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Abstract

Cells in several areas of the hippocampal formation show place spe-
cific firing patterns, and are thought to form a distributed representation of
an animal’s current location in an environment. Experimental results sug-
gest that this representation is continually updated even in complete dark-
ness, indicating the presence of a path integration mechanism in the rat.
Adopting the Neural Engineering Framework (NEF) presented by Elia-
smith and Anderson (2003) we derive a novel attractor network model of
path integration, using heterogeneous spiking neurons. The network we
derive incorporates representation and updating of position into a single
layer of neurons, eliminating the need for a large external control popula-
tion, and without making use of multiplicative synapses. An efficient and
biologically plausible control mechanism results directly from applying
the principles of the NEF. We simulate the network for a variety of inputs,
analyze its performance, and give three testable predictions of our model.

Introduction

Neurons which fire maximally at specific locations in an environment (place cells)
have been found in several areas within the hippocampal region of freely moving rats
(O’Keefe and Dostrovsky 1971; Taube 1995; Sharp 1997). These areas include the
entorhinal cortex, dentate gyrus, subiculum, parasubiculum, and hippocampus proper.
It has been suggested that place cells contain a representation of the rat’s instanta-
neous location on a two dimensional map of the environment, also known as a “place
code” (McNaughton et al. 1996; Redish and Touretzky 1997). Place specific firing in
hippocampal place cells has been found to persist during active locomotion, after the
removal of visual cues (Muller and Kubie 1987; O’Keefe and Speakman 1987), and
even in complete darkness (Quirk et al. 1990; Markus et al. 1994). This suggests that
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these cells may be involved in a form of path integration, reflected in the ability of
a rat to return directly to its initial location using only idiothetic cues. Sensitivity to
vestibular motion signals has also been observed in place cell firing (Sharp et al. 1995),
which could be used by a path integration mechanism to update the animal’s internal
representation of position.

The ability to perform path integration has been shown in a wide variety of ani-
mals (see Redish 1999 or Etienne and Jeffery 2004 for a review). Rats in particular
have demonstrated path integration both while walking (Tolman 1948; Whishaw and
Maaswinkel 1997; Alyan et al. 1997; Alyan and McNaughton 1999) and swimming
(Benhamou 1997). However, path integration is only one element of the rat navigation
system. The system also requires a mechanism for consolidating visual and external
cues with path integration information (Redish and Touretzky 1997), and is theorized
to contain mechanisms for planning trajectories (Frank et al. 2000; Frank et al. 2001),
and other various functions. We focus specifically on path integration, and provide a
model that can be incorporated into more comprehensive models of the rat navigation
system.

To generate this model, we apply the Neural Engineering Framework (NEF) de-
veloped by Eliasmith and Anderson (2003). Our goals are to provide a better control
mechanism than previous path integration models, to increase the biological plausibil-
ity without sacrificing model functionality, and to make predictions about the behaviour
of neurons involved in path integration.

To develop this model, we first describe the relevant anatomy and physiology of
path integration, including which areas of the brain are involved, and the characteristics
of cells in these areas. We then review two past attractor models of path integration, and
state our goals for improvement on these models. Next we apply the NEF to formulate
the mathematical statement of our model. Following this derivation, we present the
results of our numerical simulations, covering a wide range of input velocity signals.
The resulting performance of the model is judged against previous models, and against
observed biological phenomena. Finally, the predictions and significance of the model
are discussed.

Methods

Anatomy and Physiology of Path Integration

Single cell data collected from experiments on locomoting rats has lead to the conclu-
sion that not all place cells are created equal. Place cells in different parts of the hip-
pocampal formation have been found to have different characteristic tuning curves, to
vary in their spatial sensitivity, and are thought to encode space in fundamentally differ-
ent ways. Place fields in hippocampus are observed to be randomly reset upon entering
a novel environment (Thompson and Best 1989), while subicular place cells have been
observed to stretch or scale their place fields so that their spatial firing properties are
similar across different environments (Sharp 1997). Spatial cells in the entorhinal cor-
tex (which has reciprocal connections to subiculum) also show similar firing patterns in
different environments (Quirk et al. 1992). These data support the idea that the subic-
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ular and entorhinal cells have the ability to transfer an abstract spatial representation
from one environment to another, consistent with path integration.

There have been several hypotheses as to which areas of the brain actually perform
path integration in the rat. One hypothesis is that the hippocampus itself contains
the path integration mechanism (McNaughton et al. 1996). However this theory is
weakened by experimental data showing that rats with hippocampal lesions can still
perform path integration effectively (Alyan et al. 1997; Alyan and McNaughton 1999).
Further, recordings from medial entorhinal cortex (MEC) during random exploration
(Fyhn et al. 2004) have shown that the activity of a small number of superficial MEC
neurons is sufficient to accurately reconstruct the trajectory of the rat, and that bilateral
hippocampal lesions have no significant effect on the spatial information rate of these
neurons. These results are consistent with the hypothesis that a path integration circuit
external to the hippocampus contains a coherent representation of position.

Sharp (1997) alternatively proposed that path integration could be performed in
the subiculum. Because each environment is represented by the same set of place
cells, the same mechanism could be used to update the place representation as the
rat moves through any environment. This single update mechanism could be either
learned at a young age, or genetically prewired (Redish 1999). This would not be
possible in hippocampus where there is no correlation between place fields in different
environments (Thompson and Best 1989). However, the subiculum does not project
directly to the hippocampus (Kohler 1986; Kohler 1988; Witter et al. 1989; Witter
et al. 1990). Thus if the subiculum alone is performing path integration, it is unclear
how this path integration signal could be used as input to the place cells observed in
hippocampus.

This has lead Redish (1999) to propose that path integration is distributed across
three structures, the subiculum, the parasubiculum, and the superficial layers of the
entorhinal cortex. These areas are connected in a loop, and together they meet the five
requirements proposed by Redish for structures which could theoretically perform path
integration:

• they are collectively able to represent the position of the animal;

• they receive input from the head direction system;

• they receive information about self-motion from the motor and vestibular sys-
tems;

• they update the representation as the animal moves around the environment; and

• they send output to the area associated with the place code.

Redish’s proposal addresses the shortcomings of the subiculum hypothesis, as the su-
perficial entorhinal cortex projects directly to the hippocampus, so the path integrator
would be able to update the hippocampal place code. Also, the parasubiculum receives
input from postsubiculum, which contains head direction information, and both parietal
and cingulate cortex, which contain motor and directional information. Thus the path
integrator could receive the required velocity inputs to update its internal representation
of position.
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Our model is intended to be consistent with this characterization of the path inte-
grator. However, as with past models (e.g. Samsonovich and McNaughton 1997), the
functionality of our model is likely consistent with other anatomical implementations.

Past Models

Many types of path integration models have been proposed. For a review and summary
of the major models, see Redish (1999). Here, we review only attractor network mod-
els, as they have a high degree of neural plausibility, and have been the most successful
to date (Redish and Touretzky 1997).

Attractor models of path integration can be viewed as a generalization of ring at-
tractor networks, which have been used to model head direction in rats (Zhang 1996;
Redish et al. 1996; Goodridge and Touretzky 2000). The ring attractor model consists
of a gaussian bump of neural activity on a cyclic ring of neurons, which represent the
current direction of the animal’s head. This form of activity is the only dynamically
stable state of the network, and from random initial conditions the network rapidly
converges to a bump at a random location on the ring. Generalizing to two dimensions
yields a plane attractor network, consisting of a gaussian hill of activation (sometimes
called an activity packet) on a sheet of neurons, which represents the animal’s current
location in the environment. Various strategies have been adopted to control updating
of the location of the activity packet based on motion signals.

Zhang (1996) has presented, but not simulated, such a generalization of his one-
dimensional attractor model. However, there are a number of problems with his ap-
proach. His model uses homogeneous, non-spiking neurons. In addition, his dynamic
mechanism for updating the activity packet requires multiplicative synapses to produce
an asymmetry in the neuron connection weights, and is thus not generally thought to
be biologically plausible (c.f. Mel 1994).

Samsonovich and McNaughton (1997) present and simulate an improved model
which divides the system into two stages: a P-stage, which is a two-dimensional sheet
of neurons representing the current position of the animal, and an I-stage which con-
trols updating of the position. The I-stage consists of a stack of two dimensional sheets,
each having asymmetric connections to the P-stage, with displacement corresponding
to a particular direction of motion. The model implements translation of the activity
packet by using the head direction to select a particular layer of the I-stage as active,
while other layers remain silent. The activity in the P-stage is projected directly to the
active I-layer, which in turn excites a section of the P-stage which is slightly offset from
the current position, in the direction corresponding to the selected I-layer. This causes
the activity packet to move in the selected direction, due to the attractor dynamics of
the P-stage.

While this model reproduced several observations about hippocampal place fields,
the translation mechanism seems cumbersome, requiring many times more neurons for
the translation mechanism (the I-stage) than for the representation itself (the P-stage).
Presented simulations range from 6 to 200 I layers, with each layer containing from
30,000 to 300,000 neurons. This model also uses homogeneous units (i.e., identical
biophysical parameters), which is inconsistent with the heterogeneity observed in real
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neurons (i.e., widely varying biophysical parameters that result in, for example, a vari-
ety of peak and background firing rates).

Goals of our Path Integration Model

Redish and Touretzky (1997) present a conceptual framework for the rodent naviga-
tion system. In this framework they explain the functions and interactions of several
subsystems, including a subsystem for processing sensory queues, a place code sub-
system, and a path integration subsystem. We take this to be a good analysis and have
designed our model so that it can function as a subsystem in this more comprehen-
sive model of rodent navigation, meeting only the specific functional requirements of
path integration. Redish and Touretzky (1998) simulate a larger network model to ex-
plain the role played by the hippocampus in solving a hidden platform water maze.
However, their emphasis is on the simulation of the entire navigation system and the
interactions between subsystems, so they do not explicitly simulate the path integration
mechanism. Instead they refer to the above mentioned published models (Zhang 1996;
Samsonovich and McNaughton 1997) for examples of mechanisms that can be used to
simulate path integration. As discussed above, we feel that both of these models have
shortcomings which can be improved upon.

So, our chief goal is to provide a biologically plausible path integration system
which could be useful in modeling of the rodent navigation system. We aim to im-
prove upon past efforts by avoiding use of multiplicative synapses, using realistically
diverse neurons, and using a translation mechanism that is less costly from a biological
perspective (i.e. one that can use fewer neurons to control movement of the activity
packet), while maintaining or improving upon the functionality of past models.

Physiological and behavioral data leads to several constraints on our model. Our
network must be able to maintain a stable representation of position, while exhibit-
ing experimentally observed properties of place cells. Specifically, the neurons in the
model must have diverse tuning properties, distributed over space and with a variety of
background firing rates and sensitivities to change in position. Further, drift error in our
model must be low enough to provide an explanation for experiments in which rats have
been observed to successfully perform path integration (e.g. Alyan and McNaughton
1999). Finally, the model must be able to integrate movements in any direction.

One common characteristic of the attractor networks discussed above is that the
construction of each network is somewhatad hoc. There is no systematic process that
has been followed to generate the required network behavior. Rather, deriving control
mechanisms has required significant insight by the authors into the structure and dy-
namics of their networks, learning from the behaviour and shortcomings of previously
constructed networks.

Eliasmith and Anderson (2003) have presented a theoretical framework for the con-
struction of large-scale biologically plausible networks, the NEF. This framework gives
a systematic procedure for implementing control of these networks, and has been ap-
plied to the control of spiking attractor networks including line attractors, ring attrac-
tors, cyclic attractors, and chaotic attractors (Eliasmith in press). By adopting this
framework, we eliminate much of the guess work involved in getting our network to
behave in the required manner. This gives our model a secondary purpose. Not only do
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we provide a biologically plausible path integration system, but we also demonstrate
the usefulness of the NEF.

Theoretical Framework

The NEF describes how to create a population of neurons that can represent some value
or function (in our case a two-dimensional gaussian bump), perform transformations
on that representation (in our case a translation of the function), and incorporate the
dynamics of the neural network over time (in our case stable control of translation on a
two-dimensional map). The NEF can be summarized by the following three principles:

1. Representation:Neural representations are defined by a combination of non-
linear encoding and optimal linear decoding

2. Transformation:Transformations of neural representations are functions of the
variables that are represented by a population

3. Dynamics:Neural dynamics are characterized by considering neural representa-
tions as control theoretic state variables

We recall and elaborate on each principle where appropriate in the following derivation.

Function representation

To meet the requirements of the model, we take the population to be able to represent
two-dimensional gaussians, i.e. functions of the form:

x(µ, ν, t) = exp
([
− [µ− µ0(t)]

2 − [ν − ν0(t)]
2
]
/(2σ2)

)
(1)

wheret is time,µ andν are Cartesian coordinates on a plane normalized in both direc-
tions to the interval[−1, 1), (µ0(t), ν0(t)) is the mean of the gaussian, andσ quantifies
the width.

When defining the representation, it is important to determine what happens when
the moving animal reaches the edge of the defined map. Three methods of dealing
with this problem are discussed by Redish (1999). We have chosen to make our two-
dimensional plane toroidal, (i.e. both axes are cyclical) as there is currently no strong
biological evidence supporting one solution over another (although recent recordings
from entorhinal cortex may suggest a toroidal representation, see Results).

To apply the NEF, it is useful to project the function representation onto an or-
thonormal basis and deal directly with the resulting vectors of coefficients, rather than
the continuous functions ofµ andν. Because our spatial dimensions are cyclic, we
have chosen the standard two-dimensional Fourier basis of bivariate sines and cosines.
We can now identify the functionx(µ, ν, t) by its vector of Fourier coefficientsx(t)
where

x(µ, ν, t) =
∑
m,n

x1,m,n(t) cos(πmµ + πnν) + x2,m,n(t) sin(πmµ + πnν). (2)
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The summations overm andn evenly tile the frequency space in a square grid about
the origin. We use a finite number of basis functions, which will be the dimensionality
D of the vectorx(t). The number of basis functions needed is determined by the
minimum variance of the set of gaussians we must represent. To represent gaussians
with smaller variances, we require higher frequency components and thus a greater
number of basis functions. To define our representations neurally, we refer to the first
principle of the NEF:

Representation: Neural representations are defined by a combination of non-linear
encoding and optimal linear decoding.

The following expression defines the encoding ofx(t) (the coefficient vector of the
gaussian bump) by a network of spiking neurons:

∑
n

δ(t− tin) = Gi

[
αi

〈
φ̃i · x(t)

〉
+ Jbias

i

]
, (3)

whereGi[·] is a spiking nonlinearity which we take to be defined by the parameters of
the ith leaky integrate-and-fire (LIF) neuron. This function takes as its argument the
soma input current on neuroni and produces a spike train for that neuron, wheretin
is the time of thenth spike from neuroni. The propertiesαi andJbias

i represent the
gain factor and constant background current for neuroni. The vectorφ̃i is the pre-
ferred direction vector, or encoding vector, for neuroni, and determines the direction
of maximal firing in the vector space. The〈·〉 operator denotes the Euclidean inner
product.

Because place cells in subiculum and entorhinal cortex exhibit roughly gaussian
tuning curves, we choose the encoding vectorsφ̃i to be Fourier coefficients of gaus-
sians evenly distributed on theµ, ν plane. Noting that the inner product in (3) acts
as a measure of similarity between a neuron’s encoding vectorφ̃i (corresponding to
a particular gaussian on the plane) and the encoded vectorx(t) (corresponding to a
gaussian at the rat’s current location), the neurons will have roughly gaussian tuning
curves, firing maximally when the encoded gaussian is coincident with the neuron’s
preferred direction vector. The maximum firing rate of each neuron is determined by
randomly chosen LIF parameters, to match the observed heterogeneity of neuron firing
rates. As the encoded gaussian is translated about the plane, a corresponding packet of
roughly gaussian neural activity will translate as well. A similar idea has been used in
the one-dimensional case to generate neurons with gaussian tuning curves in a model
of working memory in macaque monkeys (Eliasmith and Anderson 2003; Eliasmith
and Anderson 2001).

Having defined the encoding, we now define the decoded population estimate of
x(t), recovered by optimal linear decoding:

x̂ =
∑

i,n

h(t− tin)φx
i . (4)

Here, the output spike train of each neuron is convolved with a temporal filterh(t) de-
fined by the post synaptic current (PSC), and weighted by the optimal linear decoders
φx

i . Using the PSC as a temporal filter gives similar information transfer characteristics
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as optimal filters, with vastly improved biological plausibility (Eliasmith and Ander-
son 2003). The optimal linear decodersφx

i are the vectors which decodex(t) with
minimum mean square error (MSE) over the expected range ofx(t), and are found by
minimizing

E =
1
2

〈
[x− x̂]2

〉
x

(5)

where〈·〉xdenotes integration over the expected range of the vectorx (in our case, the
coefficients of two-dimensional gaussians on the plane).

Translation

We must now identify what happens to the coefficient vectorx(t) when the gaussian
bump undergoes a translationx(µ, ν, t + 4t) = x(µ + a, ν + b, t). If we substitute
(µ+a) for µ and(ν+b) for ν in (2) and letx(t+4t) be the translated vector of Fourier
coefficients, we can solve forx(t +4t) in terms ofx(t), which shows us the effect of
the translation in the frequency space. Using trigonometric identities, we obtain:

[
x1,m,n(t +4t)
x2,m,n(t +4t)

]
=

[
cos(πma + πnb) sin(πma + πnb)
− sin(πma + πnb) cos(πma + πnb)

] [
x1,m,n(t)
x2,m,n(t)

]

(6)
This is recognizable as a two dimensional rotation of each Fourier coefficient pair.

Interestingly then, any translation on the plane is equivalent to a rotation of each coef-
ficient pair with coordinates(m,n) in the frequency space. Furthermore this rotation
can be separated into two independent rotations, a rotation byπma corresponding to
translation bya in theµ direction and a rotation byπnb corresponding to translation
by b in theν direction. We can thus rewrite (6) as

x(t +4t) = RmaRnbx(t). (7)

HereRma andRnb areD×D matrices with2×2 rotation sub-matrices along the
diagonal for each Fourier coefficient pair, such that left multiplication ofx(t) by Rma

or Rnb results in rotations by anglesπma or πnb of each Fourier coefficient pair.

Dynamics of translation

To determine how to control and stabilize translation over time, consider the simplified
case where the gaussian translates in one direction, sayµ. That is

x(t +4t) = Rmax(t). (8)

This describes a system where the gaussianx(t) translates a distancea in theµ direc-
tion at each time step. We can think ofa as an external linear velocity input for theµ
direction.

The dynamics of the system can be expressed as follows:
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ẋ(t) = lim
∆t→0

x(t +4t)− x(t)
∆t

(9)

= lim
∆t→0

(Rma − I)
∆t

x(t) (10)

This equation requires that the rotation matrixRma be recalculated every time the
velocity inputa changes, which involves computation of many trigonometric functions
at each time step, a task that is not at all straightforward in a neural network.

As an alternative method for controlling the speed of rotation, we seta = δ in the
above equation, whereδ is a very small constant. We now refer to the matrix asRmδ

where multiplication byRmδ results in rotation of the Fourier coefficients in the state
vector byπmδ, which corresponds to a translation byδ in theµ direction. We can now
use an external linear velocity inputa(t) to essentially scale, or switch on and off, the
translation:

ẋ(t) =
a(t) (Rmδ − I)

∆t
x(t) (11)

We have dropped the limit in the above equation and now consider∆t as the model
time step, anda(t) as a time-varying linear velocity input normalized on[−1, 1]. The
velocity of the bump varies directly witha(t). For example, ifa(t) = 0 thenẋ(t) = 0
and the bump is static. Ifa(t) = 1 then we recover equation (10) corresponding to
maximum velocity translation in theµ direction.

If we repeat this derivation for equation (7) in the case where the bump is translating
in both the directionsµ andν, we arrive at a similar dynamic equation to (11):

ẋ(t) =
(RmδRnδ − I)

∆t
x(t) (12)

Here we face a problem because the product of the two rotation matrices makes it
impossible to independently control movement in each direction by scaling. We use
the following approximation to independently scale the two rotation matrices:

ẋ(t) =
a(t) (Rmδ − I)

∆t
x(t) +

b(t) (Rnδ − I)
∆t

x(t) (13)

=
1
4t

[(Rmδ − I) a(t) + (Rnδ − I) b(t)]x(t) (14)

whereb(t) is a linear velocity input in theν direction, andRnδ is a rotation matrix
analogous toRmδ. For cases where the bump is translating in only one direction
(a(t) = 0 or b(t) = 0), this equation reduces to equation (11) and the bump translates
as required. For inputs where botha(t) andb(t) are non-zero, we can work backward
from (14) to see that the approximation is a good estimate of the correct translation.

As an example, consider the case wherea(t) = b(t) = 1, where we want to
translate the bump positively in both directions. We can rewrite equation (14) as
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ẋ(t) = lim
∆t→0

(Rmδ + Rnδ − I)x(t)− x(t)
∆t

. (15)

From the definition of the derivative, we can then infer

x(t +4t) = Rmδx(t) + Rnδx(t)− x(t). (16)

In the function space, this is a summation of three gaussians, one displaced byδ in the
µ direction, one displaced byδ in theν direction, and one scaled by−1 in the previous
location of the encoded gaussian. For smallδ relative to the width of the gaussians,
this summation is a good approximation of a single gaussian displaced byδ in both the
µ andν directions. Specifically our model uses gaussians of width1/3 and a value of
δ = 1/5000, so the distortion of our encoded gaussian is negligible. Furthermore, there
is no cumulative error, as any distortion is rapidly corrected by the attractor dynamics.

Thus, the final dynamic equation for our model is:

ẋ(t) =
1
4t

[(Rmδ − I) a(t) + (Rnδ − I) b(t)]x(t) + u(t) (17)

We normalize the velocity inputsa(t) andb(t) such thata2(t) + b2(t) ≤ 1, so that the
maximum velocity of the bump is the same in all directions. The maximum velocity
of the model is determined by the value of the small incrementδ and model time step
∆t. The vectoru(t) is the frequency domain representation of any external input to the
population, such as feedback from hippocampus (for error correction based on visual
cues).

Implementing translation

Observe that equation (17) requires multiplication of the state vectorx(t) by the ve-
locity inputsa(t) andb(t). To avoid the use of multiplicative synapses we refer to the
second principle of the NEF:

Transformation: Transformations of neural representations are functions of the vari-
ables that are represented by a population. Any transformation can be determined
using an alternately weighted linear decoding.

Accordingly, in order to compute the productsa(t)x(t) andb(t)x(t), we must include
representations of the variablesa(t) andb(t) in the population. This is accomplished
by increasing the dimensionality of the state vectorx(t) to include the signalsa(t) and
b(t).

In order for the population to represent these two scalar control signals as well as
the current position, we must increase the dimensionality of our encoding vectorsφ̃i

accordingly. In general, for scalar representation, the encoder for each neuron is chosen
to be either1 or −1 (the only directions in a one-dimensional space). Thus the final
encoding vector̃φi for a given neuron in this model’s population consists of theD
Fourier coefficients of a gaussian at that neuron’s preferred location on the plane, and
two elements which are chosen randomly to be either1 or −1. As a result, our units
are sensitive to both the position and velocity of the animal.
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The required products of the Fourier elements ofx(t) and a(t) or b(t) can be
computed by linear decoding, as suggested by the transformation principle. Specif-
ically, we require two sets of alternate decoding weights, one to decode the function
a(t)x(t) (which is simply xD+1x1...D), and one to decode the functionb(t)x(t) (which
is xD+2x1...D). The decoding is analogous to (4). For example, the decoded estimate
of a(t)x(t) can be expressed mathematically as:

f(x(t)) = a(t)x(t) (18)

f̂(x(t)) =
∑

i,n

h(t− tin)φax
i , (19)

where the function decodersφax
i are found by minimizing the MSE of the decoded

function estimate over the expected range ofx(t) anda(t). The MSE is defined by

E =
1
2

〈[
f(x(t))− f̂(x(t))

]2
〉

x,a

, (20)

where〈·〉x,a denotes integration over the expected ranges ofx(t) (all gaussians on the
plane) anda(t) (the interval[−1, 1]). The productb(t)x(t) is decoded in an identical
manner.

An advantage of this path integration model becomes evident from this discussion.
Our translation mechanism is embedded directly in the population that represents the
rat’s current location. Thus, we require only a single layer of neurons to tile the spatial
plane. This layer of neurons can both represent the current location of the animal with
a packet of neural activity, and at the same time control the movement of this activity
according to external velocity inputs. This is in stark contrast to the model presented
by Samsonovich and McNaughton (1997), in which one layer of neurons (the P layer)
represents the position of the rat, and many additional layers are required (the I layers)
in order to control the translation of the activity packet.

Neural Dynamics

Equation (17) defines the dynamics of our bump translation system. To derive a neural
implementation of this dynamic system we refer to principle three of the NEF:

Dynamics: Neural dynamics are characterized by considering neural representations
as control theoretic state variables. The dynamics of neurobiological systems
can thus be analyzed using control theory.

Eliasmith and Anderson (2003) have used modern control theory to show that a dy-
namic system defined by

ẋ(t) = Ax(t) + Bu(t) (21)

can be implemented by a neural population through the encoding
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∑
n

δ(t− tin) = Gi

[
αi

〈
φ̃i · (h(t) ∗ [A′x(t) + B′u(t)])

〉
+ Jbias

i

]
(22)

where

A′ = τA + I (23)

B′ = τB (24)

andτ is the synaptic time constant of the units in the population.
Considering our dynamic equation (17) in the form of equation (21), we have the

A andB matrices required to computeA′ andB′, giving:

A′ =
τ

4t
[(Rmδ − I)a(t) + (Rnδ − I)b(t)] + I (25)

B′ = τI (26)

Substituting these matrices into (22) gives:

∑
n δ(t− tin) = Gi

[
αi

〈
φ̃i ·

(
h(t) ∗

[
τ
4t [(Rmδ − I)a(t)+

(Rnδ − I)b(t) + 1]x(t) + τu(t)])〉+ Jbias
i

] (27)

Substituting the right hand side of equation (4) forx(t), the right hand side of equation
(19) for a(t)x(t), and an analogous expression forb(t)x(t) into equation (27) gives a
complete description of our model:

∑
n δ(t− tin) = Gi

[
h(t) ∗

(∑
j wijaj +

∑
k wikak +

∑
l wilal+

αi

〈
φ̃i · τu(t)

〉)
+ Jbias

i

] (28)

where

wij = αi

〈
φ̃i ·

(
τ

4t
(Rmδ − I)φax

j

)〉
(29)

wik = αi

〈
φ̃i ·

(
τ

4t
(Rnδ − I)φbx

k

)〉
(30)

wil = αi

〈
φ̃i · φx

l

〉
(31)

ai =
∑

n

h(t− tin). (32)

These equations complete the model derivation. Hereu(t) is the vector representa-
tion of the input to the population. The firstD dimensions ofu(t) comprise the Fourier
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decomposition of input to the function space, and can be used to control the initial lo-
cation of neural activity, or to update or correct the position of the encoded gaussian
(e.g. through hippocampal feedback of visual information). The last two dimensions of
u(t) are the linear velocity input components corresponding to theµ andν directions.

The connection weights implied by this derivation have the form of two-dimensional
center surround connections, reminiscent of the weights in one-dimensional ring attrac-
tor models (Redish et al. 1996; Zhang 1996; Goodridge and Touretzky 2000). Each
neuron has strong local connections to neurons with nearby place fields, and weak
negative connections to neurons with more distant place fields. Figure 1 shows the
connection weights for a typical neuron in this model.

Biological plausibility of the vector representation

It is important to note that the projection into the Fourier space is merely a convenient
mathematical abstraction of the state of the network, which allows us to apply control
theory to the dynamics of the system. This vector representation does not map directly
onto neural activity, which still has the form of a gaussian activity packet. This is
reflected in the connection weights (figure 1), which have the structure we would expect
given past work with one-dimensional attractor networks that did not use any kind of
orthonormal projection to define control. Further, the choice of the Fourier basis is not
required to derive these weights. Choosing another orthonormal basis spanning the set
of gaussians on the toroid (e.g. products of trigonometric functions) results in the same
connection weights, given the same transformation in the function space. Choosing a
different orthonormal basis is analogous to choosing a different vector space coordinate
system, which is irrelevairreleventnt to the function space transformation.

Similarly, u(t) is an abstract representation of the neuron level soma inputs from
external populations. That is, applying gaussian stimulation directly to the grid of
neurons in our model (the type of input we would expect from hippocampal place
cells) is equivalent to applying an input vectoru(t) which is the frequency domain
representation of that same gaussian.

We thus emphasize that the use of a vector representation to define the control of
the system does not detract from the biological plausibility of the network. This is
most evident from the fact that the derived model exhibits biologically plausible tuning
curves, connections, and behaviors.

Results

For all model runs, the same population of 3969 spiking LIF neurons was used. In order
to reproduce the broad tuning curves observed in subicular neurons by Sharp (1997),
we estimate the variance of the encoded gaussian to be1/3. To accurately encode such
a gaussian, a Fourier decomposition of 25 components is required. Thus our neurons
encode a 27 dimensional space (D = 27), where the first 25 dimensions encode the
Fourier coefficients of a gaussian at the rat’s current location on the plane, and the last
two dimensions encode the rat’s instantaneous velocity.
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The encoding vectors̃φi are chosen as Fourier coefficients of gaussians with vari-
ance1/3 evenly distributed on theµ,ν plane in a63×63 grid. The last two dimensions
of eachφ̃i are chosen to be either1 or−1 in order to encode the velocity signal. We
use a decaying exponential model of the PSC as our temporal filter:

h(t) = e
−t
τ , (33)

whereτ is the synaptic time constant of our neurons. For all runs we have usedτ =
5ms, and a model time step of0.1ms.

Demonstration of a controlled attractor

When the network is initialized by being briefly stimulated with gaussian white noise,
a stable packet of gaussian activity forms at a random location on the map (figure
2). The activity packet is clearly wider than that of the model by Samsonovich and
McNaughton (1997). This is a result of our tuning of the units to match the broad place
fields observed in subiculum (e.g. figure 2 in Sharp 1997). The activity packet also
appears noisy, because the parameters for gain and bias current are chosen randomly
(within a suitable range) for each neuron, mimicking the observed heterogeneity of
neurons in this area.

We have tested the stability of the stationary bump after initial formation by simu-
lating the network (with no external input) for 180 seconds. The activity packet retains
its height (firing rates) and width (variance), with a small amount of drift in the mean
of the bump (drift was equal to 8% of length of the plane over 180 seconds) .

In addition, the packet retains its height and width when given a constant external
velocity input. This results in a constant translation of the mean of the activity packet
(see figures 3 and 4). These observations indicate the existence of a controlled stable
attractor.

Performance of the path integration model

In this section we characterize the dynamics of the control system and the accuracy
of the path integration performed by the model. If the model is to be a useful path
integrator, it must be able to change speed and direction as the vestibular input to the
system changes.

In figure 4 the model is given a constant velocity input of 0.5 (one half maximum
speed) in the negativeµ direction for two seconds, which is abruptly changed to 1
(maximum speed) in the negativeν direction for a duration of 1 second. The fig-
ure shows the model output against the mathematically ideal path integration for the
changing input. Over the run, the average drift is less than 5% of the total width of the
plane (RMSE=2.73%). So, while there is some error throughout the run, the estimated
position is a good approximation to the actual position of the animal. The error is small
enough that it could easily be corrected by occasional, weak input from visual cues (see
the subsequent section for details). Both the directional change and the velocity change
are effectively captured by the model.
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To compare our model with that of Samsonovich and McNaughton (1997), the
model is given velocity input corresponding to circular motion of an animal. In figure
5 the simulated rat starts at the top of the circle, and moves clockwise around the circle
at a constant speed. The decoded trajectory is noisy, due to the spiking representation
of the encoded bump. Despite the noise, however, the model gives a good estimate of
the simulated position over one circuit of the circle. Being able to integrate a circular
path demonstrates that the model is able to integrate velocity inputs in any direction.
However, since the end point of the trajectory does not meet the starting point, error
due to drift may accumulate over further circuits of the circle, and would need to be
corrected by visual input. Note that the drift in our 3969 neuron model after completing
one circuit is dramatically less than that of the MPI model with 300,000 neurons per
layer (see figure 10D in Samsonovich and McNaughton 1997). If we consider the
location of theν coordinate (X in the MPI model) when theµ coordinate (Y in the
MPI model) has returned to its initial location as a measure of the drift after one cycle,
then the MPI model is off by approximately 100% of the full diameter of the circle,
while our model is off by only 11% of the circle’s diameter. Further, because the
representational error of the model scales inversely with the number of neurons, the
amount of drift in our model can be adjusted to match observed drift data (not currently
available) by increasing or decreasing the number of units in the model. This could lead
to predictions of how many neurons are actually involved in path integration.

To provide a summary of the error over the function space, we also plot the error
surface obtained by integrating the error gradient on theµ,ν plane. The gradient is
obtained via the encoding and decoding of a set of gaussians evenly tiling the plane,
and taking the difference of the encoded and decoded means. The local minima of the
error surface are the attractor points in the function space. We can see from figure 6 that
there is a relatively even distribution of attractor points across the plane. This implies
that the above simulations are not idiosyncratic, and that the stability of the bump for
arbitrary velocity inputs will be similar for every location on the plane.

Robustness to noise in the derived connection weights

We next demonstrate that the model does not require a precisely tuned connection
weight matrix. This is significant as integrator circuits are often characterized as requir-
ing particularly precise tuning of connection strengths (Seung et al. 2000; Koulakov
et al. 2002; Goldman et al. 2003). To evaluate the robustness of our model, we ran-
domly vary the connection weights. The noisy connection weight matrix is given by

w̃ij = wij (1 + ηij) (34)

wherewij is the derived connection weight between neuronsi andj, andηij are ran-
dom variables chosen from a gaussian distribution of mean0 and varianceσ2.

We examine the effect of this noise on the representation by simulating the integra-
tion of a circular path (as above) for increasing values of the noise varianceσ2 (figure
7). The root mean square error (RMSE) monotonically increases with noise variance.
However, the performance of theσ2 = 0.1 andσ2 = 0 simulations are roughly com-
parable. Both trajectories are good approximations to the ideal, and the increase in
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RMSE due to the addition of noise is less than 10%. As noise increased further, the
drift in the simulations becomes more evident, and the RMSE increases more rapidly.
However, even whenσ2 = 0.5 (i.e. 50% noise) the decoded trajectory is a reasonable
approximation to the circle, especially when compared to the performance of the MPI
model (Samsonovich and McNaughton 1997).

The role of visual input in calibrating the path integrator

Experiments by Gothard et al. (1996) have demonstrated two ways in which visual
cue information and path integration interact competitively to update the rat’s inter-
nal representation of its location. For small mismatches between visual cues and path
integration, the internal representation was observed to shift smoothly through all in-
tervening states (at an accelerated speed) until the internal representation ‘caught up’
with the location indicated by the visual input. For large mismatches, the internal rep-
resentation jumped abruptly from its present state to the state indicated by visual input,
and the intervening states were skipped.

We assume that visual input reaches our model in the form of gaussian stimula-
tion centred on the location suggested by a visual cue (this input could be projected to
subiculum from hippocampus), and show that our model supports both of these correc-
tion mechanisms.

First, when the visual stimulation is relatively weak, we observe a smooth acceler-
ation of the translating activity packet toward the location of the stimulation (figure 8).
This can be compared to the case where the packet is translating at the same velocity,
but without external stimulation (figure 3). The external stimulation clearly accelerates
the activity toward the location of stimulation.

Second, when the stimulation is relatively strong, we see the activity packet jump
abruptly from its previous position on the plane to the location of the stimulation (figure
9). These effects demonstrate that sensory information can be used appropriately to
correct error in our path integration model.

Reproduction of the effects of theta oscillations

As reported by O’Keefe and Recce (1993) (see also Skaggs et al. 1996), hippocampal
place cell firing is modulated by the hippocampal theta rhythm, a background oscilla-
tion typically in the range of 7-12 Hz. The observed effect of this modulation (stated
in terms of neural activity on a two dimensional map) is that the activity packet moves
moves ahead of the rat’s actual location on the map and increases in width over the
course of each theta cycle, before returning to the actual location and initial width at
the beginning of the next cycle (Samsonovich and McNaughton 1997). Theta mod-
ulated place cells are also found in the subiculum and superficial entorhinal cortex
(Sharp 1997; Frank et al. 2001).

We qualitatively reproduce these effects by introducing a global excitatory oscil-
lation to the soma input of all neurons, at a frequency of 10 Hz. This theta current
oscillates from zero to 2 nanoamperes. The introduction of this oscillation into the ac-
tivity of all units causes the width and speed of the activity packet to oscillate with the
theta rhythm (figure 10).
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Directionality of place cells

Radial maze experiments (McNaughton et al. 1983; Muller et al. 1994; Markus et al.
1995) demonstrate that most hippocampal place cells show a clear directional selectiv-
ity when the rat travels a linear path in a radial maze. These cells fire at a high rate
when the rat passes through their place field in one direction, and fire more slowly
(or are silent) when the rat returns in the opposite direction. The remaining cells show
only positional sensitivity. In the same experiments it was found that most hippocampal
place cells appear non-directional when the rat randomly forages in an open cylindrical
environment.

To compare the directionality of our model place cells to those observed in hip-
pocampus, we perform a simulation where the rat moves in a straight line at maximum
speed for one second, and then returns along the same path in the opposite direction.
We observe that most of our units have higher firing rates in one direction, and have
lower firing rates (or are silent) in the other. We also find units which appear to fire
independently of the direction of travel. Figure 11 shows firing for one neuron of each
type in the simulation. Thus neurons in our model have directional firing properties
similar to those of hippocampal place cells during linear movements.

This similarity may not extend to random foraging, where hippocampal place cells
appear largely non-directional. Because our encoding of space is independent of the
geometry of the environment, we predict that neurons involved in path integration will
have similar velocity sensitivity in both linear path and random foraging experiments.
This does not mean, however, that the observed directionality of these cells will be
identical in these two environments. If the rat has different velocity profiles within
place fields in different environments, the observed directional sensitivity will differ as
well. For example, the rat’s average velocity when passing through a place field in an
arm of a radial maze is likely to be high because the rat usually travels directly from
the center of the maze to the food site at the end of the arm (without stopping on the
way) and back. The average velocity of the rat while visiting a given place field in the
random foraging experiments is likely to be lower, as the rat stops at random locations
in the environment to eat food pellets. Because our model encodes velocity, rather
than independent representations of speed and direction (in the latter case direction
can affect firing even when speed is zero, whereas in the former case directioncannot
affect firing when speed is zero), the velocity profile of the rat must be taken into
account when analyzing directionality in the data.

Reproduction of subicular firing rate maps

We next demonstrate that the tuning curves of neurons in our model are similar to those
observed experimentally of subicular place cells. Sharp (1997) has illustrated firing
rate maps for subicular and hippocampal place cells in both cylindrical and square
environments. These maps are generated by recording the location and time of each
spike from a given cell, while the rat randomly forages for pellets during a 20 minute
recording session. The number of spikes was then averaged over the length of the
session to give the firing rate at each location in the environment. We have simulated
this random foraging by using band-limited white noise as our head direction input,
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and having our rat randomly explore its environment until all sections of the map have
been visited. Firing rate maps were then calculated in the same manner as Sharp.

Figure 12 shows a comparison of the observed tuning curves with those generated
by our model. Notice that the model tuning curves are not perfect gaussians, but are
distorted due to the random path of the rat (which affects cell firing due to directional
sensitivity), and the noise introduced by neural spiking. These noisy model tuning
curves are qualitatively similar to those observed experimentally, as we require.

Multiple place fields in medial entorhinal cortex

Recent data from Fyhn et al. (2004) shows strong place selectivity in neurons in the
dorsolateral and intermediate MEC of rats exploring a rectangular environment. Cells
in dorsolateral MEC showed sharp coherent place fields with multiple peaks (median
number of 4). As seen in figure 2B of that paper, the multiple place fields for each cell
form a relatively even tiling of the environment.

This tiling is consistent with the toroidal representation of the environment imple-
mented in our model. If the encoded spatial plane were normalized to one quarter of
the area of the rectangular chamber, we would expect to see precisely the type of sharp
multi-peaked tuning curves observed in this experiment. Simulated place fields would
appear narrow as a result of normalizing our representation to cover a smaller area,
and multiple firing fields would result naturally as the rat travels from one edge of the
toroid to the other.

Fyhn et al. (2004) also report that most cells in the intermediate MEC have broader,
less coherent place fields, and are less likely to have multiple peaks. These cells seem to
be tuned similarly to the subicular place cells discussed above. This raises the interest-
ing possibility that there could be multiple attractor maps at different spatial resolutions
(high resolution in dorsolateral MEC, low resolution in intermediate MEC, subiculum,
and other areas), simultaneously encoding position of the rat. While we do not explore
this idea here, the decoding of position from multiple attractor maps using the NEF
would be a straightforward generalization of our model.

Discussion

The analysis of our model has led to three testable predictions. Firstly, we predict
that neurons involved in path integration must be sensitive to the instantaneous veloc-
ity of the animal. Secondly, we predict that the relative spatial relationship between
place fields of cells involved in path integration will be the same or similar in different
environments. Thirdly, we predict that the head direction signal cannot be used as a
direct input signal to the path integrator, and is used instead to modulate an allocentric
velocity input.

Velocity sensitive neurons

The control mechanism of our model requires that the population performing path in-
tegration not only encode a representation of the rat’s position on the plane, but also
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a two-dimensional in-plane velocity vector. Thus our model predicts the existence of
place cells in the subiculum, parasubiculum, superficial entorhinal cortex loop that will
show sensitivity to the instantaneous velocity of the animal. Further we predict that this
sensitivity will persist regardless of the rat’s environment and trajectory, in contrast to
the observed behavior of hippocampal place cells. As discussed above, it is important
to consider that this is a prediction of velocity sensitivity (not just direction sensensitiv-
itysetivity), i.e. we predict that the directional sensitivity of neurons will not be evident
when the rat is moving slowly relative to its maximum speed.

Spatial relationship between place fields in differing environments

The model we have derived requires that the relative spatial location of the place fields
of cells performing path integration must be constant, independent of the environment.
That is, place fields of path integration cells will always have the same position relative
to each other, although the plane of place fields may undergo translation, rotation, or
scaling.

As discussed above, it is observed experimentally that hippocampal place fields
are randomly reset upon entering a novel environment, while the place fields of cells
in subiculum and entorhinal cortex are similar across different visually similar envi-
ronments. As a result, this prediction is consistent with the hypothesis that subiculum
and entorhinal cortex are involved in path integration. Note however that the data is
from experiments where the differing environments were visually similar (Sharp 1997;
Quirk et al. 1992). Experiments showing similar relative spatial location of place fields
in visually different environments would further support this hypothesis.

Role of the head direction system and availability of velocity input

Previous schemes for modelling path integration in the rat have used as their directional
input a combination of a head direction signal, and a self motion signal which is pro-
portional to the speed of the animal in the direction it is currently facing (Samsonovich
and McNaughton 1997; Redish 1999; Redish and Touretzky 1997).

Our derivation has led to a different requirement for velocity input. Our model re-
quires the input of an allocentric velocity vector(dµ

dt , dν
dt ). There is evidence to suggest

that the monkey vestibular system has the ability to determine an unambiguous trans-
lational acceleration relative to the current direction of the head based on inputs from
the otoliths and semi-circular canals (Angelaki et al. 1999). Experiments by Hess and
Dieringer (1991) suggest that rats have the same ability. Given the presence of a trans-
lational acceleration signal in the vestibular system, a similar velocity signal relative
to current head direction could easily be computed by integration, which is thought to
be a common computation across brain areas (Seung et al. 2000; Seung 1996; Askay
et al. 2001; Askay et al. 2000; Douglas et al. 1995). Neurons sensitive to direction of
motion, speed, and turning angle are known to exist in posterior parietal cortex, which
is reciprocally connected to posterior cingulate cortex (Chen et al. 1994). Further, Page
and Duffy (2003) have found that neurons in the dorsal segment of the medial superior
temporal sulcus (MSTd) of Rhesus monkeys are sensitive to rotational and translational
self-motion even in darkness, and have theorized these cells to be involved in a path
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integration mechanism. We hypothesize that posterior parietal cortex contains a repre-
sentation of the animal’s velocity relative to current head direction (likely in MSTd),
and that this signal is projected to posterior cingulate cortex, where the global head di-
rection signal from postsubiculum is used to resolve the velocity vector into allocentric
map components. Posterior cingulate cortex is also connected to motor cortex (Cho
and Sharp 2001) which supports the idea that it may be involved in path integration or
navigational motor planning. We thus propose that our required velocity input reaches
parasubiculum via posterior cingulate cortex.

This proposal does not discount the important role of the head direction system.
Specifically we consider the purpose of the head direction system to be the alignment of
head direction relative velocities to global map coordinatesµ andν. It is thus essential
for modulating the velocity input to our path integration system, rather than providing
direct input.

It should be possible to test which form of velocity input the path integration sys-
tem receives. According to the schemes proposed in Samsonovich and McNaughton
(1997) and Redish and Touretzky (1997) the path integration system can only function
correctly if the animal moves in the direction its head is currently facing. However, our
model predicts that path integration should function correctly regardless of correlation
between the rat’s head direction and its direction of motion. Recordings from a rat
which moves in darkness in a direction other than the one it is currently facing (e.g. the
rat could move forward while its head was angled to one side) would provide evidence
to support one theory or the other. If the place code in hippocampus was destroyed
or distorted, this would support head direction as a direct input to the path integration
system. If the place code was maintained, this would suggest that the path integration
system may receive a global map relative velocity input such as the one proposed here.

Conclusions

Our numerical simulations confirm that an attractor map implementation of path inte-
gration is possible without the use of a large external control population or multiplica-
tive synapses. We have demonstrated that the control mechanism for translating the
activity packet of neural activity can in fact be incorporated into the same population
which stores the activity packet. This results in a single population which can act as
a path integration subsystem in a larger model of rat navigation, such as (Redish and
Touretzky 1997).

We have also demonstrated how the Neural Engineering Framework can provide
a systematic and insightful solution to a significant problem in attractor dynamics and
the rat navigation system. As discussed, this particular application has generated three
testable predictions regarding path integration. Because the framework is general, and
provides a useful method for dealing with complex control problems involving attractor
networks, it should prove useful for analyzing other neural systems as well.
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weights.eps not found!

Figure 1: Connection weight matrix for a typical neuron in the derived model. Neurons
are arranged in a square matrix by the locations of their place fields on the plane.
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Figure 2: Self-focusing of network activity. For these and all subsequent activity plots,
neurons are arranged on the plane by location of their place fields. Firing rates of
spiking neurons have been smoothed on the plane using a 5 point moving average.

26



Figure 3: Propagation of the activity packet at a constant velocity. Velocity input is
constant and to the right, at one half maximum speed.
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Figure 4: Path integration of velocity input with changing speed and direction. Ideal
output (grey dots) is the actual position of the simulated rat. Model output (black dots)
is the decoded mean of the gaussian represented by the network. The rat starts in the
upper right (marked by the cross). Dots are separated in time by 100 ms.
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Figure 5: Path integration of circular motion. Ideal output (grey dots) is a perfectly
circular trajectory. Model output (black dots) is the decoded mean of the gaussian
represented by the network. The rat starts at the top of the circle (marked by the cross)
and moves in the clockwise direction. Dots are separated in time by 50 ms.
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Figure 6: Error surface of the function representation. Local minima represent attractor
points in the function space. Drift of the encoded gaussian is proportional to the slope
of the surface.
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Figure 7: Integration of a circular path after addition of noise to the connection weights.
Ideal output (dashed line) is a perfectly circular path. For each simulation the variance
of the connection weight noise isσ2. The RMSE of the decoded trajectory for each
simulation is calculated over the complete length of the run (2 seconds).
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Figure 8: Weak sensory input causes smooth acceleration of the activity packet. Veloc-
ity input is to the right at one half maximum speed. ‘+’ marks the horizontal position
of the sensory stimulation. ‘◦’ marks the horizontal mean of the activity packet. ‘×’
marks the horizontal mean of the activity packet from figure 3 without sensory stimu-
lation at the same time index.
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Figure 9: Strong sensory input causes an abrupt jump of the activity packet. The cross
marks the location of sensory stimulation.
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Figure 10: a) Width of the activity packet oscillates with the theta rhythm. A constant
frequency contour is shown for four consecutive phases of a theta cycle. The direction
of motion is to the right. b) The center of the activity packet oscillates ahead of the
rat’s actual position in the direction of motion over the course of each cycle. Hereµ0

is the position of the center of the activity packet, andµrat is the simulated rat’s actual
position on the plane. The rat moves at a constant velocity in the positiveµ direction.
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Figure 11: Firing of three neurons in a linear path simulation. For the first second
the rat travels in a straight line at maximum speed. For the next second the rat travels
back along the same line in the opposite direction at maximum speed. Neuron 1 fires
independently of direction. Neuron 2 fires at a higher rate in one direction than the
other. Neuron 3 is active in one direction and silent in the other. Firing rates are found
by binning spikes and smoothing with a running average.
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Experimental Tuning Curves Simulated Tuning Curves

Figure 12: Tuning curves of observed subicular neurons (left; Sharp, 1997, Copyright
Elsevier permission pending) and simulated neurons (right). Darker shading indicates
higher firing rate.
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