Skip to main content

Advertisement

Log in

Sparse cerebellar innervation can morph the dynamics of a model oculomotor neural integrator

  • Published:
Journal of Computational Neuroscience Aims and scope Submit manuscript

Abstract

The oculomotor integrator is a brainstem neural network that converts velocity signals into the position commands necessary for eye-movement control. The cerebellum can independently adjust the amplitude of eye-movement commands and the temporal characteristics of neural integration, but the percentage of integrator neurons that receive cerebellar input is very small. Adaptive dynamic systems models, configured using the genetic algorithm, show how sparse cerebellar inputs could morph the dynamics of the oculomotor integrator and independently adjust its overall response amplitude and time course. Dynamic morphing involves an interplay of opposites, in which some model Purkinje cells exert positive feedback on the network, while others exert negative feedback. Positive feedback can be increased to prolong the integrator time course at virtually any level of negative feedback. The more these two influences oppose each other, the larger become the response amplitudes of the individual units and of the overall integrator network.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Anastasio TJ (1998) Nonuniformity in the linear network model of the oculomotor integrator produces approximately fractional-order dynamics and more realistic neuron behavior. Biol. Cybern. 79: 377–391.

    Article  PubMed  CAS  Google Scholar 

  • Anastasio TJ (2001) A pattern correlation model of vestibulo-ocular reflex habituation. Neural Netw. 14: 1–22.

    Article  PubMed  CAS  Google Scholar 

  • Anastasio TJ, Robinson DA (1991) Failure of the oculomotor neural integrator from a discrete midline lesion between the abducens nuclei in the monkey. Neurosci. Lett. 127: 82–86.

    Article  PubMed  CAS  Google Scholar 

  • Arnold DB, Robinson DA (1991) A learning network model of the neural integrator of the oculomotor system. Biol. Cybern. 64: 447–454.

    Article  PubMed  CAS  Google Scholar 

  • Arnold DB, Robinson DA (1997) The oculomotor integrator: Testing of a neural network model. Exp. Brain. Res. 113: 57–74.

    Article  PubMed  CAS  Google Scholar 

  • Babalian AL, Vidal PP (2000) Floccular modulation of vestibuloocular pathways and cerebellum-related plasticity: An in vitro whole brain study. J. Neurophysiol. 84: 2514–2528.

    PubMed  CAS  Google Scholar 

  • Belton T, McCrea RA (2004) Context contingent signal processing in the cerebellar flocculus and ventral paraflocculus during gaze saccades. J. Neurophysiol. 92: 797–807.

    Article  PubMed  CAS  Google Scholar 

  • Bevington PR (1969) Data Reduction and Error Analysis for the Physical Sciences. McGraw-Hill, New York.

    Google Scholar 

  • Blazquez PM, Hirata Y, Heiney SA, Green AM, Highstein SM (2003) Cerebellar signatures of vestibulo-ocular reflex motor learning. J. Neurosci. 23: 9742–9751.

    PubMed  CAS  Google Scholar 

  • Büttner-Ennever JA (ed.) (1988) Neuroanatomy of the Oculomotor System. Elsevier, Amsterdam.

    Google Scholar 

  • Cannon SC, Robinson DA (1987) Loss of the neural integrator of the oculomotor system from brain stem lesions in monkey. J. Neurophysiol. 57: 1383–1409.

    PubMed  CAS  Google Scholar 

  • Cannon SC, Robinson DA, Shamma S (1983) A proposed neural network for the integrator of the oculomotor system. Biol. Cybern. 49: 127–136.

    Article  PubMed  CAS  Google Scholar 

  • Chan WWP, Galiana HL (2005) Integrator function in the oculomotor system is dependent on sensory context. J. Neurophysiol. 93: 3709–3717.

    Article  PubMed  CAS  Google Scholar 

  • Chelazzi L, Ghirardi M, Rossi F, Strata P, Tempia F (1990) Spontaneous saccades and gaze holding ability in the pigmented rat. II. Effects of localized cerebellar lesions. Eur. J. Neurosci. 2: 1085–1094.

    Article  PubMed  Google Scholar 

  • Cheron G, Escudero M, Godaux E (1996) Discharge properties of brain stem neurons projecting to the flocculus in the alert cat. I. Medial vestibular nucleus. J. Neurophysiol. 76: 1759–1774.

    PubMed  CAS  Google Scholar 

  • Cheron G, Godaux E, Laune JM, Vanderkelen B (1986) Lesions in the cat prepositus complex: Effects on the vestibulo-ocular reflex and saccades. J. Physiol. 372: 75–94.

    PubMed  CAS  Google Scholar 

  • Dufossé M, Ito M, Jastreboff PJ, Miyashita Y (1978) A neuronal correlate in rabbit's cerebellum to adaptive modification of the vestibulo-ocular reflex. Brain Res. 150: 611–616.

    Article  PubMed  Google Scholar 

  • Epema AH, Gerrits NM, Voogd J (1990) Secondary vestibulocerebellar projections to the flocculus and uvulo-nodular lobule of the rabbit: A study using HRP and double fluorescent tracer techniques. Exp. Brain Res. 80: 72–82.

    Article  PubMed  CAS  Google Scholar 

  • Godaux E, Vanderkelen B (1984) Vestibulo-ocular reflex, optokinetic response and their interactions in the cerebellectomized cat. J. Physiol. 346: 155–170.

    PubMed  CAS  Google Scholar 

  • Goldberg E (1989) Genetic Algorithms in Search, Optimization and Machine Learning. Addison-Wesley, Boston.

    Google Scholar 

  • Holland H (1975) Adaptation in Natural and Artificial Systems. University of Michigan Press, Ann Arbor.

    Google Scholar 

  • Ito M (1982) Cerebellar control of the vestibulo-ocular reflex – around the flocculus hypothesis. Ann. Rev. Neurosci. 5: 275–296.

    Article  PubMed  CAS  Google Scholar 

  • Katoh A, Yoshida T, Himeshima Y, Mishina M, Hirano T (2005) Defective control and adaptation of reflex eye movements in mutant mice deficient in either the glutamate receptor δ2 subunit or Purkinje cells. Eur J Neurosci 21: 1315–1326.

    Article  PubMed  Google Scholar 

  • Keller EL, Precht W (1979) Adaptive modification of central vestibular neurons in response to visual stimulation through reversing prisms. J. Neurophysiol. 42: 896–911.

    PubMed  CAS  Google Scholar 

  • du Lac S, Raymond JL, Sejnowski TJ, Lisberger SG (1995) Learning and memory in the vestibulo-ocular reflex. Ann. Rev. Neurosci. 18: 409–441.

    Article  PubMed  CAS  Google Scholar 

  • Langer T, Fuchs AF, Scudder CA, Chubb MC (1985a) Afferents to the flocculus of the cerebellum in the rhesus macaque as revealed by retrograde transport of horseradish peroxidase. J. Comp. Neurol. 235: 1–25.

    Article  PubMed  CAS  Google Scholar 

  • Langer T, Fuchs AF, Chubb MC, Scudder CA, Lisberger SG (1985b) Flocculuar efferents in the rhesus macaque as revealed by autoradiography and horseradish peroxidase. J. Comp. Neurol. 235: 26–37.

    Article  PubMed  CAS  Google Scholar 

  • Leigh RJ, Zee DS (1983) The Neurology of Eye Movements. Davis, Philadelphia.

    Google Scholar 

  • Lisberger SG, Miles FA (1980) Role of primate medial vestibular nucleus in long-term adaptive plasticity of vestibuloocular reflex. J. Neurophysiol. 43: 1725–1745.

    PubMed  CAS  Google Scholar 

  • Lisberger SG, Pavelko TA (1988) Brain stem neurons in modified pathways for motor learning in the primate vestibulo-ocular reflex. Science 242: 771–773.

    Article  PubMed  CAS  Google Scholar 

  • Lisberger SG, Pavelko TA, Broussard DM (1994a) Neural basis for motor learning in the vestibuloocular reflex of primates. I. Changes in the responses of brain stem neurons. J. Neurophysiol. 72: 928–953.

    PubMed  CAS  Google Scholar 

  • Lisberger SG, Pavelko TA, Bronte-Stewart HM, Stone LS (1994b) Neural basis for motor learning in the vestibuloocular reflex of primates. II. Changes in the responses of horizontal gaze velocity Purkinje cells in the cerebellar flocclus and ventral paraflocculus. J. Neurophysiol. 72: 954–973.

    PubMed  CAS  Google Scholar 

  • Luenberger G (1979) Introduction to Dynamic Systems. John Wiley, New York.

    Google Scholar 

  • McCrea RA, Strassman A, May E, Highstein SM (1987) Anatomical and physiological characteristics of vestibular neurons mediating the horizontal vestibulo-ocular reflex of the squirrel monkey. J. Comp. Neurol. 264: 547–570.

    Article  PubMed  CAS  Google Scholar 

  • McFarland JL, Fuchs AF (1992) Discharge patterns in nucleus prepositus hypoglossi and adjacent medial vestibular nucleus during horizontal eye movement in behaving macaques. J. Neurophysiol. 68: 319–332.

    PubMed  CAS  Google Scholar 

  • Miles FA, Fuller JH, Braitman DJ (1980a) Long term adaptive changes in primate vestibuloocular reflex. III. Electrophysiological observations in flocculus of normal monkeys. J. Neurophysiol. 43: 1437–1476.

    PubMed  CAS  Google Scholar 

  • Miles FA, Braitman DJ, Dow BM (1980b) Long term adaptive changes in primate vestibuloocular reflex. IV. Electrophysiological observations in flocculus of adapted monkeys. J. Neurophysiol. 43: 1477–1493.

    PubMed  CAS  Google Scholar 

  • Nagao S (1983) Effect of vestibulo-cerebellar lesion upon dynamic characteristics and adaptation of the vestibuloocular and optokinetic responses in pigmented rabbits. Exp. Brain Res. 53: 36–46.

    Article  PubMed  CAS  Google Scholar 

  • Nagao S (1989) Behavior of floccular Purkinje cells correlated with adaptation of vestibulo-ocular reflex in pigmented rabbits. Exp. Brain Res. 77: 531–540.

    PubMed  CAS  Google Scholar 

  • Nagao S, Kitazawa H (2003) Effects of reversible shutdown of the monkey flocculus on the retention of adaptation of the horizontal vestibulo-ocular reflex. Neuroscience 118: 563–570.

    Article  PubMed  CAS  Google Scholar 

  • Rambold H, Churchland A, Selig Y, Jasmin L, Lisberger SG (2002) Partial ablations of the flocculus and ventral paraflocculus in monkeys cause linked deficits in smooth pursuit eye movements and adaptive modification of the VOR. J. Neurophysiol. 87: 912–924.

    PubMed  CAS  Google Scholar 

  • Robinson D (1974) The effect of cerebellectomy on the cat's vestibulo-ocular integrator. Brain Res. 71: 195–207.

    Article  PubMed  CAS  Google Scholar 

  • Robinson DA (1976) Adaptive gain control of vestibuloocular reflex by the cerebellum. J. Neurophysiol. 39: 954–969.

    PubMed  CAS  Google Scholar 

  • Robinson DA (1989a) Integrating with neurons. Annu. Rev. Neurosci. 12: 33–45.

    Article  PubMed  CAS  Google Scholar 

  • Robinson DA (1989b) Control of eye movements. In: V.B. Brooks ed. Handbook of Physiology, Sect. 1: The Nervous System, Vol. II part 2. American Physiological Society, Bethesda, pp. 1275–1320.

    Google Scholar 

  • Sekirnjak C, du Lac S (2006) Physiological and anatomical properties of mouse medial vestibular nucleus neurons projecting to the oculomotor nucleus. J. Neurophysiol. 95: 3012–3023.

    Article  PubMed  Google Scholar 

  • Sekirnjak C, Vissel B, Bollinger J, Faulstich M, du Lac S (2003) Pur-kinje cell synapses target physiologically unique brainstem neurons. J. Neurosci. 23: 6392–6398.

    PubMed  CAS  Google Scholar 

  • Stahl JS (2004) Eye movements of the murine P/Q calcium channel mutant Rocker, and the impact of aging. J. Neurophysiol. 91: 2066–2078.

    Article  PubMed  Google Scholar 

  • Stahl JS, James RA (2005) Neural integrator function in murine CACNA1A mutants. Ann. NY Acad. Sci. 1039: 580–582.

    Article  PubMed  Google Scholar 

  • Stahl JS, Simpson JI (1995) Dynamics of rabbit vestibular nucleus neurons and the influence of the flocculus. J. Neurophysiol. 73: 1396–1413.

    PubMed  CAS  Google Scholar 

  • Sutton RS, Barto AG (1998) Reinforcement Learning: An Introduction. MIT Press, Cambridge.

    Google Scholar 

  • Tan H, Gerrits NM (1992) Laterality in the vestibulo-cerebellar mossy fiber projection to flocculus and caudal vermis in the rabbit: A retrograde fluorescent double-labeling study. Neuroscience 47: 909–919.

    Article  PubMed  CAS  Google Scholar 

  • Tiliket C, Shelhamer M, Roberts D, Zee DS (1994) Short term vestibulo-ocular reflex adaptation in humans. I. Effect on the ocular motor velocity-to-position neural integrator. Exp. Brain Res. 100: 316–327.

    Article  PubMed  CAS  Google Scholar 

  • Watanabe E (1985) Role of the primate flocculus in adaptation of the vestibulo-ocular reflex. Neurosci. Res. 3: 20–38.

    Article  PubMed  CAS  Google Scholar 

  • Wilson VJ, Melvill Jones JG (1979) Mammalian Vestibular Physiology. Plenum Press, New York.

    Google Scholar 

  • Yoshida T, Katoh A, Ohtsuki G, Mishina M, Hirano T (2004) Oscillating Purkinje neuron activity causing involuntary eye movement in a mutant mouse deficient in the glutamate receptor δ2 subunit. J. Neurosci. 24: 2440–2448.

    Article  PubMed  CAS  Google Scholar 

  • Zee S, Yamazaki A, Butler PH, Gücer G (1981) Effects of ablation of flocculus and paraflocculus on eye movements in primate. J. Neurophysiol. 46: 878–899.

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank J. Bronski for mathematical consultation and J. Malpeli for suggestions. We also thank the two anonymous reviewers for constructive comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas J. Anastasio.

Additional information

Action Editor: Jonathan D. Victor

Rights and permissions

Reprints and permissions

About this article

Cite this article

Anastasio, T.J., Gad, Y.P. Sparse cerebellar innervation can morph the dynamics of a model oculomotor neural integrator. J Comput Neurosci 22, 239–254 (2007). https://doi.org/10.1007/s10827-006-0010-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10827-006-0010-x

Keywords

Navigation