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Abstract The role of intrinsic cortical dynamics is a de-
batable issue. A recent optical imaging study (Kenet et al.,
2003) found that activity patterns similar to orientation maps
(OMs), emerge in the primary visual cortex (V1) even in the
absence of sensory input, suggesting an intrinsic mechanism
of OM activation. To better understand these results and shed
light on the intrinsic V1 processing, we suggest a neural net-
work model in which OMs are encoded by the intrinsic lateral
connections. The proposed connectivity pattern depends on
the preferred orientation and, unlike previous models, on
the degree of orientation selectivity of the interconnected
neurons. We prove that the network has a ring attractor com-
posed of an approximated version of the OMs. Consequently,
OMs emerge spontaneously when the network is presented
with an unstructured noisy input. Simulations show that the
model can be applied to experimental data and generate re-
alistic OMs. We study a variation of the model with spatially
restricted connections, and show that it gives rise to states
composed of several OMs. We hypothesize that these states
can represent local properties of the visual scene.

Keywords Visual cortex . Spontaneous activity .

Orientation selectivity . Neural network model . Optical
imaging

Action Editor: Jonathan D. Victor

B. Blumenfeld · D. Bibitchkov · M. Tsodyks (�)
Department of Neurobiology, Weizmann Institute of Science,
Rehovot 76100, Israel
e-mail: misha@weizmann.ac.il

1. Introduction

Processing of visual information in the mammalian primary
visual cortex (V1) is thought to arise from an interplay be-
tween the pattern of external projections and intrinsic cortical
dynamics. Even though the intrinsic processing has been a
subject of an extensive research, its role and the mechanisms
underlying it remain poorly understood. A powerful tool for
understanding the intrinsic processing is the study of sponta-
neous cortical activity, that is, activity not evoked by visual
stimulation. Even in the absence of visual stimulation, V1 ex-
hibits a rich and complex spontaneous activity (Lampl et al.,
1999; Tsodyks et al., 1999; Kenet et al., 2003; Fiser et al.,
2004). This activity is thought to originate from mechanisms
intrinsic to V1. Thus, spontaneous activity can reveal the
underlying V1 architecture and shed light on its function.

In this study, we focus on the link between spontaneous
activity and the activity evoked by visual stimulation. Since
the work of Hubel and Wiesel (1959) it is believed that one
of the main functions of V1 is to encode and process ori-
ented stimuli. A major progress in studying the functional
architecture of V1 was achieved by optical imaging (Blasdel
and Salama, 1986; Grinvald et al., 1986). In a widely used
experimental protocol (Grinvald et al., 1999), an animal is
shown full field moving gratings of different orientations.
Each orientation yields a single condition orientation map
(OM), a two-dimensional representation of the neuronal ac-
tivity across the cortical sheet evoked by the stimulus. In cats,
as well in many other mammals (including primates, ferrets,
tree shrews and sheep, but not rodents; see Van Hooser et al.,
2005) neurons with similar orientation preference tend to be
clustered. Thus, OMs are characterized by patches of high
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neuronal activity separated by regions of low neuronal ac-
tivity. The location and shape of the patches change with the
gratings’ orientation.

A recent work (Kenet et al., 2003) used optical imag-
ing with voltage sensitive dye to study spontaneous activity
in V1 of an anaesthetized cat, measured when the animal’s
eyes were closed. Even though no visual stimulus was pre-
sented, some of the spontaneous cortical states were similar
to the OMs of the same region. When such spontaneous OMs
emerged, they spanned several hypercolumns, and were often
followed by states similar to OMs of a proximal orientation.
It was speculated that the spontaneous activity reflects the
internal state of the brain, which might be influenced by
context, attention, or perceptual memory. For example, the
spontaneous state can reflect an expectation of the orienta-
tion of a forthcoming input, based on prior activity. In any
case, the striking similarity between spontaneous and evoked
states suggests that there exists a mechanism intrinsic to V1
capable of generating the OMs. If such mechanism exists,
the evoked OMs originate from an interplay between the
intrinsic mechanism and the pattern of afferent LGN input,
known to have some degree of orientation tuning.

What is the intrinsic V1 mechanism underlying the spon-
taneous emergence of OMs? Many experimental studies sug-
gest an important role for the pattern of lateral connectivity
in V1. A large body of anatomical and electrophysiologi-
cal research has shown that the V1 intracortical connectivity
is correlated with orientation preference. The general trend
is that long range lateral projections connect neurons with
similar orientation preference (Gilbert and Wiesel, 1989;
Malach et al., 1993; Weliky et al., 1995; Bosking et al.,
1997; Kisvárday et al., 1997; Buzás et al., 1998). As the
data is highly variable, this trend is true only on average, and
the exact relation between intracortical connectivity, orienta-
tion preference, and other functional maps remains a subject
of active research (Kisvárday et al., 2002; Ben-Shahar and
Zucker, 2004). Direct evidence for the involvement of the
lateral connections in orientation tuning comes from studies
in which inactivation of GABAergic neurons altered the ori-
entation tuning curves of remotely located neurons (Crook
et al., 1998; Kisvárday et al., 2000). Developmental studies
in newborn animals have shown that the overall geometry
of the OMs is stable from a very early stage, and that it is
resistant to manipulations of the visual input (Crair et al.,
1998; Löwel et al., 1998). On the other hand, cortical devel-
opment involves sharpening of the OMs with a time course
that closely matches the time course for expression and re-
finement of long range lateral connections (Gödecke et al.,
1997). Developmental experiments in which the visual input
was rerouted into the auditory cortex (Sharma et al., 2000),
yielded an auditory cortex that was similar, in many aspects,
to V1. In particular, it exhibited both OMs and long range
lateral projections that preferentially connected cells with

similar orientation preference. Taken together, these devel-
opmental studies provide further support for the strong link
between OMs and lateral connections.

From a theoretical point of view, V1 can be viewed as
a complex, nonlinear, dynamical system. Several theoretical
studies suggested that OMs are attractor states of the cortical
dynamics (Somers et al., 1995; Sompolinsky and Shapley,
1997; Ernst et al., 2001). This line of thought is consis-
tent with the spontaneous emergence of orientation maps
because OMs can still be attractors of the intracortical dy-
namics even without the stimulus-encoding afferent input.
In this family of models the pattern of lateral connectiv-
ity plays an important role in the formation of the attractor
landscape, consistent with the experimental findings listed
above. A well studied example of such a model is the ring
model (Ben-Yishai et al., 1995; Hansel and Sompolinsky,
1998). This model considers a population of neurons in one
hypercolumn in V1. Each neuron is characterized by a pre-
ferred orientation, and the overall distribution of preferred
orientations is uniform over the entire range of possible
orientations. The neurons receive both afferent LGN inputs
and lateral recurrent inputs. When a stimulus is presented to
the network via the afferent connections, the network devel-
ops an activity profile that peaks at the neuron whose pre-
ferred orientation matches the stimulus’ orientation. How-
ever, the precise shape of the stationary profile is determined,
to a large extent, by recurrent connections. The ring model
therefore suggests a mechanism that links the cortical re-
sponse evoked by an oriented stimulus and the pattern of
lateral connections.

Moreover, if the recurrent connections are strong enough,
states similar to those evoked by a stimulus emerge even if a
uniform input (representing lack of an external visual stim-
ulus) is applied. This occurs because the uniform solution
becomes unstable, and a continuum of states that are similar
to the states evoked by the different stimulus orientations
emerges as an attractor of the network’s dynamics. Collec-
tively, these states are known as the ring attractor. Thus, the
ring model suggests a mechanism that explains how states
similar to OMs can emerge spontaneously. This mechanism
was suggested to underlie the patterns of spontaneous activ-
ity observed in Kenet et al. (2003).

The ring model, however, cannot directly explain the
generation of experimental OMs. It is inherently a one-
dimensional model, proposed as a model for one hyper-
column, and cannot account for the generation of the 2-
dimensional OMs. One can of course consider a straight-
forward 2-dimensional implementation of the ring model,
by simply placing the neurons on a 2-dimensional sheet
(Goldberg et al., 2004); however, the attractor states of such
implementation do not necessarily match the experimental
OMs. We will further discuss the limitations of the ring
model in Section 2.
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Fig. 1 (A) The polar map (PM)
for the data obtained in Kenet
et al. (2003). The preferred
orientation at each pixel is
encoded by its color according
to the scheme at the bottom of
the figure. The selectivity is
encoded by brightness (a dark
pixel represents low selectivity,
a bright pixel represents high
selectivity; The brightness scale
is linearly stretched between
zero selectivity and the maximal
selectivity in this PM) (B)
Distribution over the complex
plane of the values of zx of the
PM in (A)

This leaves the following question open: what type of lat-
eral connectivity can lead to the spontaneous emergence of
the OMs? In this contribution we answer this question by
suggesting a neural network model with a simple connec-
tivity rule that supports a ring attractor; this ring attractor is
composed of states similar to the experimental OMs. To con-
struct this network we first consider an approximation to the
OMs (Section 2). Then, we introduce the model and solve it
analytically (Section 3). Later, we take an experimental data
set, and apply to it the theory we developed in the previous
section (Section 4). We continue by studying the effect of the
limited spatial extent of the lateral connections (Section 5),
and conclude with a discussion of our results and predictions
of the models (Section 6).

2. The polar map

As a first step toward constructing the network, we will
consider an approximation to the OMs that is based on the
“polar map” (PM; Bonhoeffer and Grinvald, 1993). The PM
is a functional map that assigns each location x, a complex
number, zx . The values of zx are typically calculated from the
OMs as follows. Let ϕ1, ϕ2, . . . , ϕp be p equidistant orienta-
tions presented to the animal.1 Let Sϕ j

x denote the response
at location x for the OM evoked by orientation ϕ j . Then, zx

is defined by:

1 For the theoretical analysis we let orientations take values over the
interval [0, 2π ) rather than the natural encoding over the interval [0, π ).
This encoding induces a 2π periodicity that simplifies the equations we
present. Thus, ϕ j represents a stimulus whose actual orientation was
ϕ j /2.

zx ≡ rx eiθ x = 2

p

p∑

j=1

S
ϕ j
x r iϕ j (1)

where i = √−1. Equation (1) can be viewed as a summation
of p 2-dimensional vectors whose angle, ϕ j , represents the
orientation of the stimulus, and their length, S

ϕ j
x represents

the magnitude of the cortical response to that orientation.
This view gives rise to the standard interpretation of the
angle of zx , i.e. θx , as the preferred orientation at location x.
The magnitude of zx , i.e. rx , measures the degree to which
the response at location x is modulated by the stimulus’
orientation. Following other authors, we will refer to this
variable as the selectivity of location x.

Throughout the article we will use the data set obtained
in Kenet et al. (2003) to demonstrate and validate the theory
we develop. This data set contained 8 OMs obtained from an
anaesthetized cat using voltage-sensitive dye optical imag-
ing. After a two-fold downsampling of the original data set,
each map contained 42 × 17 = 714 pixels, corresponding to
an area of approximately 11.7 mm2 (the downsampling was
preformed so that we can run efficient simulations in the later
stages of the analysis). The PM calculated from the 8 OMs
using Eq. (1) is depicted in Fig. 1(A). The color coding rep-
resents the above polar interpretation of zx . The color of each
pixel represents the preferred orientation, θx at that location,
and the brightness represents the selectivity, rx . Pinwheels
are represented as dark pixels, i.e. pixels where rx is close to
zero, around which all preferred orientations are represented.
A closer examination reveals that when moving from a point
far from the pinwheel (“linear zone”) towards the pinwheel,
the selectivity is gradually reduced, resulting in a large range
of selectivity values. The variability of the selectivities can
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be also observed in Fig. 1(B), where distribution of the values
of zx over the complex plane is depicted. In this figure each
pixel in the PM is represented by a single point. The distance
of each point from the origin represents the selectivity of the
pixel, and the angle it makes with the real axis represents its
preferred orientation. It can be seen that for each preferred
orientation there is a wide range of selectivities. This vari-
ability is not captured by previous models such as the ring
model, which implicitly assume a constant selectivity. As a
result, these models are limited in their ability to account for
realistic OMs.

Equation (1) can also be viewed as the (discrete) Fourier
transform of the “tuning curve” of location x, where the term
“tuning curve” here refers to the optical imaging response,
S

ϕ j
x , as a function ϕ j . Thus, zx is simply the first Fourier co-

efficient of the tuning curve of location x. Since these tuning
curves tend to be unimodal and centered around the pixel’s
preferred orientation, we can expect the first Fourier compo-
nent to contain much of the tuning curve’s energy. Therefore,
the tuning curve of each location can be approximated with
this single Fourier component. This approximation can be
written explicitly by defining the approximated OM for ori-
entation ϕ as:

Mϕ
x = rx cos(θx − ϕ) (2)

and S
ϕ j
x ≈ M

ϕ j
x , based on the arguments presented above.

We suggest two ways of measuring the quality of this ap-
proximation and apply them to the Kenet et al. (2003) data
set. First, the similarity between each of the experimental
OMs and its approximated version can be we quantified. A
standard measure of similarity between OMs is their Pear-
son correlation coefficient. For the experimental data set,
the average correlation between the 8 pairs of experimental
and approximated OMs was 0.815 (min: 0.746, max: 0.887).
These are high correlations that validate the approximation.
Another measure for the quality of the approximation is the
percent of variance explained, which we denote by γ . With
rx defined by Eq. (1), γ can be defined as:

γ =
∑

x rx
2

2
∑

x σx
2

(3)

where σ 2
x is the variance of the cortical response over all ori-

entations at location x. The values that γ takes are between 0
and 1, with γ = 1 if and only if the approximation is precise.
For the experimental data set, γ = 0.89, again validating the
usage of the approximation. We obtained similar results for
other data sets as well.

From the above analysis we conclude that experimen-
tal OMs can be well-approximated using the PM. For the
purpose of this contribution, that is, constructing a neural

network with OMs as being its attractor states, this approx-
imation offers two advantages. First, by associating each
location with only two real numbers (rx , θx ), rather than the
entire tuning curve, the dimensionality of the problem is
greatly reduced. Second, the approximation suggests a nat-
ural way to interpolate OMs for orientations other than the
ones presented during the experiment. We can thus consider
a ring of approximated OMs, formally defined by assigning
arbitrary values to ϕ in Eq. (2). Our modeling goal can be
now reformulated as constructing a model whose attractor
states will coincide with this ring of approximated OMs.
This goal is achieved by the model we introduce in the next
section.

3. Model

Let mx (t) denote the average firing rate of the cortical mini-
column at location x at time t. Since OMs tend to be smooth
functions of space, we use a continuous approximation and
let x take real numbers rather than discrete values. The evolu-
tion of mx is described by the standard rate equation (Wilson
and Cowan, 1973):

τ ṁx = −mx + [
I rec

x + I aff
x − T

]
+ (4)

where ṁx is the time derivative of mx , I rec
x is the input to

location x due to the recurrent connections, I aff
x is the afferent

input to that location, τ is a time constant, T is the firing
threshold, [ ]+ denotes the ramp gain function ([ξ ]+ = ξ

if ξ > 0 and [ξ ]+ = 0 otherwise), and the time argument
has been suppressed for brevity. The recurrent input, I rec

x , is
defined by:

I rec
x = 1

A

∫
dyWxymy (5)

The integral is taken over the whole region of V1 that
is modeled, and A is the area of that region. A is used as
a normalization factor that simplifies the mathematical for-
mulations. The synaptic weights connecting locations x and
y, Wxy , are defined by:

Wxy = J2rxry cos(θx − θy) + J0 (6)

The information about the PM is given by the term
rxry cos(θx − θy). The parameter J2 > 0, is a global scal-
ing factor of this term. Since scaling the values of r is
equivalent to scaling J2, we assume that the values of r
are normalized so that the mean of r2

x over the area is 1.
The parameter J0 represents global excitation (if J0 > 0)
or global inhibition (if J0 < 0). It should be noted that the
connectivity given by Eq. (6) is similar to the connectiv-
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ity of the ring model (Ben-Yishai et al., 1995). However,
unlike in the ring model, the connectivity we suggest de-
pends not only on the preferred orientations of the pre- and
post- synaptic locations, but also on their selectivities.

The connectivity pattern induced by Eq. (6) is illustrated in
Fig. 2(A). The connectivity matrix was calculated using the
PM of the Kenet et al. (2003), and setting J0 = −2, J2 = 5,
as used in subsequent simulations. The connectivity strength
between one specific location (black dot) and all other loca-
tions is visualized by color coding, with shades of green rep-
resenting positive weights (“excitatory” connections), shades
of red representing negative weights (“inhibitory” connec-
tions), and white representing connections close to zero. Note
the patchy structure of the connectivity pattern, which fol-
lows directly from the patchy nature of the PM. Moreover,
the “excitatory patches” correspond to regions with a similar
orientation preference; Thus, the patchy pattern in Fig. 2(A)
reflects the patchy layout of long range connections in V1
found in many anatomical studies (Gilbert and Wiesel, 1989;
Malach et al., 1993; Bosking et al., 1997; Kisvárday et al.,
1997). However, in contrast with known anatomy, the con-
nectivity does not depend on the distance between the pre-
and post-synaptic locations. This is a simplification we make
at this point to allow an analytical investigation. Later, in
Section 5, we discuss a model with spatially restricted con-
nections and show that it is similar, in many aspects, to the
model we consider here. The spatially restricted connections
are illustrated in Fig. 2(B), with the corresponding parame-
ters used in subsequent simulations.

We next consider the system given by Eqs. (4)–(6) for
two types of afferent input: one corresponding to spon-
taneous activity (Section 3.1), and the other represent-
ing the afferent input evoked by the gratings stimulus
(Section 3.2).

3.1. Spontaneous activity

To model spontaneous activity, we take the afferent input to
be constant for all locations, i.e., I aff

x = C . We also assume
C > T , otherwise all locations are below threshold, and the
network does not develop any activity.

3.1.1. Reduced dynamics

We start the analysis of the model by reducing the dynamics
given in (4) to the dynamics of two order parameters. To this
end, we observe that the synaptic weights defined by Eq. (6)
can be written as J2 Re(z̄x zy) + J0, with zx , zy defined by
Eq. (1). Thus, Eq. (5) can rewritten as:

I rec
x = J2Re

(
z̄x

1

A

∫
dy zymy

)
+ J0

1

A

∫
dy my (7)

Fig. 2 Connectivity pattern of the model. (A) Connection strength
between one location, marked by the black dot, and all other locations.
The connection strength was calculated by Eq. (6), using the data of
Kenet et al. (2003), with J0 = −2, J2 = 5. (B) Connection strength
for the model with spatially restricted connections. The connection
strength was calculated by Eq. (48), using the same data set, with
J0 = 3, J2 = 3.5, σ = 0.6 mm

This form leads to the following definitions of the order pa-
rameters µ and Z:

µ = 1

A

∫
dx mx (8)

Z ≡ ρeiψ = 1

A

∫
dx rx eiθx mx (9)

These variables represent global properties of the network
activity: µ is the average firing rate and Z is the inner product
of the firing rates with the PM. Equation (7) can be now
rewritten as:

I rec
x = J2Re(z̄x Z ) + J0µ = J2ρrx cos(θx − ψ) + J0µ

(10)

To obtain equations for the evolution of µ and Z, we differ-
entiate Eqs. (8) and (9) with respect to time, and then express
ṁx as a function of µ and Z using Eqs. (4) and (10). With
these substitutions, we replace the spatial integration, i.e.,
the integration over y, with an integration over r and θ . As a
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result, the following equations are obtained:

τ µ̇ = −µ +
∫ ∫

drdθP(r, θ )[J2ρr (θ − ψ)

+J0µ + C − T ]+ (11)

τ Ż = −Z +
∫ ∫

drdθP(r, θ )reiθ [J2ρr cos(θ − ψ)

+J0µ + C − T ]+ (12)

where the integrals are taken over all possible values of
r and θ (i.e., r ∈ [0,∞], θ ∈ [−π, π ]) and P(r, θ ) is the
joint probability density function of r and θ . Equations (11)
and (12) are closed equations for the dynamics of µ and
Z that do not depend directly on the particular values of
mx . However, in general, these equations still depend on
the angle of Z, i.e., ψ . Nevertheless, if isotropy is assumed,
that is, the distribution of θ is uniform and independent of
the distribution of r, this dependency upon ψ is lost. The
validity of these assumptions is discussed later, in Section 4.
In this case, we can rewrite Eqs. (11) and (12) as:

τ µ̇ = −µ +
∫ ∫

drdθ
P(r )

2π
[J2ρr cos θ + J0µ + C − T ]+

(13)

τ ρ̇ = −ρ +
∫ ∫

drdθ
P(r )

2π
r cos θ [J2ρr cos θ + J0µ

+C − T ]+ (14)

τρψ̇ = 0 (15)

As usual, to find the fixed points for the dynamics, we set the
time derivative in Eqs. (13) – (15) to zero. We discuss uni-
form (with ρ = 0), and non-uniform (with ρ > 0) solutions
separately.

3.1.2. Uniform solutions

In the case of a uniform solution, Eq. (14) implies that the
time derivative of ρ is zero for any µ. Equation (13) implies
µ = [J0µ + C − T ]+ which can be solved for any J0 < 1.
The solution for the uniform fixed point is therefore:

µ = C − T

1 − J0
(16)

ρ = 0 (17)

The stability analysis is straightforward, as all neurons are
above threshold, and the system near the fixed point is linear.

We find that the fixed point is stable in the region J0 < 1 and
J2 < 2.

3.1.3. Non-uniform solutions

To find the non-uniform solutions, we pull ρ out of the inte-
grals in Eqs. (13) and (14) and rewrite them as:

τ µ̇ = −µ + J2ρF0(X ) (18)

τ ρ̇ = −ρ + J2ρF2(X ) (19)

with,

X = J0µ + C − T

J2ρ
(20)

and,

F0(X ) =
∫ ∫

drdθ
P(r )

2π
[r cos θ + X ]+ (21)

F2(X ) =
∫ ∫

drdθ
P(r )

2π
r cos θ [r cos θ + X ]+ (22)

In order to find the fixed point solutions for µ and ρ using
Eqs. (18) and (19), it is necessary to know the functions F0

and F2 that in turn depend on the concrete choice of the
selectivities’ distribution P(r ) (Eqs. (21) and (22)). To study
the properties of these functions, we first plot them for 3
different choices of P(r ) (Fig. 3). In these examples, we see
that the precise values that F0 and F2 take indeed depend on
P(r ). However, in all 3 cases,F0 is a non-decreasing function
of X, approaching zero for large negative X, and increasing
with a slope of 1 for large positive X. Similarly, in all 3 cases,
F2 is a sigmoid-shaped function that saturates at 0 and 1/2.
In fact, these observations about F0 and F2 are true in the
general case. Formally, we show a set of properties of F0

and F2 that hold for any P(r ). These properties are listed in
Table 1, and their proof is given in the appendix. As we will
show, they allow us to obtain solutions for the fixed point
values of µ and ρ for an arbitrary P(r ).

We first find the fixed point value of X by setting the time
derivative in Eq. (19) to zero. We find that the fixed point
value of X is defined by:

1 − J2F2(X ) = 0 (23)

Property (vi) in Table 1 directly implies that when J2 < 2,
Eq. (23) cannot be satisfied, therefore a non-uniform solu-
tion does not exist (see also Fig. 4(C)). On the other hand,
properties (v), (vi), (vii) imply that when J2 > 2 Eq. (23) has
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Fig. 3 The functions F0 and
F2. (A) F0 plotted for 3 choices
of P(r ); Dashed: constant
r, P(r ) = δ(r − 1). Dash-dotted:
exponential distribution,

P(r ) = √
2e

−√
2r

. Solid: P(r )
according to the
isotropy-adjusted experimental
PM (see Section 4 and Fig. 7 for
details). (B) F2 plotted for the
same distributions of r

Table 1

No Property

(i)a F0(X ) ≥ 0
(ii)b F0(X ) ≥ X
(iii)a F ′

0(X ) ≥ 0
(iv)b F ′

0(X ) ≤ 1
(v)a F2(X ) ≥ 0
(vi)b F2(X ) ≤ 1

2
(vii)c F ′

2(X ) ≥ 0
(viii) F0(X ) − XF ′

0(X ) = F ′
2(X )

(ix)b F2(X ) − XF ′
2(X ) ≤ 1

2
(x)a F ′

0(X )F2(X ) − F0(X )F ′
2(X ) ≥ 0

The inequalities hold with equality if and only if:
a r is bounded and X ≤ −rmax or r is unbounded and X → −∞
b r is bounded and X ≥ rmax or r is unbounded and X → ∞
c r is bounded and |X | ≥ rmax or r is unbounded and |X | → ∞

a unique solution (Fig. 4(D)). Therefore, when J2 > 2 there
is a unique solution for the fixed point value of X. Assum-
ing this solution is known, the following expressions for the
fixed point value of µ and ρ in terms of the fixed point value
of X can be derived form Eqs. (18), (20), and (23):

µ = C − T

X − J0F0(X )
F0(X ) (24)

ρ = C − T

X − J0F0(X )
F2(X ) (25)

Since µ and ρ are by definition positive, it must hold that:

X − J0F0(X ) > 0 (26)

otherwise, the solution diverges. Again, we can use the prop-
erties in Table 1 to find the conditions under which this
inequality is satisfied. Property (ii) implies that inequality

(26) never holds when J0 > 1 (Fig. 4(A)). On the other
hand, if J0 < 1, X − J0F0(X ) is a monotonically increas-
ing function of X (properties (iii), (iv)), taking negative
values for large negative values of X, and positive values
for large positive values of X (properties (i), (ii)). There-
fore, when J0 < 1, X − J0F0(X ) = 0 has a unique solution.
We denote this solution by X0 (Fig. 4(B)), and the solution
of Eq. (23) by X2 (Fig. 4(D)). Using these notations, we
find that inequality (26) holds for X = X2 if and only if
X0 < X2. Since X0 is a function of J0 and X2 is a function
of J2, the condition X0 < X2, together with the conditions
J0 < 1, J2 > 2, define a region in the J0 J2 plane, where the
non-uniform fixed point exists. Stability analysis given in the
appendix shows that when this fixed point exists, it is always
stable.

3.1.4. Phase diagram

We turn to summarize the different regimes of the model
and relate the fixed points in these regimes to the OMs.
Since the voltage-sensitive dye optical imaging signal corre-
sponds to the instantaneous post synaptic membrane poten-
tial rather than firing rate (Sterkin et al., 1999; Grinvald
et al., 1999; Sharon and Grinvald, 2002; Petersen et al.,
2003), we compare OMs to the total synaptic input, denoted
by I tot = I rec + I aff . The shape of I tot is given by (see Eq.
(10)):

I tot
x = J2ρrx cos(θx − ψ) + J0µ + C (27)

with µ, ρ, and ψ taking their fixed point values. The different
phases of the model are summarized in the phase diagram
(Fig. 4(E)). In the linear phase, J0 < 1, J2 < 2, the only
solution is ρ = 0, and it is stable. In this case, Eq. (27) implies
that I tot

x is uniform and does not correspond to any OM.
However, in the marginal phase, J0 < 1, J2 > 2, X0 < X2

(where X0 is a function of J0 and X2 is a function of J2), the
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Fig. 4 Solution and phase
diagram of the spontaneous
activity model. (A, B) The
function X − J0F0(X ) (see Eq.
(26)). In (A), J0 = 1.5,
representing the case where
J0 > 1. The function
X − J0F0(X ) is negative for all
X. In (B), J0 = −2, representing
J0 < 1. The function
X − J0F0(X ) crosses zero at a
unique point, which is denoted
by X0. (C, D) The function
1 − J2F2(X ) (see Eq. (23)). In
(C) J2 = 1.5, representing the
case where J2 < 2. The function
1 − J2F2(X ) is positive for all
X. In (D) J2 = 2.5 representing
J2 > 2. The function
1 − J2F2(X ) crosses zero at a
single point, which is denoted
by X2. (E) Phase diagram for
the spontaneous activity. The
border of the linear phase is
given by the lines
J0 = 1, J2 = 2. The line
separating the marginal phase
from the amplitude instability is
determined by the condition
X0 = X2. In all examples, F0

and F2 were calculated using
the experimental P(r ) (solid
lines in Fig. 3)

solution with ρ = 0 is unstable, but solutions with ρ > 0 are
stable. In fact, there are infinitely many solutions, because
the value of ψ is arbitrary (Eq. (15)). By comparing Eq. (27)
to Eq. (2), we see that in this case I tot

x equals a scaled version
of the approximated OM of orientation ψ , up to an additive
constant shift. Thus, in the marginal phase, OMs of arbitrary
orientations emerge as fixed points of the network dynamics.
Collectively, these fixed points form a ring attractor, that

is, a ring of states where each state is an attractor of the
dynamics.

Outside the regions of linear phase and marginal phase
no stable fixed point exists and the network develops ampli-
tude instability. Unlike the boundaries of the linear phase,
the line X0 = X2 that separates the marginal phase from
the amplitude instability region depends on P(r ). However,
some of its properties do not depend on P(r ). In particular
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it can be checked that it always passes through the points
(J0 = 1, J2 = 2), and (J0 = 0, J2 = 4).

3.2. Evoked activity

The case of a non-uniform input is more complex than the
uniform input case, because the steady state solutions are
sensitive to the fine structure of the input. However, some
general observations about the fixed point can still be made.
Since the synaptic input I rec is still given by Eq. (10), it equals
a scaled/shifted version of one of the approximated OMs,
and the total synaptic input is the sum of that map, and the
afferent input, I aff . The orientation of the approximated OM,
and its scaling and translation parameters are still determined
by ψ, ρ, and µ. Thus, the role of I aff reduces to selecting the
values of µ, ρ, and ψ , which will put the system in a steady
state.

In this section we study a simple structure of the input;
we add to the uniform input we studied in the previous sec-
tion a small modulation that is proportional to one of the
approximated OM. Formally we define:

I aff
x = C(1 + εrx cos(θx − ψaff)) (28)

where ψaff is the orientation encoded in the input and ε

is the modulation of the orientation encoding term. With
this form, each location receives maximal afferent input
when the orientation of the stimulus coincides with its pre-
ferred orientation. The main motivation for choosing this
particular form is that it allows a relatively simple ana-
lytical study. Using simulations, we also studied different
variations of the above input, and obtained essentially the
same results. An example of such variation, is given in
Section 4.

3.2.1. Reduced dynamics

Rewriting the right-hand side of Eq. (28) as C + Re(z̄x Zaff)
with Zaff = Cεeiψaff , we find that:

I rec
x + I aff

x = Re(z̄x (J2 Z + Zaff)) + J0µ + C (29)

where µ and Z are defined by the same equations given for
the spontaneous activity (Eqs. (8) and (9)). Equation (29)
leads to the following definition:

Z tot ≡ ρtote
iψtot = J2 Z + Zaff (30)

and with these notations:

τ ṁx = −mx + [ρtotrx cos(θx − ψtot) + J0µ + C − T ]+

(31)

As in the case of spontaneous activity, Eq. (31) can be used
to derive dynamical equations for µ and Z:

τ Ż = −Z + eiψtot

∫ ∫
drdθ

P(r )

2π
rei(θ−ψtot)

[ρtotr cos(θ − ψtot) + J0µ + C − T ]+ (32)

τ µ̇ = −µ +
∫ ∫

drdθ
P(r )

2π
[ρtotr cos(θ − ψtot) + J0µ

+C − T ]+ (33)

This can be rewritten as:

τ µ̇ = −µ + ρtotF0(X ) (34)

τ ρ̇ = −ρ + ρtot cos(ψtot − ψ)F2(X ) (35)

τρψ̇ = ρtot sin(ψtot − ψ)F2(X ) (36)

with,

X = J0µ + C − T

ρtot
(37)

In this formulation, it is assumed that ρtot > 0. However
it can be easily checked that ρtot = 0 is not a fixed point
solution, therefore the case of the uniform solution can be
disregarded.

3.2.2. Solution

At fixed point, Eq. (36) implies that sin(ψtot − ψ) = 0.
Therefore, it must hold that either ψtot = ψ or ψtot =
ψ + π . However, in the second case, Eq. (35) implies
ρ = −ρtotF2(X ), which cannot hold because both ρ and
ρtot are positive, and F2(X ) is non-negative (property (v) in
Table 1). Thus, as follows from Eq. (30), the possible so-
lutions are ψtot = ψ = ψaff , and ψtot = ψ = ψaff + π . We
focus on the first case, which corresponds, as the analy-
sis in the appendix shows, to the only stable fixed point. In
this case, ρtot = J2ρ + Cε. Setting µ̇ = 0, ρ̇ = 0, we rewrite
Eqs. (34), (35), (37) as:

µ = (J2ρ + Cε)F0(X ) (38)

ρ = (J2ρ + Cε)F2(X ) (39)

X = J0µ + C − T

(J2ρ + Cε)
(40)

Thus, a fixed point requires that this system of 3 equations
for the 3 variables µ, ρ, and X has a solution with positive µ

Springer



228 J Comput Neurosci (2006) 20:219–241

and ρ. Solving this system, we find that the fixed point value
of X is determined by:

1 − J2F2(X )

X − J0F0(X )
= ϒ (41)

where ϒ is the effective stimulus tuning (Hansel and Som-
polinsky, 1998), defined by:

ϒ = εC

C − T
(42)

The solution for µ and ρ is given by the same equations we
derived for the spontaneous activity (Eqs. (24) and (25)), and,
as it was in that case, these equations imply that inequality
(26) must hold. In addition, in the evoked case, because
ϒ > 0, it must also hold that:

1 − J2F2(X ) > 0 (43)

Taken together, a fixed point solution requires finding X that
satisfies Eq. (41) and inequalities (26), (43). Thus, we check
the existence of such a solution in the different regions of the
J0 J2 plane.

As in the case of the spontaneous activity, when J0 > 1,
inequality (26) never holds, and no fixed point exists. In the
region corresponding to the linear phase of the spontaneous
activity, i.e., J0 < 1, J2 < 2, inequality (43) holds for any
X, and inequality (26) holds for any X > X0, where X0 is a
function of J0 (Section 3.1.3). On the interval X > X0 the left
hand side of (41) is a monotonically decreasing function of
X, approaching ∞ at X = X0, and 0 at X → ∞ (Fig. 5(A)).
Therefore, in this region, Eq. (41) has a unique solution for
any (positive) ϒ , and a unique fixed point exists.

In the region corresponding to the marginal phase of the
activity, i.e., J0 < 1, J2 > 2, X0 < X2, where X0 is a func-
tion of J0 and X2 is a function of J2, (Section 3.1.3) in-
equalities (26) and (43) imply X0 < X < X2. On the inter-
val X0 < X < X2, the left hand side of Eq. (41) is mono-
tonically decreasing of X, approaching ∞ at X = X0, and
taking the value of 0 at X = X2 (Fig. 5(B)). Therefore, in
this region, Eq. (41) has a unique solution for any (pos-
itive) ϒ , and a unique fixed point exists. Finally, in the
region J0 < 1, J2 > 2, X0 > X2, inequalities (26) and (43)
cannot be satisfied simultaneously, therefore, no fixed point
exists.

3.2.3. Phase diagram

In sum, the above analysis shows that the region where a
fixed point exists for the evoked activity, coincides precisely
with the regions where a fixed point exists for the sponta-
neous activity, i.e., the regions of the linear and marginal

phases of the spontaneous activity. The stability analysis in
the appendix shows that this fixed point is stable, and that
any other fixed point in this region is unstable. Similar ar-
guments to those presented for the marginal phase of the
spontaneous activity imply that the total synaptic current
is a scaled/shifted version of an OM. However, unlike the
case of the spontaneous activity where the orientation of the
OM was arbitrary, for the evoked activity, the orientation
of the OM is bound to match the orientation of the afferent
input.

Although I tot is always a scaled/shifted OM, when firing
rates are taken into account, we find that two types of solu-
tions exist. The fixed point solution for the firing rate is given
by:

mx = ρtot[rx cos(θx − ψaff) + X ]+ (44)

Thus, if the selectivities (rx ) are bounded, i.e., there exists
rmax with P(r > rmax) = 0, and X is large enough, all loca-
tions are above threshold, and the system at fixed point is
effectively linear. Otherwise, at least some locations are be-
low threshold, and the system is non-linear. This distinction
between linear and non linear solutions is important because
linear solutions are associated with broad tuning curves,
whereas non-linear solutions are associated with narrow tun-
ing curves (Hansel and Sompolinsky, 1998). If J2 > 2, the
system is non-linear for any ϒ , because the fixed point so-
lution for X is smaller than X2, which in turn is smaller that
rmax (property (vi)). However, if J2 < 2, the fixed point so-
lution for X can take arbitrarily large values, and both linear
and non-linear solutions are possible. The line separating the
linear regime from the non linear one for the evoked case,
can be obtained by plugging X = rmax in Eq. (41). Using the
fact that F0(rmax) = rmax and F2(rmax) = 1

2 (properties (ii),
(vi)) we find that:

J0 − 1 = J2 − 2

2ϒrmax
(45)

Thus, we find that this line always passes through the point
(J0 = 1, J2 = 2) and its slope (where the line is viewed as a
function of J2) is inversely proportional to ϒ and rmax. This
line for a few choices of ϒ is drawn in the phase diagram
of the evoked activity (Fig. 5(C)). In the limit ϒ → 0, this
line becomes J2 = 2, i.e., the line separating the linear phase
from the marginal phase of the spontaneous activity. On the
other hand, when ϒ → ∞ the system switches from linear
solutions to non-linear ones, for any choice of J0 and J2.

3.3. Energy function

The connectivity matrix of our model is symmetric; there-
fore, an energy function for the model can be constructed.
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Fig. 5 Solution and phase
diagram of the evoked activity
model. (A, B) The function
1−J2F2(X )
X−J0F0(X ) (see Eq. (41)). In (A)
J0 = −3, J2 = 1.5, representing
the case where J0 < 1 and
J2 < 2. On the interval X > X0

the function takes all possible
positive values, and a unique
solution for X exists for every
value of ϒ . In (B)
J0 = −3, J2 = 3.5, representing
the case where J0 < 1, J2 > 2,
and X0 < X2. On the interval
X0 < X < X2 the function takes
all possible positive values, and
a unique solution for X exists for
every value of ϒ as well. (C)
Phase diagram for the evoked
activity. The line separating the
linear phase from the non-linear
phase is plotted for few values
of ϒ (0.05, 0.1, 0.15, 0.2, 0.25,
bottom-right to top-left). In all
examples, F0 and F2 were
calculated with the experimental
P(r) (solid lines in Fig. 3)

The energy function decreases during the evolution of the
system, and the fixed points are local minima of the en-
ergy function. The appropriate energy function is given by
Hopfield, (1984) and Hertz et al. (1991):

H = − 1

2A2

∫∫
dxdyWxy Rx Ry + 1

2A

∫
dx R2

x

− 1

A

∫
dx Rx

(
I aff

x − T
)

(46)

where Rx = [I rec
x + I aff

x − T ]+. Using a derivation similar to
the one we used to reduce the dynamics of the system to the
dynamics of the order parameters, Eq. (46) can be rewritten
as a function of the order parameters µ and Z:

H = − 1

2
ρ2

tot(J0F0(X )2 + J2F2(X )2)

+ 1

2
(ρtot(J0µ − C + T )F0(X )

+ ((J2ρ)2 − (εC)2)F2(X )) (47)

with ρtot and X being functions of µ and Z, according to the
definitions given for the evoked activity (Eqs. (30) and (37)),

and the spontaneous activity treated as a particular case with
ε = 0.

Usually, energy functions of neural networks are high
dimensional and cannot be directly visualized. However, Eq.
(47) reveals that the energy function for this system is a
function of one complex and one real variable (Z and µ). In
the case of J0 = 0 the energy is a function of Z only, and
therefore can be easily visualized. Figure 6 summarizes the
main results we obtained in previous sections, by showing
how the energy function looks like in the different regimes
of the system. In Fig. 6(A)–(C) the energy is drawn as a
function of Z for spontaneous activity. In Fig. 6(A), the model
is in the linear phase, and the energy function is similar
to a cone. Only one local minimum exists and it is at the
center of the “cone”, i.e., at Z = 0. This local minimum
corresponds to the uniform solution with ρ = 0. In Fig. 6(B),
the model is in the marginal phase, and the energy function
is similar to a “mexican hat”. The ring of local minima
corresponds to the infinite number of solutions with ρ > 0.
In Fig. 6(C), no local minima exist, and the system undergoes
amplitude instability. In Fig. 6(D), the case of evoked activity
is depicted. The energy function is similar to the energy
function of the spontaneous activity in the marginal phase,
Fig. (6B), but “tilted” in the direction defined by the angle
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ψaff . Thus, the continuum of local minima is lost, and only
one local minimum remains. While the afferent input we used
to generate Fig. 6(D) is of the type we studied in Section 3.2,
qualitatively similar results can be obtained for many other
types of inputs. This is because the ring attractor, as depicted
in Fig. 6(B), is singular; any small anisotropy in the afferent
input will destroy its prefect symmetry, and will cause the
network to converge to particular values of Z, representing
specific OMs.

4. Simulations

To illustrate the theoretical results obtained in the previous
section and validate their applicability to experimental data,
we applied the model to the Kenet et al. (2003) data set.
An important assumption we made in the previous section is
that of isotropy of orientation preference (Section 3.1.1). The
isotropy assumption requires the distribution of the values of
zx to be rotationally symmetric about the origin. The exper-
imental distribution of zx , which is shown in Fig. 1(B), does
not seem to deviate strongly form the rotational symmetry
assumption. This is consistent with some previous optical
imaging studies in cats that either did not find any system-
atic over-representations of specific orientations (Bonhoeffer
and Grinvald, 1993; Kenet et al., 2003), or found small, al-
beit significant in some cases, over representation of cardinal
orientations (Müller et al., 2000; Yu and Shou, 2000; Dragoi
et al., 2001b; Wang et al., 2003). However, there are many
factors that might distort the precise distribution and mask the
true extent of the anisotropy. In particular, the fact that only
a small fraction of V1 is imaged can increase the anisotropy
in the imaged map compared to the true one, whereas mea-
surement noise of the optical imaging data, can artificially
induce an opposite effect.

In this work, we avoid the precise characterization of the
anisotropy in the cat data. Instead, we first adjusted the po-
lar map (PM) to match the isotropy assumption, and then
quantified the deviation between the experimental and the
adjusted PMs. The adjustment was performed in two steps.
In the first step, we adjusted the values of rx such that for
any angle θx the conditional distribution of rx given θx will
match, approximately, the marginal distribution of rx . This
was achieved by considering for every pixel x, the set of
pixels {y} such that |θx − θy| ≤ π

10 . Next, we calculated px ,
defined as the percent of pixels with ry ≤ rx . Then, rx was set
to the px -th percentile of the distribution of the original val-
ues of rx of all the pixels. In the second step, the pixels were
sorted according to the value of rx and divided into 12 groups
of approximately equal size. The values of r at each group
were set to the average value at the group. Then, the pixels at
each group were sorted according to θx , and the values of θx

were adjusted such that difference between two adjacent θs

was made constant. The distribution of the values of zx after
the adjustment is shown in Fig. 7(B). This distribution is
rotationally symmetric, and meets the isotropy assumption.

The PM after isotropy adjustment is shown in Fig. 7(A)
and it is very similar to the experimental PM shown in
Fig. 1(A). Since our main motivation of using the PM is its
ability to provide an approximation to the OMs (Eq. (2)), we
quantified the distortion caused by the isotropy adjustment
by calculating for every orientation the correlation between
the OM approximated with the experimental PM and the OM
approximated with the adjusted PM. The average correlation
over all possible orientations was 0.971 (min: 0.968, max:
0.973). These high correlations indicate that the original map
was not very far from meeting the isotropy assumption in the
first place. The average correlation between the 8 experi-
mental OMs and the OMs approximated with the adjusted
PM was high as well (0.791; min: 0.725, max: 0.855). We
therefore used the adjusted PM to construct the connectiv-
ity matrix (Eq. (6)) and tested the model in the spontaneous
activity and the evoked activity regimes.

Our analysis of the spontaneous activity in the marginal
phase showed that the steady state synaptic input (I rec + C)
is a scaled/shifted version of an approximated OM. The ori-
entation of the OM is arbitrary and therefore depends only on
the initial state, i.e., mx at t = 0. We thus performed 10000
simulations with random initial states. The simulations were
performed using MATLAB

r©
, using first order Euler method

to solve Eq. (4). Each simulation was let run until conver-
gence. The parameters of the model were fixed for all simu-
lations, with J0 and J2 selected to be in the marginal phase
(see Fig. 8 for a full list of parameters’ values).

An example of a single simulation is presented in
Fig. 8(A)–8(C). Figure 8(A) shows the initial state. Fig-
ure. 8(B) shows the total synaptic input, I rec + C , at the fixed
point. It is a linear transformation of the approximated OM of
90◦. The highly similar experimental OM of 90◦ is presented
in Fig. 8(C) for comparison (correlation = 0.85). The steady
states of all simulations where similar to one of the experi-
mental OMs (correlation >0.7). The high similarity between
the simulated and experimental maps demonstrates that the
model produced a good approximation for the experimental
OM. It also implies that any violations of the approximation
assumptions, (ability to approximate OMs with the PM and
isotropy) did not cause any significant distortion of the OM.
In Fig. 8(D) we show the distribution of the orientations of
the steady state OMs for all 10000 simulations. The orienta-
tion was calculated by taking the angle of the projection of
the synaptic input at the fixed point on the PM. Consistently
with our theoretical analysis, this figure shows that the OM
at the fixed point was arbitrary, with equal probability for all
orientations.

We next tested the model with a tuned input, with ε = 0.1
and ψaff selected randomly from a uniform distribution. In
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Fig. 6 Energy function. In the
examples given in this figure we
assume J0 = 0, and the energy,
H, depends only on the complex
order parameter Z. (A, B, C)
The energy as a function of Z for
spontaneous activity. (A)
J2 = 1, linear phase. (B)
J2 = 3, marginal phase. (C)
J2 = 5, amplitude instability.
(D) The energy as a function of
Z for evoked activity with
J2 = 3, ε = 0.04. In all
examples F0 and F2 were
calculated with the experimental
P(r ) (solid lines in Fig. 3). The
values of other parameters were
C = 3, T = 1. For clarity the
energy was drawn only for
values of Z with |Z | < 3.3

Fig. 7 (A) PM for the data
obtained in Kenet et al. (2003)
after isotropy adjustment. The
figure is displayed on the same
brightness scale as in 1A to
facilitate comparison. (B)
Distribution over the complex
plane of the values of zx of the
PM in (A)

order to test the model with a more complex afferent input
than the one we analyzed in the previous section, we added to
the afferent input gaussian noise with zero mean and a stan-
dard deviation of 0.1. Thus, noise in the afferent input was
equal in amplitude to ε. The other parameters of the simula-
tion were identical to those of the spontaneous activity sim-
ulation, and the simulation was also performed 10000 times.
The results are shown in Fig. 9. Figures 9(A)–(C) show an ex-

ample of a single simulation. Figure 9(A) shows the afferent
input. The orientation used to construct the input was 0◦. The
steady state is shown in Fig. 9(B). It is very similar to the ex-
perimental OM of 0◦ degrees which is shown in 9C. Note that
the noise we added in the afferent input is filtered out by the
recurrent connections. Finally, in Fig. 9(D), we show the dis-
tribution of the difference between the afferent input orienta-
tion and the steady state orientation. The narrow distribution
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Fig. 8 Simulations of spontaneous activity. (A) Initial state in one
simulation. (B) The total synaptic input at steady state for the same
simulation. (C) The experimental OM of 90◦, which is very similar
to the state in (B). (D) Distribution of the orientations of the approxi-
mated OMs at steady state in 10000 simulations. The number of bins
was 8. The following values of parameters were used in all simulations:

J0 = −2, J2 = 5, τ = 10, C = 2, T = 1. The random initial state was
taken from a gaussian distribution with mean 1 and variance 0.25. Equa-
tion (4) was solved using the first order Euler method with �t = 1. The
simulation was run until t = 500, a value that was large enough to
guarantee the convergence to a fixed point. Grayscale range (arbitrary
units): (A) 0.2–2, (B) −9–7, (C) −2.4–2.7

around zero (SD = 2.2◦) shows that the input orientation
and the steady state orientation are very close to one another
despite the noise. A comparison of Fig. 8(D) and Fig. 9(D)
demonstrates the main difference between the spontaneous
and evoked conditions in the marginal phase. In the former,
the OM is chosen randomly whereas in the latter, it is chosen
by the input. However, in both cases, the steady states are
similar to OMs.

5. Model with spatially restricted connections

The connectivity pattern we considered so far (Eq. (6)) al-
lowed a thorough mathematical analysis, which we presented
in Section 3. However, this pattern is not realistic when large
cortical areas are considered because the synaptic weights
do not fall off with the distance between the pre- and post-
synaptic locations. In contrast, lateral cortical projections in
the cortex are spatially restricted. In the cat V1 these projec-
tions do not exceed 3.5 mm, with most axons projecting up to
a distance of 0.5 mm (Gilbert and Wiesel, 1989; Kisvárday
et al., 1997; Yousef et al., 2001). In this section we extend
the model by imposing a restriction on the spatial extent of
the lateral connections. This restriction is achieved by multi-
plying the synaptic strength given by Eq. (6) with a spatially
isotropic gaussian of the distance between the pre- and post-
synaptic locations, i.e.:

Wxy = (J2rxry cos(θx − θy) + J0)Gσ (‖x − y‖) (48)

where σ denotes the standard deviation of the gaussian that
determines the spatial range of the connections, Gσ denotes
a 2-dimensional gaussian function (Gσ (ξ ) = 1

2πσ 2 e−ξ 2/(2σ 2))
and ‖x − y‖ is the distance between locations x and y. An
example of the connectivity pattern induced by Eq. (48) for
the Kenet et al. (2003) data set, is given in Fig. 2(B). Like
the connectivity pattern induced by the spatially unrestricted
model (Eq. (6), Fig. 2(A)), it exhibits a patchy structure,
with patches corresponding to regions with similar orienta-
tion preference. However, now the patches are spatially re-
stricted, and their density decays as a function of the distance
between the interconnected locations. Both properties have
been observed experimentally (Gilbert and Wiesel, 1989;
Malach et al., 1993; Bosking et al., 1997; Kisvárday et al.,
1997).

While the connectivity given by Eq. (48) is more realistic
than the one given by Eq. (6), the behavior of the model
is now much more complicated. This is because it depends
not only on the distribution of preferred orientations and
selectivities, but also on the spatial structure of the PM.
One implication of this additional complexity is the loss of
isotropy. While the PM can be still isotropic over the entire
region simulated, each location is now connected to only
a small subregion; in this subregion isotropy does not nec-
essarily hold. One might expect that this would disrupt the
formation of the ring attractor, and indeed simulations of
the spatially restricted model with a uniform input yielded
only one or two attractor states, depending on the model
parameters (e.g., J2, σ ). These attractor states were usually
similar to OMs, with the identity of the attractor-OM also
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Fig. 9 Simulations of evoked activity. (A) Afferent input in one sim-
ulation. The input is constant, with a small modulation in the shape of
the approximated OM of 0◦(ε = 0.1, ψaff = 0) and a random gaussian
noise (mean = 0, std = 0.1 ). (B) The total synaptic input at steady
state for the same simulation. The 0◦ OM is extracted from the afferent
input. (C) The experimental OM of 0◦, which is very similar to the

state in (B). (D) Distribution of the difference between the orientation
of the approximated OM at steady state and the orientation encoded
in the afferent input for 10000 simulations. The number of bins was
100. The parameters for these simulations were identical to the param-
eters used for the spontaneous activity simulations. Grayscale range
(arbitrary units): (A) 1.5–2.5, (B) −9–7, (C) −2.4–2.7

depending on the precise selection of the model parameters.
A similar phenomenon, in which the ring attractor collapses
into few isolated attractors, occurs in the ring model when
some degree of anisotropy is introduced, i.e. when the distri-
bution of preferred orientations is not uniform (Tsodyks and
Sejnowski, 1995; Zhang, 1996; Renart et al., 2003; Goldberg
et al., 2004). Thus, the spatially restricted model does not
support a ring attractor in the sense we discussed so far. How-
ever, if the spatial range of the interactions is large enough,
such that the recurrent input received by each location is
approximately isotropic, the network has an unlimited num-
ber of states that have energy levels similar to the attractors.
We therefore expected that these states could be revealed
by adding a random noise to the uniform input. To explore
this possibility we simulated the network with many realiza-
tions of the random noise. The random noise was taken to
be a gaussian noise with small spatial correlations induced
by filtering it with a 2-dimensional spatially isotropic gaus-
sian kernel with a small standard deviation (0.1 mm) (see
a similar approach in Goldberg et al. (2004)). An example
of two realizations of the input is given in Fig. 10(A, D).
To allow comparison between the spatially restricted and
unrestricted models under the same conditions, we repeated
the simulations of spontaneous activity in the spatially unre-
stricted model (Section 4) using the noisy input we used for
the spatially restricted model. The results for the unrestricted
model with the noisy input were very similar to the results
with the uniform input, implying that our characterization
of spontaneous activity in Section 4 holds also for the noisy
input.

For the spatially restricted model we constructed the lat-
eral connectivity with Eq. (48), using the same PM we used
for the simulations in Section 4. We took σ = 0.6 mm, which
is approximately the diameter of a hypercolumn. It has been
estimated that in cats most projections are approximately
within this distance (Kisvárday et al., 1997; Schummers
et al., 2002). The global parameters of the lateral connec-
tions were J0 = −3 and J2 = 3.5, which correspond to the
marginal phase of the spatially unrestricted model. Any sin-
gle realization of the input, such as the ones in Fig. 10(A) and
(D), yielded one particular steady state solution. However,
for different realizations of the input, the network had an
unlimited number of attractors states. Some of these states
were similar to OMs, like in the case of the spatially un-
restricted model. Still, other steady states were not highly
correlated with OMs. An example of two such states is
given in Fig. 10(B) and (E). A close examination of these
states revealed that they were mosaics of OMs, i.e., they
were composed of different OMs in different regions of the
modeled area. The structure of these states is demonstrated
in Fig. 10(C, F). For example, in Fig. 10(C), the OM of
22.5◦ is presented in the upper part, and the OM of 67.5◦

is presented in the lower part. This combination of OMs
presented in Fig. 10(C) produces a state that is very sim-
ilar to the steady state shown in Fig. 10(B). We conclude
that with noisy afferent input the model with spatially re-
stricted connections is qualitatively similar to the model of
spontaneous activity we considered in Section 3.1, except
that steady states can be mosaics of OMs, rather than a
single OM.
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Fig. 10 Simulations of the model with spatially restricted connectiv-
ity. (A, D) Afferent input for two simulations of spontaneous activity.
(B, E) The total synaptic input at steady state for the same simula-
tions. (C, F) Mosaics of experimental OMs that are highly similar
to the steady states in (B) and (E). (G) Afferent input in a simula-
tion of evoked activity encoding an orientation of 45◦. (H) Steady
state for the same simulation. (I) The experimental OM of 45◦. The
small bars on the right-hand side of the figure indicate the orienta-
tions of the OMs in (C), (F), (I). The values of the parameters were
J0 = −3, J2 = 3.5, σ = 0.6 mm, C = 2, T = 1. The noise in the in-
put was random gaussian with zero mean, 0.1 standard deviation, and
it was spatially filtered with a spatially isotropic gaussian with a stan-
dard deviation of 0.1 mm. Grayscale range (arbitrary units): (A, D, G)
1.1–2.9, (B, E) −0.8–4.6, (H) −1.3–4.3, (C, F, I) −2.4–2.7

We also tested this model in the evoked activity case, by
adding a small modulation in the shape of an approximated
OM to the noisy input described above (similarly to our
approach in Section 4). An example of such input is presented
in Fig. 10(F) where the orientation of the OM was 45◦. The
steady state for this simulation is presented in Fig. 10(G), and
the experimental OM for 45◦ is presented in 10H. The steady
state is similar to the OM encoded in the input, and the noise
is filtered out. This was the case for all simulations. Thus,
for evoked activity, the behavior of the model with spatially
restricted connections is very similar to the behavior of the
model with unrestricted connections.

6. Discussion

The emergence of OMs during spontaneous activity in anaes-
thetized cats has led to the suggestion that OMs are attractors
of the intracortical network (Kenet et al., 2003). Adopting
this view, we posed the following question: what type of
intracortical dynamics and connectivity can lead to the for-
mation of attractors at the OMs? In this work, we suggested
a rate model endowed with a simple connectivity rule (Eq.
(6)), and showed that it yields attractor states that are highly
similar to OMs. Specifically, we showed analytically that
in the proper parameter regime (marginal phase), and given
a uniform input, the model has a ring attractor formed by
approximated OMs of arbitrary orientations. This property
explains the formation of OMs during spontaneous activity
where the afferent input is assumed to be unstructured. We
also considered the case where the activity is evoked by a
visual stimulus and showed how a structured afferent input
can select the OM that matches the stimulus’ orientation.
The model therefore suggests that OMs are encoded in the
lateral connections, and that these connections can generate
OMs both when the activity is spontaneous and when it is
evoked by a visual stimulus.

6.1. Selectivity

The core of our model is its connectivity pattern (Eqs. (6),
(48)). This connectivity pattern depends on three properties
of the interconnected sites: the selectivity, the preferred ori-
entation, and the distance between the pre- and post- synaptic
locations. The main theoretical innovation in our model is
the explicit incorporation of the selectivity variable into the
connectivity pattern. We treat the selectivity as a structural
attribute of every cortical location, similarly to how the pre-
ferred orientation is dealt with by many models (including
ours). We have shown that this approach is sufficient for ex-
plaining the correspondence between OMs and intrinsically
preferred states of the cortical network. The model there-
fore predicts a different connectivity pattern for neurons near
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pinwheels and neurons in linear zones. There are some exper-
imental evidence in favor of this view. Yousef et al. (2001)
reported that connections of neurons near pinwheels have
shorter lateral extent that neurons in linear zones, and that
these connections are not as orientation-specific as those of
neurons in linear zones. The latter result is consistent with
our connectivity matrix, in which the orientation-dependent
term in the equation of synaptic strength (Eq. (6)) is multi-
plied by the selectivity.

In the context of studying orientation selectivity, it is
important to distinguish between two types tuning curves:
of membrane potential tuning curves, on which we focused
in this contribution, and commonly considered firing rate
tuning curves. These two types of tuning curves give rise
to two different measures of selectivity, and the closely
related measures of tuning width. In our model, the shape
of the membrane potential tuning curve is the same for
all locations (a cosine shape). The different selectivity
of different locations comes from different scaling of the
tuning curve. As for firing rate tuning curves, the picture is
more complicated. Equation (44) implies that the selectivity
and width of firing rate tuning curves vary with membrane
potential selectivity. The precise characteristics of the firing
rate tuning curve depends on the model parameters (J0, J2),
and both broad and narrow tuning curves are possible. In the
linear regime, all locations have broad tuning curves. In the
non-linear regime, both broad and narrow tuning curves are
possible.

Several experimental studies used recordings of single
neurons to study the dependence of selectivity and other
tuning curve properties on the cortical location. Before we
compare our model with these studies, it is important to
note that the low selectivity near pinwheels seen with optical
imaging, which is at the heart of our modeling approach, is
difficult to interpret in terms of single neuron properties. This
is because it can arise from either lack of orientation selec-
tivity of single neurons near the pinwheel, or from averaging
highly selective neurons with a highly variable orientation
preference. The second option received support form extra-
cellular recordings (Maldonado et al., 1997; Dragoi et al.,
2001a) that found that as far as firing rates are concerned,
neurons near pinwheels are as sharply tuned as neurons in
linear zones. However, intracellular recordings (Schummers
et al., 2002) have shown that when tuning curves of sub-
threshold membrane potential are considered, the selectiv-
ity of neurons is indeed reduced with the selectivity given
by the PM. Our model, in which selectivity varies both for
synaptic-input and firing-rate tuning curves, is therefore con-
sistent with membrane potential tuning curves, but not with
firing rate tuning curves. As suggested by Schummers et al.
(2002), this difference between the tuning of membrane po-
tential and the tuning of firing rate might be accounted for by
different parameters of the gain function (e.g., firing thresh-

old) for neurons near pinwheels. This suggestion can be
easily incorporated into our model. Other mechanisms were
suggested, some of them, like sensitivity to the temporal
structure of the membrane potential fluctuations (Volgushev
et al., 2002), are beyond the framework of the rate models we
discussed here.

The notion of tuning curves, is clearly associated with
evoked activity. However, the principles laid down in this
work can lead to the definition of “spontaneous tuning
curves”. In an experimental setup, if optical imaging of spon-
taneous activity is performed simultaneously with single unit
recordings, a spontaneous tuning curve can be defined as
the average firing rate (measured electrophysiologically) as
a function of the orientation encoded by the cortical state
(measured by the optical imaging). It would be interesting to
characterize spontaneous tuning curves and compare them
with the classical, evoked, tuning curves. In one particular
scenario our model predicts a qualitative difference between
spontaneous and evoked tuning curves. A comparison be-
tween the phase diagrams for spontaneous and evoked ac-
tivity (Figs. 4(E), 5(C)) implies that if V1 operates near
the phase transition between the linear and marginal phases
of spontaneous activity, (J2 close to 2), spontaneous tun-
ing curves are expected to be significantly broader than the
evoked ones. This prediction can be tested experimentally.

6.2. Orientation preference

Similarly to other models, our connectivity pattern suggests
a more excitatory (or less inhibitory) coupling between neu-
rons with similar orientation preference. This is in agreement
with many experimental works that have shown that neurons
tend to make connections with other neurons with a similar
orientation preference. It has been argued that this is only
a weak trend that is true only on average (Kisvárday et al.,
1997). This does not necessarily contradict our model be-
cause the model considers populations of neurons and not
single neurons. In addition, both in the linear and in the
marginal phases, the ratio between the preferred-orientation
dependent and independent components can be made arbi-
trarily small, by taking large negative value for J0.

Another challenge for our model is the fact that the de-
pendence of the connectivity on orientation preference is
primarily true for long range connections, i.e. connections
between different hypercolumns. Moreover, it has been sug-
gested that short-range connections are spatially isotropic
(Ts’o et al., 1986; Das and Gilbert, 1999) (note that isotropy
here refers to invariance with respect to direction on the
cortical sheet, unlike the isotropy in the feature space we
considered before). In contrast, our model does not dis-
tinguish between long-range and short-range connections,
and in particular it does not include explicitly isotropic
short range connections. We focused on the long-range type
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connections because isotropic connections alone, are hard
to reconcile with the spontaneous emergence of OMs. This
type of connectivity is invariant with respect to spatial ro-
tation/translation. Consequently, the spontaneous patterns it
induces are also invariant with respect to rotation/translation.
However, experimentally observed patterns of spontaneous
activity are correlated with the OMs and do not exhibit this
invariance (Kenet et al., 2003). It is also important to note that
because of the dependence of the connectivity on the selec-
tivity, our model does not exhibit a strong spatial anisotropy
of the short-range connections. In the linear zones, neurons
are surrounded by neurons with similar orientation prefer-
ence, and therefore they exhibit roughly isotropic connec-
tions. Near pinwheels this is not true anymore; However
there the connectivity depends only weakly on the orienta-
tion preference, and the global component (J0) dominates
the connectivity, producing again a roughly isotropic con-
nectivity. Nonetheless, an explicit incorporation of isotropic
short range connections might be considered in a future
work.

6.3. Spatial structure of the OMs

Two assumptions about the structure of the OMs were re-
quired for the formation of the ring attractor. The first as-
sumption is that OMs can be well-approximated using the
PM (Eq. (2)), that is, by considering at each location only the
preferred orientation and selectivity. This assumption can be
expressed by the condition that on average, a large fraction
of the variance of the pixels’ tuning curves can be explained
by its first Fourier component (Eq. (3)). We found that this
condition is met in experimental data sets, and that indi-
vidual OMs are highly correlated with their approximated
versions. We note however, that the approximation of ori-
entation tuning curves with cosine functions, as in Eq. (2),
was criticized recently on the ground that it cannot describe
the height and width of the tuning curves independently
(Swindale et al., 2003). While deviations from cosine tuning
curves can be functionally important, our analysis indicates
that the PM provides a good first-order approximation for the
OMs. The examples in Figs. 8–10 of individual experimental
OMs compared with the output of the model, further support
this claim.

The second assumption we made about the OMs is that
the representation of orientation preference in the PM is
isotropic, that is, that the distribution of preferred orienta-
tions is uniform and independent of the distribution of selec-
tivities. For the experimental data set, we showed that orien-
tation preference did not deviate strongly from the isotropy
assumption. As discussed in Section 4, this result is consis-
tent with some experimental studies in cats. Other studies,
however, found a small bias of the distribution of preferred
orientations towards the cardinal orientations. Interestingly,

Kenet et al. (2003) reported a similar cardinal-orientations
bias in the distribution of spontaneous OMs. It is thus con-
ceivable that a small anisotropy in the distribution of pre-
ferred orientations indeed exists in cats’ V1, and that this
anisotropy induces a significant anisotropy in spontaneous
activity patterns. While our current model does not account
for anisotropy, it provides a framework in which the effects
of anisotropy in V1 could be addressed in future works.

6.4. Relation to the ring model

The model we presented here is strongly related to the ring
model for feature selectivity (Ben-Yishai et al., 1995; Hansel
and Sompolinsky, 1998). In fact, the ring model can be
viewed as a special case of our model, in which all locations
have the same selectivity. Therefore, these two models share
some features that do not depend on the distribution of selec-
tivities P(r ), e.g., the general structure of the phase diagrams
(Figs. 8(E) and 9(C)). Since in our model multiple selec-
tivities are allowed, the attractor states can exhibit a much
richer spatial structure and approximate the experimental
OMs.

6.5. Lateral extent of the connections

For most of the work, the connectivity pattern that we con-
sidered (Eq. (6)), did not depend on the distance between the
pre- and post- synaptic locations. In contrast, neuronal con-
nections in the cortex have a limited lateral extent. Therefore,
in Section 5, we suggested a modification of the connectivity
rule in which the connections were spatially restricted. Using
simulations, we showed that this version of the model has
properties similar to the spatially unrestricted one, except for
one important difference: the states generated during sponta-
neous activity are not necessarily OMs, but can be a mosaic
of several OMs. Consequently, we predict that such states
exist in spontaneous activity data. Preliminary analysis we
of the data obtained in Kenet et al. (2003), indicates that
mosaic states indeed emerge spontaneously.

It is important to note that the distinction between OM
states and mosaic states is somewhat blurred. An OM state
might in fact be a small part of a larger mosaic state, that
would have been observed had a larger cortical area been
considered. It is also possible, that what looks as an OM
state is a composition of several OMs of similar orienta-
tions, that cannot be distinguished with current techniques.
We can thus expect that if a large cortical region will be im-
aged during spontaneous activity, spontaneous states will
correspond more closely to mosaic states, rather than to
OM states. From a theoretical point of view, the preva-
lence and characteristics of mosaic states in spontaneous
activity is an interesting question because mosaic states pro-
vide a signature of the effective strength and extent of the
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lateral connections in V1. Spontaneous states that corre-
spond to OM states rather than to mosaic states indicate
a strong lateral connectivity with large spatial extent. A fur-
ther analysis, which is beyond the scope of this contribution,
is required to fully characterize the behavior of the spa-
tially restricted model, and its implications on spontaneous
activity.

6.6. Dynamics

Our approach was based on identifying the attractor states of
the intracortical network with the OMs. Because we used a
static input and simple rate dynamics, attractor states always
existed; the network always converged to a stationary activity
profile. In contrast, spontaneous activity in anaesthetized cats
is highly dynamic, continuously switching between states.
This gap between the dynamics of spontaneous activity in
cats and the dynamics of our model can be bridged by con-
sidering various mechanisms that can prevent the asymptotic
convergence of the model to a fixed point. The dynamical
switching between states can be induced by a dynamical
external input. Specifically, Goldberg et al. (2004) suggested
that spatio-temporally correlated noise coming from the
LGN may drive the cortical dynamics. In the marginal
phase, where the shape of the activity is dominated by recur-
rent connections, this type of afferent noise would cause the
network to perform a random walk in the space of OMs. An
analysis of experimental data reveals that signatures of its
dynamics are different from those of a simple random walk
along the ring attractor. Another possibility, which might be
more compatible with experimental data, is that the system
is in the linear phase. The observed cortical states in this
case are the sum of the afferent input and a component in
the shape of the OMs, induced by the recurrent connections
(Goldberg et al., 2004).

The dynamical switching between states can be also in-
duced by mechanisms intrinsic to V1. For example, firing
rate adaptation or synaptic depression/facilitation can desta-
bilize the attractor states on a slow time-scale. Including
a term for firing rate adaptation in the dynamical equation
(Eq. (4)), as in Hansel and Sompolinsky (1998), causes the
network, in the marginal phase, to perform a limit-cycle in
the space of OMs. This possibility seems too simplistic to
account for the spontaneous cortical dynamics. However, a
more complicated dynamical behavior can emerge if synaptic
depression/facilitation is included. Such complicated behav-
ior indeed emerges in the ring model with synaptic dynamics
(Tsodyks, unpublished results), and we expect similar results
for our model. It is also likely that spontaneous activity in
V1 is driven by a combination of several of the mechanisms
we mentioned above. Our model provides the framework in
which the contribution of each of these mechanisms could
be studied.

6.7. The stimulus

Throughout the paper, we assumed that the evoked OMs en-
code the orientation of the stimulus. This might not be the
case. Basole et al. (2003) found that states highly similar to
OMs, can also be evoked by texture stimuli containing short
line segments. The OM to which the resulting state corre-
sponded depended on both the orientation of the line seg-
ments and the direction in which they moved. The authors
concluded that OM-like states encode the spatio-temporal
properties of the stimulus, rather than its (spatial) orienta-
tion. The issue of which stimulus property is encoded by the
OMs is largely avoided in our model because we did not
consider in details how a particular visual stimulus is trans-
formed into a pattern of LGN input to V1. For the types of
input we considered, the LGN-V1 mapping is assumed to
extract some information about features of the visual scene
(e.g. orientation) and the intrinsic V1 processing acts to am-
plify and denoise the afferent signal. Input patterns of higher
complexity may lead to a more intricate transformation by
the recurrent V1 network.

In a broader context, our model can be considered as a
general model for population encoding of a sensory or mo-
tor variable in the presence of a weak or noisy input. This
variable can be some spatio-temporal characteristic of a sen-
sory stimulus, but also direction of a planned movement,
or direction of gaze. The variable encoded must however
be periodic, otherwise the concept of a ring attractor is not
relevant. In fact, the generality of the model is inherited
from the ring model, which our model generalizes. Exten-
sions of the ring model and other similar models support-
ing ring attractors have been considered in several systems
such as spatial working-memory (Camperi and Wang, 1998;
Compte et al., 2000), head direction system (Skaggs et al.,
1995; Redish et al., 1996; Zhang, 1996; Xie et al., 2002;
Boucheny et al., 2005), hippocampal place cells (Tsodyks
and Sejnowski, 1995), general statistical inference (Pouget
et al., 1998; Deneve et al., 1999) and TMS-induced per-
ceptual suppression (Miyawaki and Okada, 2004). Some of
these models build directly on the formulation of Ben-Yishai
et al. (1995); others use different formulations but are simi-
lar in many aspects (Ermentrout, 1998). Our model adds to
this class of models the possibility of variability in response
amplitude, i.e. selectivity, of different neurons. As a result,
the ring attractor is not associated with a simple spatial form
of the activity pattern, like a single localized bump in the
ring model, but rather includes the complex spatial structure
of the OMs.

Regardless of the precise nature of the features repre-
sented by the OMs, the spatially restricted version of the
model suggests how local features of the stimulus can be
encoded when the stimulus properties, e.g. orientation, vary
across the visual field. Since the coarse grain mapping of
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the visual field to the cortex is retinotopic, we can expect
the activity patterns at a small cortical regions to repre-
sent the properties of the stimulus in the corresponding
regions of the visual field. The states generated by the
model, e.g. the mosaic states in Fig. 10, when evoked,
achieve precisely this. We thus predict that states simi-
lar to the mosaic states will play important role in encod-
ing complex stimuli whose features vary across the visual
field.

Appendices

A.1. Properties of F0 and F2

In this appendix, we provide proofs for the properties of F0

and F2 given in Table 1. We provide proofs only for the weak
inequalities given in that table.

A.1.1. Properties of F0

F0 is defined by Eq. (21). Property (i) is trivial, as F0 is de-
fined by integrating a non-negative function. The derivative
of F0, is given by:

F ′
0(X ) =

∫ ∫

r cos θ>−X

dr dθ
P(r )

2π
(49)

The integral on the right-hand side can be interpreted
as the probability that r cos θ > −X , which immediately
gives properties (iii) and (iv). In addition, it can be verified
that:
∫ ∫

r cos θ>X

drdθ
P(r )

2π
= 1 −

∫ ∫

r cos θ>−X

drdθ
P(r )

2π
(50)

therefore F ′
0(−X ) = 1 − F ′

0(X ). Integrating both sides of
the equation from 0 to X, we obtain: F0(−X ) = F0(X ) −
X . Therefore, as follows from property (i), F0(X ) − X ≥ 0,
which gives property (ii).

A.1.2. Properties of F2

F2 is defined by Eq. (22). Its derivative is given by:

F ′
2(X ) =

∫ ∫

r cos θ>−X

drdθ
P(r )

2π
rcosθ (51)

Equation (51) immediately implies that property (vii)
holds for non-positive X, as the integrated expression is non-
negative. For positive X, it can be verified that:

∫ ∫

r cos θ>X

drdθ
P(r )

2π
r cos θ =

∫ ∫

r cos θ>−X

drdθ
P(r )

2π
r cos θ (52)

Therefore, F ′
2(X ) = F ′

2(−X ), and property (vii) holds for
positive X as well. Property (vii) implies that F2 is non-
decreasing, therefore, F2(−∞) and F2(+∞) give, respec-
tively, lower and upper bounds for F2. Calculating these
expressions, properties (v) and (vi) are obtained.

A.1.3. Other properties

For property (viii), we observe that the integral expression
defining F0 (Eq. (21)) can be written as the sum of two
integrals as follows:

F0(X ) =
∫ ∫

r cos θ>−X

drdθ
P(r )

2π
r cos θ +

∫ ∫

r cos θ>−X

drdθ
P(r )

2π
X

(53)

Noting that the first term on the right-hand side isF ′
2(X ) and

that the second term is XF ′
0(X ), property (viii) is obtained.

For property (ix), we observe that the integral expression
defining F2 (Eq. (22)) can be written as the sum of two
integrals as follows:

F2(X ) =
∫ ∫

r cos θ>−X

drdθ
P(r )

2π
(r cos θ )2

+
∫ ∫

r cos θ>−X

dr dθ
P(r )

2π
Xr cos θ (54)

Noting that the second term on the right-hand side is
XF ′

2(X ), we obtain:

F2(X ) − XF ′
2(X ) =

∫ ∫

r cos θ>−X

drdθ
P(r )

2π
(r cos θ )2 (55)

The expression on the right hand side can be checked to be
a non-decreasing function of X, and calculating its value for
X → ∞, gives property (ix).

For property (x), we first write the following application
of the Cauchy-Schwarz inequality:




∫ ∫

r cos θ>−X

drdθ
P(r )

2π
r cos θ




2

≤



∫ ∫

r cos θ>−X

drdθ
P(r )

2π








∫ ∫

r cos θ>−X

drdθ
P(r )

2π
(r cos θ )2





(56)
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which reads (F ′
2(X ))2 ≤ F ′

0(X )(F2(X ) − XF ′
2(X )). Substi-

tuting F ′
2(X ) with the left-hand side of property (viii), prop-

erty (x) is obtained.

A.2. Stability

In this section we study the stability of the non-uniform
fixed point. We discuss only the case of the tuned in-
put model (Section 3.2.2). The stability in the case
of the spontaneous activity model (Section 3.1.3) can
be easily obtained by repeating similar arguments with
ε = 0.

Let µ, ρ take their fixed point values (Eqs. (24),(25)),
and let ψ = ψaff . We look at a small perturbation about the
fixed point: (µ + δµ), (ρ + δρ), (ψ + δψ). The linearized
dynamics of Eqs. (34)–(36) are given by τ [δ̇µ δ̇ρ δ̇ψ]T =
S[δµ δρ δψ]T with S being the 3 × 3 Jacobian matrix given
by:

S =



J0F ′

0(X ) − 1 J2(F0(X ) − XF ′
0(X )) 0

J0F ′
2(X ) J2(F2(X ) − XF ′

2(X )) − 1 0
0 0 −εCF2(X )





(57)

This matrix implies that the evolution of δψ is decoupled
from that of δµ, δρ, and that δψ decays with time. To show
the decay of δµ, δρ, we study the eigenvalues of 2 × 2 upper-
left sub-matrix of S, which we denote by S′. For the eigen-
values of S′ to have a negative real part, it is enough to show
that the determinant of S′, det S′, is positive, and that its
trace, tr S′, is negative. The determinant is given by:

det S′ = J2F ′
2(X )(X − J0F0(X ))

+(1 − J0F ′
0(X ))(1 − J2F2(X )) (58)

For the fixed point value of X it holds that X − J0F0(X ) > 0
and 1 − J2F2(X ) > 0 (inequalities (26), (43)). In addi-
tion, for any X,F ′

2(X ) ≥ 0 (property (vii), Table 1) and
when J0 < 1, 1 − J0F ′

0(X ) > 0 (properties (iii),(iv), Ta-
ble 1). Therefore, the determinant is positive. The trace is
given by:

tr S′ = −1 + J0F ′
0(X ) − 1 + J2F2(X ) − J2 XF ′

2(X ) (59)

The inequalities we mentioned above for the determinant
imply that when X ≥ 0, the trace is negative. In addition,
if J2 < 2, by property (ix), J2(F2(X ) − XF ′

2(X )) ≤ 1 and
the trace is negative as well. The last case to check is when
X < 0 and J2 > 2. In this case, from the definitions of X0

and X2, it follows that J0 = X0
F0(X0) and J2 = 1

F2(X2) . Thus,
we rewrite the trace as:

tr S′ = −2 + J2F2(X ) − (X − X0)F ′
0(X )

F0(X0)

+ X (F ′
0(X )F2(X2) − F ′

2(X )F0(X0))

F0(X0)F2(X2)

(60)

Since −1 + J2F2(X ) < 0, and X > X0, the sum of
the first three terms is negative. Therefore, to show that
the entire summation is negative, it remains to show that
F ′

0(X )F2(X2) − F ′
2(X )F0(X0) > 0. First, we note that be-

cause X0 < X < X2 it holds that:

F ′
0(X )F2(X2) − F ′

2(X )F0(X0)

≥ F ′
0(X )F2(X ) − F ′

2(X )F0(X ) (61)

By property (x), the term on the right-hand side is non-
negative. Therefore, the trace is negative.

Finally, our solution for evoked activity has shown that
a fixed point with ψ = ψaff + π can exist. Solving for this
point and obtaining the corresponding stability matrix one
finds that it is very similar to the one given in Eq. (57), with
the evolution of δψ decoupled form that of δµ, δρ. However
in this case it is given by δψ = εCF2(X )δψ , which implies
that the fixed point is unstable to perturbations in ψ .
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