generalized model for both types of modulation and a stationary rate of 20Hz.
For increasing values of the action potential onset speed the response amplitude grows for frequencies in the interval from
100Hz to 1kHz, while the resonance maximum only slightly shifts to larger frequencies. The response of the noise modulation
is much larger in this interval than the response to modulations in the mean current. For comparison the right column shows
the response of the leaky integrate-and-fire (LIF) model. The response amplitude does not decay for large frequencies, for
modulations of the noise amplitude it can even grow with increasing input frequencies. Parameters in the LIF simulation are

as in ﬂ], except 7s = 10ms, o0 = 5mV, Iy = 14.6;16.2; 17.5;19.5mV for a mean firing rate of 2,5, 10, 20Hz.

functions we then presented a method to evaluate the
dynamic response to small time-varying inputs. There
we found that for the classical #-neuron model the re-
sponse exhibits a cut-off behavior: For a modulation in
the mean input current as well as for a modulation in the
noise amplitude frequencies above the stationary rate of
the neuron were strongly damped. In the generalized
f-neuron the damping in the regime up to 1kHz is sub-
stantially reduced for both types of input modulations
when the AP onset speed is increased, although the high
frequency limit is the same as in the classical #-neuron.
The response amplitude for the noise amplitude modula-
tion is typically much larger than the response amplitude
for the mean input modulation. The linear response the-
ory, although only derived for small modulations of the
input current turned out to be valid in a large dynamical
range, which we demonstrated by direct numerical sim-
ulations. Amplitudes of the rate modulation up to the
mean output rate turned out to be well described by the
linear theory.

Simple phenomenological, yet dynamically realistic
models of cortical neurons are of key importance for
studies in theoretical neuroscience, starting from stud-
ies on spike timing to large scale network simulations or
analytical network studies. While stationary response
properties, such as mean firing rates or processes have
been studied in many models, which operate on long
time scales, e.g. adaptation (see e.g. E, [d, m]), stud-
ies on the dynamic response properties are rare. Most
of these studies consider the dynamic response 1n the
class of integrate-and-fire (IF) models ﬂ ﬁ
these studies, it was demonstrated that IF models can
relay incoming stimuli instantaneously. Recently it was
shown, however, that this response behavior strongly dis-
agrees with the response of conductance based models
and rather represents an oversimplification of the model
than a feature of real neurons [14, 29]. While in [29] the
response properties of the classical #-neuron were inves-
tigated, the authors of [14] studied another phenomeno-
logical neuron model, the EIF model, which mimics the
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Figure 5: Amplitude of the first four Fourier components as
a function of overall modulation amplitude of the population
averaged firing rate for (a) modulations in the mean input cur-
rent and (b) for modulations in the noise amplitude (o = 0.7).
The mean output rate is 20Hz, the modulation frequency 1Hz.
The dashed line is the diagonal. Up to amplitudes close to
the mean output rate, the first Fourier component is indistin-
guishable from the diagonal, indicating that the response is
essentially linear. Starting from amplitudes comparable to the
mean rate, the influence of higher order Fourier components
becomes substantial. The insets show the rate modulation for
a modulation amplitude of 20Hz.

dynamical response properties of a conductance based
model. Our study corroborates and extends some of their
results using a generalized model of the classical #-neuron
12, [18], a canonical model of conductance based neu-
ron models, which exhibit type-I excitability and which,
in contrast to IF models, incorporates a dynamic ac-
tion potential onset. While the classical §-neuron model
was originally studied in the super-threshold, noise-free
case[11, [12], recent studies focused on the response in the
presence of fluctuating input currents [&, [18, 26]. These

studies indicated that in a large parameter regime the 6-
neuron exhibits the same stationary response properties
as cortical neurons, e.g. a realistic shape of the f-I curve
and irregular firing in the subthreshold regime.

Despite these results, a major point of criticism ques-
tioning the biological relevance of the model, remained:
While the #-neuron reflects the dynamics at the onset to
repetitive firing, it lacks the sharp action potential up-
stroke found in more detailed conductance based models
and real neurons [14]. It was further argued that this
deficiency results in a high frequency limit of the lin-
ear response amplitude, which decays too fast oc w2,
while the linear response amplitude in conductance neu-
ron models only decays oc w™!. To address these issues
we generalized the classical #-neuron, incorporating an
adjustable AP onset speed, thereby mimicking the fast
sodium activation at the action potential onset. Surpris-
ingly, our study reveals that the high frequency limit,
does not depend at all on the speed at the AP onset, but
rather on the phase variable, at which action potentials
are emitted. If at this point the dynamics is insensitive
to external inputs, as in the classical f-neuron, the de-
cay of the linear response amplitude is at least oc w™2,
whereas the decay is always oc w™! if the dynamics is
not completely insensitive to external inputs, as is the
case in conductance based neuron models. Moreover, the
full transmission function reveals that the onset of the
high-frequency limit can be shifted to very high frequen-
cies if the speed of the AP onset is increased. These
results question the relevance of the high frequency limit
as a criterion for the typical transmission speed of neuron
models.

For the computation of the linear response amplitude
we did not resort to direct numerical simulations, but
used a method based on the eigenfunctions and eigenval-
ues of the Fokker-Planck operator, describing the dynam-
ics of the probability density function in the presence of
a temporally correlated fluctuating input current. While
this approach is in general well-known (see e.g. [32] and
[22, 127] for an application to the non-leaky integrate-
and-fire model in the presence of an uncorrelated back-
ground noise), we derived a sparse matrix representation,
for which we computed eigenvalues and eigenfunctions
with very high numerical accuracy using a fast iterative
scheme, the Arnoldi method [24, 38]. Compared to pre-
vious studies on dynamical responses |4, [13, [14], this al-
lowed for the computation of the linear response proper-
ties with an accuracy that would be hard to meet by a
direct simulation of the single neuron dynamics.

Besides this, our results provide a direct link to exper-
iments. In a recent study [4] it was shown that the AP
width in neocortical neurons is strongly correlated with
the critical frequency up to which a neuron can phase
lock to sinusoidal input stimulations. This is indeed the
same result we found for the generalized §-neuron: With
increasing AP onset speed the response amplitude shifts
to larger frequencies, enabling the model to respond to
frequencies much larger than its own stationary rate. In a



second experimental study it was demonstrated that cor-
tical neurons subject to fluctuating input currents adapt
their instantaneous firing much faster when stimulated
with a step input in the noise amplitude than with a step
mean input current [34]. This behavior is well reproduced
by the generalized #-neuron. For increasing values of the
AP onset speed, the response amplitude at high frequen-
cies is one order of magnitude larger for the stimulation
in the noise amplitude, compared to the stimulation in

10

the mean input current. Both results strongly suggest
that the generalized #-neuron, despite its simplicity and
analytic tractability, captures well the essence of the AP
generating mechanism of multidimensional conductance
based neuron models. Future experimental studies will
have to show to what extent the generalized f-neuron
predicts the dependence of the dynamical response prop-
erties on the AP generating mechanism.
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