Skip to main content
Log in

Propagation of photon noise and information transfer in visual motion detection

  • Published:
Journal of Computational Neuroscience Aims and scope Submit manuscript

Abstract

The extraction of the direction of motion from the time varying retinal images is one of the most basic tasks any visual system is confronted with. However, retinal images are severely corrupted by photon noise, in particular at low light levels, thus limiting the performance of motion detection mechanisms of what sort so ever. Here, we study how photon noise propagates through an array of Reichardt-type motion detectors that are commonly believed to underlie fly motion vision. We provide closed-form analytical expressions of the signal and noise spectra at the output of such a motion detector array. We find that Reichardt detectors reveal favorable noise suppression in the frequency range where most of the signal power resides. Most notably, due to inherent adaptive properties, the transmitted information about stimulus velocity remains nearly constant over a large range of velocity entropies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abshire PA, Andreou AG (2001) A communication channel model for information transmission in the blowfly photoreceptor. Biosystems 62:113–133.

    Article  CAS  PubMed  Google Scholar 

  • Borst A (2003) Noise, not stimulus entropy, determines neural information rate. J. Comput. Neurosci. 14:23–31.

    Article  PubMed  Google Scholar 

  • Borst A, Egelhaaf M (1989) Principles of visual motion detection. Trends Neurosci. 12:297–306.

    Article  CAS  PubMed  Google Scholar 

  • Borst A, Egelhaaf M (1993) Detecting visual motion: Theory and models. In: FA Miles, J Wallman, eds. Visual Motion and its Role in the Stabilization of Gaze. Elsevier, Amsterdam, London, New York, Tokyo, pp. 3–27.

    Google Scholar 

  • Borst A, Reisenman C, Haag J (2003) Adaptation of response transients in fly motion vision II: Model studies. Vision. Res. 43:1311–1324.

    Article  Google Scholar 

  • Borst A, Flanagin V, Sompolinsky H (2005) Adaptation without parameter change: Dynamic gain control in motion detection. Proc. Natl. Acad. Sci. USA 102:6172–6176.

    Article  CAS  PubMed  Google Scholar 

  • Buchner E (1976) Elementary movement detectors in an insect visual system. Biol. Cybern. 24:85–101.

    Article  Google Scholar 

  • Cover TM, Thomas JA (1991) Elements of Information Theory. John Wiley & Sons, Inc., New York, Chichester, Brisbane, Toronto, Singapore.

    Book  Google Scholar 

  • de Ruyter van Steveninck R, Bialek W (1995) Reliability and statistical efficiency of a blowfly movement- sensitive neuron. Phil. Trans. R. Soc. Lond. B 348:321–340.

    Article  Google Scholar 

  • Fennema CL, Thompson WB (1979) Velocity determination in scenes containing several moving objects. Comp. Graph. Im. Process. 9:301–315.

    Article  Google Scholar 

  • Götz KG (1964) Optomotorische Untersuchungen des visuellen Systems einiger Augenmutanten der Fruchtfliege Drosophila. Kybernetik 2:77–92.

    Article  PubMed  Google Scholar 

  • Grewe J, Kretzberg J, Warzecha AK, Egelhaaf M (2003) Impact of photon noise on the reliability of a motion-sensitive neuron in the fly’s visual system. J. Neurosci. 23:10776–10783.

    CAS  PubMed  Google Scholar 

  • Haag J, Borst A (1997) Encoding of visual motion information and reliability in spiking and graded potential neurons. J. Neurosci. 17:4809–4819.

    CAS  PubMed  Google Scholar 

  • Haag J, Borst A (1998) Active membrane characteristics and signal encoding in graded potential neurons. J. Neurosci. 18:7972–7986.

    CAS  PubMed  Google Scholar 

  • Haag J, Denk W, Borst A (2004) Fly motion vision is based on Reichardt detectors regardless of the signal-to-noise ratio. Proc. Natl. Acad. Sci. USA 101:16333–16338.

    Article  CAS  PubMed  Google Scholar 

  • van Hateren JH (1992) Real and optimal neural images in early vision. Nature 360:68–70.

    Article  PubMed  Google Scholar 

  • Hildreth EC, Koch C (1987) The analysis of motion: From computational theory to neuronal mechanisms. Ann. Rev. Neurosci. 10:477–533.

    Article  CAS  PubMed  Google Scholar 

  • Hodgkin AL, Huxley AF (1990) A quantitative description of membrane current and its application to conduction and excitation in nerve, 1952. Bull. Math. Biol. 52:25–71.

    CAS  PubMed  Google Scholar 

  • Howard J, Blakeslee B, Laughlin SB (1987) The intracellular pupil mechanism and the maintenance of photoreceptor signal to noise ratios in the blowfly Lucilia cuprina. Proc. R. Soc. B 231:415–435.

    Article  CAS  Google Scholar 

  • Laughlin SB (1987) Form and function in retinal processing. Trends Neurosci. 10:478–483.

    Article  Google Scholar 

  • Laughlin SB (1996) Matched filtering by a photoreceptor membrane. Vision. Res. 36:1529–1541.

    Article  CAS  PubMed  Google Scholar 

  • Lewen GD, Bialek W, de Ruyter van Steveninck RR (2001) Neural coding of naturalistic motion stimuli. Network 12:317–329.

    CAS  PubMed  Google Scholar 

  • Limb JO, Murphy JA (1975) Estimating the velocity of moving images in television signals. Comp. Graph. Im. Process. 4:311–327.

    Article  Google Scholar 

  • Mircea A, Sinnreich H (1969) Distortion noise in frequency-dependent nonlinear networks. Proc. Inst. Electron. Engrs. 115:1644–1648.

    Google Scholar 

  • Papoulis A (1991) The Power Spectrum. In: Probability, Random Variables, and Stochastic Processes. McGraw-Hill, pp. 319–329.

  • Petrowitz R, Dahmen H, Egelhaaf M, Krapp HG (2000) Arrangement of optical axes and spatial resolution in the compound eye of the female blowfly Calliphora. J. Comp. Physiol. 168:737–746.

    Article  Google Scholar 

  • Potters M, Bialek W (1994) Statistical mechanics and visual signal processing. J. Physiol. France 4:1755–1775.

    Article  Google Scholar 

  • Reichardt W (1961) Autocorrelation, a principle for the evaluation of sensory information by the central nervous system. In: WA, Rosenblith, ed. Sensory Communication. The MIT Press and John Wiley & Sons, New York, London, pp. 303–317.

    Google Scholar 

  • Reichardt W (1987) Evaluation of optical motion information by movement detectors. J. Comp. Physiol. A 161:533–547.

    Article  CAS  PubMed  Google Scholar 

  • Reisenman C, Haag J, Borst A (2003) Adaptation of response transients in fly motion vision I: Experiments. Vision. Res. 43:1293–1309.

    Article  Google Scholar 

  • Shannon CE, Weaver W (1949) The mathematical theory of communication. The University of Illinois Press, Chicago.

    Google Scholar 

  • Schuling FH, Altena P, Mastebroek HAK (1990) The computational measurement of apparent motion: A recurrent pattern recognition strategy as an approach to solve the correspondence problem. Biol. Cybern. 62:463–473.

    Article  CAS  PubMed  Google Scholar 

  • Skoczenski AM, Norcia AM (1998) Neural noise limitations on infant visual sensitivity. Nature 391:697–700.

    Article  CAS  PubMed  Google Scholar 

  • Srinivasan MV (1990) Generalized gradient schemes for measurement of image motion. Biol. Cybern. 63:421–431.

    Article  CAS  PubMed  Google Scholar 

  • Tolhurst DJ, Movshon JA, Dean AF (1983) The statistical reliability of signals in single neurons in cat and monkey visual cortex. Vision. Res. 23:775–785.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexander Borst.

Additional information

Action editor: Matthew Wiener

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shi, L., Borst, A. Propagation of photon noise and information transfer in visual motion detection. J Comput Neurosci 20, 167–178 (2006). https://doi.org/10.1007/s10827-005-5906-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10827-005-5906-3

Keywords

Navigation