Skip to main content
Log in

Generation of Very Slow Neuronal Rhythms and Chaos Near the Hopf Bifurcation in Single Neuron Models

  • Published:
Journal of Computational Neuroscience Aims and scope Submit manuscript

Abstract

We have presented a new generation mechanism of slow spiking or repetitive discharges with extraordinarily long inter-spike intervals using the modified Hodgkin-Huxley equations (Doi and Kumagai, 2001). This generation process of slow firing is completely different from that of the well-known potassium A-current in that the steady-state current-voltage relation of the neuronal model is monotonic rather than the N-shaped one of the A-current. In this paper, we extend the previous results and show that the very slow spiking generically appears in both the three-dimensional Hodgkin-Huxley equations and the three dimensional Bonhoeffer-van der Pol (or FitzHugh-Nagumo) equations. The generation of repetitive discharges or the destabilization of the unique equilibrium point (resting potential) is a simple Hopf bifurcation. We also show that the generation of slow spiking does not depend on the stability of the Hopf bifurcation: supercritical or subcritical. The dynamics of slow spiking is investigated in detail and we demonstrate that the phenomenology of slow spiking can be categorized into two types according to the type of the corresponding bifurcation of a fast subsystem: Hopf or saddle-node bifurcation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Adams P (1982) Voltage-dependent conductances of vertebrate neurones. TINS-April, pp. 116–119.

  • Baer SM, Erneux T (1986) Singular Hopf bifurcation to relaxation oscillations. SIAM J. Appl. Math. 46: 721–739.

    Article  Google Scholar 

  • Baer SM, Erneux T, Rinzel J (1989) The slow passage through a Hopf bifurcation: Delay, memory effects, and resonance. SIAM J. Appl. Math. 49: 55–71.

    Article  Google Scholar 

  • Benoit E, Callot JL, Diener F, Diener M (1981) Chasse au canards. Collect. Math. 31: 37–119.

    Google Scholar 

  • Bertram R, Butte MJ, Kiemel T, Sherman A (1995) Topological and phenomenological classification of bursting oscillations. Bull. Math. Biol. 57: 413–439.

    Article  CAS  PubMed  Google Scholar 

  • Braaksma B (1998) Singular Hopf bifurcation in systems with fast and slow variables. J. Nonlinear Sci. 8: 457–490.

    Article  Google Scholar 

  • Canavier CC, Clark JW, Byrne JH (1991) Simulation of the bursting activity of neuron R15 in Aplisia: Role of ionic currents, calcium balance, and modulatory transmitters. J. Neurophysiol. 66: 2107–2124.

    CAS  PubMed  Google Scholar 

  • Carpenter GA (1977) A geometric approach to singular perturbation problems with applications to nerve impulse equations. J. Diff. Eqn. 23: 335–367.

    Article  Google Scholar 

  • Chay TR, Keizer J (1983) Minimal model for membrane oscillations in the pancreatic β-cell. Biophys. J. 42: 181–190.

    CAS  PubMed  Google Scholar 

  • Connor JA, Walter D and McKown R (1977) Neural repetitive firing: modifications of the Hodgkin-Huxley axon suggested by experimental results from crustacean axons. Biophys. J. 18: 81–102.

    CAS  PubMed  Google Scholar 

  • Crill WE, Schwindt PC (1983) Active currents in mammalian central neurons. TINS-June, pp. 236–240.

  • Cronin, J (1987) Mathematical Aspects of Hodgkin-Huxley neural theory. Cambridge Univ. Press.

  • Doedel E, Wang X, Fairgrieve T (1995) AUTO94–Software for continuation and bifurcation problems in ordinary differentialequations. CRPC-95-2, California Inst. of Tech.

  • Doi S, Inoue J, Sato S, Smith CE (1999) Bifurcation analysis of neuronal excitability and oscillations. In: Poznanski R, ed. Modeling in the Neurosciences: From Ionic Channels to Neural Networks, Chapter 16, Harwood Academic Publishers, pp. 443–473.

  • Doi S, Inoue J, Kumagai S (2004) Chaotic spiking in the Hodgkin-Huxley nerve model with slow inactivation of the sodium current. J. Integrative Neurosci. 3: 207–225.

    Google Scholar 

  • Doi S, Kumagai S (2001) Nonlinear dynamics of small-scale biophysical neural networks. In: Poznanski R, ed. Biophysical Neural Networks: Foundations of Integrative Neuroscience, Chapter 10, Mary Ann Liebert, Inc., pp. 261–301.

  • Doi S, Nabetani S, Kumagai S (2001) Complex nonlinear dynamics of the Hodgkin-Huxley equations induced by time scale changes. Biol. Cybern. 85: 51–64.

    Google Scholar 

  • Drover J, Rubin J, Su JH, Ermentrout B (2004) Analysis of a canard mechanism by which excitatory synaptic coupling can synchronize neurons at low firing frequencies. SIAM J. Appl. Math. 65: 69–92.

    Article  Google Scholar 

  • Ermentrout GB (1996) Type I membranes, phase resetting curves, and synchrony. Neural Comp. 8: 979–1001.

    CAS  Google Scholar 

  • Fenichel N (1979) Geometric singular perturbation theory for ordinary differential equations. J. Diff. Eqn. 31: 53–98.

    Google Scholar 

  • FitzHugh R (1959) Thresholds and plateaus in the Hodgkin-Huxley nerve equations. J. Gen. Physiol. 43: 867–896.

    Google Scholar 

  • FitzHugh R (1961) Impulses and physiological states in theoretical models of nerve membrane. Biophy. J. 1: 445–466.

    Google Scholar 

  • Fukai H, Doi S, Nomura T, Sato S (2000a) Hopf bifurcations in multiple parameter space of the Hodgkin-Huxley equations. I. Global Organization of bistable periodic solutions. Biol. Cybern. 82: 215–222.

    CAS  Google Scholar 

  • Fukai H, Nomura T, Doi S, Sato S (2000b) Hopf bifurcations in multiple parameter space of the Hodgkin-Huxley equations. II. Singularity theoretic approach and highly degenerate bifurcations. Biol. Cybern. 82: 223–229.

    CAS  Google Scholar 

  • Gerber B, Jakobsson E (1993) Functional significance of the A-current. Biol. Cybern. 70: 109–114.

    Article  CAS  PubMed  Google Scholar 

  • Guckenheimer J (1996) Towards a global theory of singularly perturbed dynamical systems. Prog. Non. Diff. Eqn. Appl. 19: 213–225.

    Google Scholar 

  • Guckenheimer J, Harris-Warrick R, Peck J, Willms A (1997) Bifurcation, bursting, and spike frequency adaptation. J. Comp. Neurosci. 4: 257–277.

    CAS  Google Scholar 

  • Guckenheimer J, Hoffman K, Weckesser W (2000) Numerical computation of canards. Int. J. Bif. Chaos 10: 2669–2687.

    Article  Google Scholar 

  • Guckenheimer J, Holmes P (1983) Nonlinear Oscillations, Dynamical Systems, and Bifurcation of Vector Fields. Springer.

  • Guckenheimer J, Labouriau IS (1993) Bifurcation of the Hodgkin and Huxley equations: A new twist. Bull. Math. Biol. 55: 937–952.

    Article  Google Scholar 

  • Guckenheimer J, Oliva A (2002) Chaos in the Hodgkin-Huxley model. SIAM J. Appl. Dynam. Sys. 1:105–114.

    Google Scholar 

  • Guckenheimer J, Willms AR (2000) Asymptotic analysis of subcritical Hopf-homoclinic bifurcation. Physica D 139: 195–216.

    Article  Google Scholar 

  • Gutkin BS, Ermentrout GB (1998) Dynamics of membrane excitability determine inter-spike interval variability: A link between spike generation mechanisms and cortical spike train statistics. Neural Comp. 10: 1047–1065.

    CAS  Google Scholar 

  • Hassard B (1978) Bifurcation of periodic solutions of the Hodgkin-Huxley model for the squid giant axon. J. Theor. Biol. 71: 401–420.

    Article  CAS  PubMed  Google Scholar 

  • Hayashi H, Ishizuka S (1992) Chaotic nature of bursting discharges in the Onchidium pacemaker neuron. J. Theor. Biol. 156: 269–291.

    Google Scholar 

  • Hille B (1992) Ionic Channels of Excitable Membranes, 2nd ed. Sinauer Associates.

  • Hodgkin AL (1948) The local electric changes associated with repetitive action in a non-medullated axon. J. Physiol. 107: 165–181.

    Google Scholar 

  • Hodgkin AL, Huxley AF (1952) A quantitative description of membrane current and its applications to conduction and excitation in nerve. J. Physiol. 117: 500–544.

    CAS  PubMed  Google Scholar 

  • Honerkamp J, Mutschler G Seitz R (1985) Coupling of a slow and a fast oscillator can generate bursting. Bull. Math. Biol. 47: 1–21.

    Article  CAS  Google Scholar 

  • Izhikevich EM (2000) Neural excitability, spiking, and bursting. Int. J. Bifn. Chaos 10: 1171–1266.

    Google Scholar 

  • Jones C (1996) Geometric singular perturbation theory. In: Johnson R, ed. Dynamical Systems, Lecture Notes in Mathematics, Vol.1609, Springer.

  • Jones C, Kopell N (1994) Tracking invariant manifolds with differential forms. J. Diff. Eqn. 108: 64–88.

    Google Scholar 

  • Keener J, Sneyd J (1998) Mathematical Physiology. Interdisciplinary Applied Mathematics, Vol. 8. Springer-Verlag, New York.

    Google Scholar 

  • Llinas RR (1988) The intrinsic electrophysiological properties of mammalian neurons: Insights into central nervous system function. Science 242: 1654–1664.

    CAS  PubMed  Google Scholar 

  • Nagumo J, Arimoto S, Yoshizawa S (1962) An active pulse transmission line stimulating nerve axon. Proc. Inst. Radio Eng. 50: 2061–2070.

    Google Scholar 

  • Neishtadt AI (1987) Persistence of stability loss for dynamical bifurcations I. Diff. Eqn. 23: 1385–1391.

    Google Scholar 

  • Neishtadt AI (1988) Persistence of stability loss for dynamical bifurcations II. Diff. Eqn. 24: 171–176.

    Google Scholar 

  • Noble D (1995) The development of mathematical models of the heart. Chaos. Sol. Frac. 5: 321–333.

    Article  CAS  Google Scholar 

  • Plant RE (1976) The geometry of the Hodgkin-Huxley model. Comp. Prog. Biomed. 6: 85–91.

    Article  CAS  Google Scholar 

  • Rinzel J (1978) On repetitive activity in nerve. Fed. Proc. 37: 2793–2802.

    CAS  PubMed  Google Scholar 

  • Rinzel J (1990) Discussion: Electrical excitability of cells, theory and experiment: Review of the Hodgkin-Huxley foundation and update. Bull. Math. Biol. 52: 5–23.

    Article  Google Scholar 

  • Rinzel J, Ermentrout GB (1989) Analysis of neuronal excitability and oscillations. In: Koch C, Segev I, eds. Methods in Neuronal Modeling: From Synapses to Networks, MIT Press, London.

    Google Scholar 

  • Rinzel J, Lee YS (1986) On different mechanisms of membrane potential bursting. In: Othmer HG, ed. Nonlinear Oscillations in Biology and Chemistry, Springer, pp. 19–33.

  • Rinzel J, Miller RN (1980) Numerical calculation of stable and unstable periodic solutions to the Hodgkin-Huxley equations. Math. Biosci. 49: 27–59.

    Article  Google Scholar 

  • Rinzel J, Troy WC (1983) A one-variable map analysis of bursting in the Belousov-Zhabotinskii reaction. Contem. Math. 17: 411–427.

    Google Scholar 

  • Rush ME, Rinzel J (1995) The potassium A-current, low firing rates and rebound excitation in Hodgkin-Huxley models. Bull. Math. Biol. 57: 899–929.

    Article  CAS  PubMed  Google Scholar 

  • Szmolyan P, Wechselberger M (2001) Canards in R3. J. Diff. Eqs. 177: 419–453.

    Article  Google Scholar 

  • Traub RD, Wong RKS, Miles R, Michelson H (1991) A model of a CA3 hippocampal pyramidal neuron incorporating voltage-clamp data on intrinsic conductances. J. Neurophysiol. 66: 635–650.

    CAS  PubMed  Google Scholar 

  • Troy WC (1978) The bifurcation of periodic solutions in the Hodgkin-Huxley equations. Quart. Appl. Math. 36: 73–83.

    Google Scholar 

  • Wang XJ, Rinzel J (1995) Oscillatory and bursting properties of neurons. In: Arbib MA, ed. The Handbook of Brain Theory and Neural Networks, MIT Press, pp. 686–691.

  • Wechselberger M (2005) Existence and bifurcation of canards in R3 in the case of a folded node. SIAM J. Appl. Dynam. Sys. 4: 101–139.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shinji Doi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Doi, S., Kumagai, S. Generation of Very Slow Neuronal Rhythms and Chaos Near the Hopf Bifurcation in Single Neuron Models. J Comput Neurosci 19, 325–356 (2005). https://doi.org/10.1007/s10827-005-2895-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10827-005-2895-1

Keywords

Navigation