Skip to main content
Log in

A computational model of how an interaction between the thalamocortical and thalamic reticular neurons transforms the low-frequency oscillations of the globus pallidus

  • Published:
Journal of Computational Neuroscience Aims and scope Submit manuscript

Abstract

In Parkinson’s disease, neurons of the internal segment of the globus pallidus (GPi) display the low-frequency tremor-related oscillations. These oscillatory activities are transmitted to the thalamic relay nuclei. Computer models of the interacting thalamocortical (TC) and thalamic reticular (RE) neurons were used to explore how the TC-RE network processes the low-frequency oscillations of the GPi neurons. The simulation results show that, by an interaction between the TC and RE neurons, the TC-RE network transforms a low-frequency oscillatory activity of the GPi neurons to a higher frequency of oscillatory activity of the TC neurons (the superharmonic frequency transformation). In addition to the interaction between the TC and RE neurons, the low-threshold calcium current in the RE and TC neurons and the hyperpolarization-activated cation current (I h) in the TC neurons have significant roles in the superharmonic frequency transformation property of the TC-RE network. The external globus pallidus (GPe) oscillatory activity, which is directly transmitted to the RE nucleus also displays a significant modulatory effect on the superharmonic frequency transformation property of the TC-RE network.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Asanuma C (1994) GABAergic and pallidal terminals in the thalamic reticular nucleus of squirrel monkeys. Exp. Brain Res. 101: 439–451.

    Article  CAS  PubMed  Google Scholar 

  • Bal T, McCormick DA (1996) What stops synchronized thalamocortical oscillations? Neuron 17: 297–308.

    Article  CAS  PubMed  Google Scholar 

  • Bar-Gad I, Bergman H (2001) Stepping out of the box: Information processing in the neural networks of the basal ganglia. Curr. Opin. Neurobiol. 11: 689–695.

    Article  CAS  PubMed  Google Scholar 

  • Bazhenov M, Timofeev I, Steriade M, Sejnowski TJ (1998) Cellular and network models for intrathalamic augmenting responses during 10-Hz stimulation. J. Neurophysiol. 79: 2730–2748.

    CAS  PubMed  Google Scholar 

  • Bazhenov M, Timofeev I, Steriade M, Sejnowski TJ (1999) Self-sustained rhythmic activity in the thalamic reticular nucleus mediated by depolarizing GABA(A) receptor potentials. Nature Neurosci. 2: 168–174.

    Article  CAS  PubMed  Google Scholar 

  • Bergman H, Wichmann T, Karmon B, Delong MR (1994) The primate subthalamic nucleous: II. Neuronal activity in the MPTP model of parkinsonism. J. Neurophysiol. 72: 507–520.

    CAS  PubMed  Google Scholar 

  • Bergman H, Deuschl G (2002) Pathophysiology of parkinson’s disease: from clinical neurology to basic neuroscience and back. Mov. Disord. 17: S28–S40.

    Article  PubMed  Google Scholar 

  • Beurrier C, Congar P, Bioulac B, Hammond C (1999) Subthalamic nucleus neurons switch from single-spike activity to burst-firing mode. J. Neurosci. 19: 599–609.

    CAS  PubMed  Google Scholar 

  • Carr J (2002) Tremor in Parkinson’s disease. Parkinsonism and related disorders 8: 223–234.

    Article  CAS  PubMed  Google Scholar 

  • Chesselet MF, Delfs JM (1996) Basal ganglia and movement disorders: An update. 19: 417–422.

  • Cox CL, Sherman SM (1999) Glutamate inhibits thalamic reticular neurons. J. Neurosci. 19: 6694–6699.

    CAS  PubMed  Google Scholar 

  • Destexhe A, Babloyantz A, Sejnowski TJ (1993a) Ionic mechanisms for intrinsic slow oscillations in thalamic relay neurons. Biophys J. 65: 1538–52.

    Article  CAS  PubMed  Google Scholar 

  • Destexhe A, McCormick DA, Sejnowski TJ (1993b) A model for 8–10 Hz spindling in interconnected thalamic relay and reticularis neurons. Biophys. J. 65: 2474–2478.

    Google Scholar 

  • Destexhe A, Contreras D, Sejnowski TJ, Steriade M (1994a) A model of spindle rhythmicity in the isolated thalamic reticular nucleus. J. Neurophysiol. 72: 803–818.

    CAS  PubMed  Google Scholar 

  • Destexhe A, Mainen ZF, Sejnowski TJ (1994b) Synthesis of models for excitable membranes, synaptic transmission and neuromodulation using a common kinetic formalism. J. Comput. Neurosci. 1: 195–230.

    Article  CAS  PubMed  Google Scholar 

  • Destexhe A, Bal T, McCormick DA, Sejnowski TJ (1996a) Ionic mechanisms underlying synchronized oscillations and propagating waves in a model of ferret thalamic slices. J. Neurophysiol. 76: 2049–2070.

    CAS  PubMed  Google Scholar 

  • Destexhe A, Contreras D, Steriade M, Sejnowski TJ, Huguenard JR (1996b) In vivo, in vitro, and computational analysis of dendritic calcium currents in thalamic reticular neurons J. Neurosci. 16: 169–185.

    CAS  PubMed  Google Scholar 

  • Destexhe A, Contreras D, Steriade M (1998) Mechanisms underlying the synchronizing action of corticothalamic feedback through inhibition of thalamic relay cells. J. Neurophysiol. 79: 999–1016.

    Google Scholar 

  • Destexhe A, Sejnowski TJ (2002) The initiation of bursts in thalamic neurons and the cortical control of thalamic sensitivity. Phil. Trans. R. Soc. Lond. 357: 1649–1657.

    Google Scholar 

  • Destexhe A, Sejnowski TJ (2003) Interactions between membrane conductances underlying thalamocortical slow-wave oscillations. Physiol. Rev. 83: 1401–1453.

    CAS  PubMed  Google Scholar 

  • Deuschl G, Bain P, Brin M (1998) Consensus statement of the movement disorder society on tremor. Ad Hoc Scientific Committee. Mov. Disord. 13(suppl. 3): 2–23.

    Google Scholar 

  • Deuschl G, Raethjen J, Baron R, Lindemann M, Wilms H, Krack P (2000) The pathophysiology of parkinsonian tremor: A review. J. Neurol. 247: v/33–v/48.

    Article  Google Scholar 

  • Elble RJ (1996) Central mechanisms of tremor. J. Clin. Neurophysiol. 13: 133–144.

    Article  CAS  PubMed  Google Scholar 

  • Elble RJ (1997) The pathophysiology of tremor. In RL Watts, WC Koller, eds., Movement Disorders, McGraw Hill, New York, p. 405.

    Google Scholar 

  • Gandia JA, De Las Heras S, Garcia M, Gimenez-Amaya JM (1993) Afferent projections to the reticular thalamic nucleus from the globus pallidus and the substantia nigra in the rat. Brain Res. Bull. 32: 351–358.

    Article  CAS  PubMed  Google Scholar 

  • Guehl D, Pessiglione M, Francois C, Yelnik J, Hirsch EC, Feger J, Tremblay L (2003) Tremor-related activity of neurons in the ‘motor’ thalamus: Changes in firing rate and pattern in the MPTP vervet model of parkinsonism. Eur. J. Neurosci. 17: 2388–2400.

    Article  CAS  PubMed  Google Scholar 

  • Guillery RW, Harting JK (2003) Structure and connections of the thalamic reticular nucleus: Advancing views over half a century. J. Comp. Neurol. 463: 360–371.

    Article  CAS  PubMed  Google Scholar 

  • Hadipour Niktarash A (2003) Transmission of the subthalamic nucleus oscillatory activity to the cortex: A computational approach. J. Comput. Neurosci. 15: 223–232.

    Article  PubMed  Google Scholar 

  • Hadipour Niktarash A, Shahidi GA (2004) effects of the activity of the internal globus pallidus-pedunculopontine loop on the transmission of the subthalamic nucleus-external globus pallidus-pacemaker oscillatory activities to the cortex. J. Comput. Neurosci. 16: 113–127.

    Article  PubMed  Google Scholar 

  • Hazrati LN, Parent A (1991) Projection from the external pallidum to the reticular thalamic nucleus in the squirrel monkey. Brain Res. 550: 142–146.

    Article  CAS  PubMed  Google Scholar 

  • Hodgkin AL, Huxley AF (1952) A quantitative description of membrane current and its application to conduction and excitation in nerve. J. Physiol. (Lond) 117: 500–544.

    CAS  Google Scholar 

  • Huguenard JR, Coulter DA, McCormick DA (1991) A fast transient potassium current in thalamic relay neurons: Kinetics of activation and inactivation. J. Neurophysiol. 66: 1305–1315.

    Google Scholar 

  • Huguenard JR, McCormick DA (1992) Simulation of the currents involved in rhythmic oscillations in thalamic relay neurons. J. Neurophysiol. 68: 1373–1383.

    CAS  PubMed  Google Scholar 

  • Huguenard JR, Prince DA (1992) A novel T-type current underlies prolonged Ca2+ dependent burst firing in GABAergic neurons of rat thalamic reticular nucleus. J. Neurosci. 12: 3804–3817.

    CAS  PubMed  Google Scholar 

  • Hurtado JM, Gray CM, Tamas LB, Sigvardt KA (1999) Dynamics of tremor-related oscillations in the human globus pallidus: A single case study. Proc. Natl. Acad. Sci. USA 96: 1674–1679.

    Google Scholar 

  • Hutchison WD, Lozano AM, Tasker PR, Lang AE, Dostrovsky JO (1997) Identification and characterization of neurons with tremor-frequency activity in human globus pallidus. Exp. Brain Res. 113: 557–563.

    Article  CAS  PubMed  Google Scholar 

  • Ilinsky IA, Yi H, Kultas-Ilinsky (1997) Mode of termination of pallidal afferents to the thalamus: A light and electron microscopic study with anterograde tracers and immunocytochemistry in Macaca mulatta. J. Comp. Neurol. 386: 601–612.

    Article  CAS  PubMed  Google Scholar 

  • Kaneoke Y, Vitek JL (1995) The motor thalamus in the parkinsonian primate: Enhanced burst and oscillatory activities. Soc. Neurosci. Abstr. 21: 1428.

    Google Scholar 

  • Laitinen LV, Bergenheim AT, Hariz MI (1992) Ventroposterolateral pallidotomy can abolish all parkinsonian symptoms. Stereotact. Funct. Neurosurg. 58: 14–21.

    CAS  Google Scholar 

  • Lamarre, Y., Central mechanisms of experimental tremor and their clinical relevance. In LJ Findley, R Capildeo, eds., Handbook of Tremor Disorders, Vol. 1, Marcel Dekker, New York, 1995, p. 103.

  • Le Masson G, Le Masson S, Debay D, Bal T (2002) Feedback inhibition controls spike transfer in hybrid thalamic circuits. Nature 417: 854–858.

    Article  CAS  PubMed  Google Scholar 

  • Lemstra AW, Metman LV, Lee JI, Dougherty PM, Lenz FA (1999) Tremor-frequency (3–6 Hz) activity in the sensorimotor arm representation of the internal segment of the globus pallidus in patients with Parkinson’s disease. Neurosci. Lett. 267: 129–132.

    Article  CAS  PubMed  Google Scholar 

  • Lenz FA, Tasker RR, Kwan HC, Schnider S, Kwong R, Murayama Y, Dostrovsky JO, Murphy JT (1988) Single unit analysis of the human ventral thalamic nuclear group: Correlation of thalamic tremor cells with the 3–6 Hz component of parkinsonian tremor. J Neurosci. 8: 754–764.

    CAS  PubMed  Google Scholar 

  • Lenz FA, Kwan HC, Martin RL, Tasker RR, Dostrovsky JO, Lenz YE (1994) Single unit analysis of the human ventral thalamic nuclear group. Tremor-related activity in functionally identified cells. Brain 117: 531–543.

    PubMed  Google Scholar 

  • Levy R, Hutchison WD, Lozano AM, Dostrovsky JO (2002) Synchronized neuronal discharge in the basal ganglia of Parkinsonian patients is limited to oscillatory activity. J Neurosci. 22: 2855–2861.

    CAS  PubMed  Google Scholar 

  • Liu XB, Jones EG (1999) Predominance of corticothalamic synaptic inputs to thalamic reticular nucleus neurons in the rat. J. Comp. Neurol. 414: 67–79.

    Article  CAS  PubMed  Google Scholar 

  • Lüthi A, McCormick DA (1998) H-current: Properties of a neuronal and network pacemaker. Neuron 21: 9–12.

    Article  PubMed  Google Scholar 

  • Lytton WW, Destexhe A, Sejnowski TJ (1996) Control of slow oscillations in the thalamocortical neuron: A computer model. Neuroscience 70: 673–684.

    Article  CAS  PubMed  Google Scholar 

  • McCormick DA, Pape HC (1990) Properties of a hyperpolarization-activated cation current and its role in rhythmic oscillation in thalamic relay neurons. J. Physiol. (Lond.) 431: 291–318.

    Google Scholar 

  • McCormick DA, Huguenard JR (1992) A model of electrophysiological properties of thalamocortical relay neurons. J. Neurophysiol. 68: 1384–1400.

    CAS  PubMed  Google Scholar 

  • McCormick DA, Bal T (1997) Sleep and arousal: Thalamocortical mechanisms. Annu. Rev. Neurosci. 20: 185–215.

    Article  CAS  PubMed  Google Scholar 

  • Magnin M, Morel A, Jeanmonod D (2000) Single-unit analysis of the pallidum, thalamus and subthalamic nucleus in parkinsonian patients. Neuroscience 96: 549–564.

    Article  CAS  PubMed  Google Scholar 

  • Nambu A, Llinãs R (1994) Electrophysiology of globus pallidus neurons in vitro. J Neurophysiol 72: 1127–1139.

    CAS  PubMed  Google Scholar 

  • Ni Z, Bouali-Benazzouz R, Gao D, Benabid AL, Benazzouz A (2000) Changes in the firing pattern of globus pallidus neurons after the degeneration of nigrostriatal pathway are mediated by the subthalamic nucleus in the rat. Eur. J. Neurosci. 12: 4338–4344.

    Article  CAS  PubMed  Google Scholar 

  • Nini A, Fiengold A, Slovin H, Bergman H (1995) Neurons in the globus pallidus do not show correlated activity in the normal monkey but phase-locked oscillations appear in the MPTP model of parkinsonism. J. Neurophysiol. 74: 1800–1805.

    CAS  PubMed  Google Scholar 

  • Ohye C, Saito U, Fukamachi A, Narabayashi H (1974) An analysis of the spontaneous rhythmic and non-rhythmic burst discharges in the human thalamus. J. Neurol. Sci. 22: 245–259.

    Article  CAS  PubMed  Google Scholar 

  • Pare D, Curro Dossi R, Steriade M (1990) Neuronal basis of the parkinsonian resting tremor: A hypothesis and its implications for treatment.. Neuroscience 35: 217–226.

    Google Scholar 

  • Parent A, Hazrati LN (1995) Functional anatomy of the basal ganglia. Part I: The cortico-basal ganglia-thalamo-cortical loop. Brain Res. Rev. 20: 91–127.

    Article  CAS  PubMed  Google Scholar 

  • Paulson HL, Stern MB (1997) Clinical manifestation s of Parkinson’s disease. In RL. Watts, WC Koller, eds., Movement Disorders. Vol. 1, McGraw Hill, New York, p. 183.

  • Pinault D (2004) The thalamic reticular nucleus: Structure, function and concept. Brain Res. Rev. 46: 1–31.

    Article  PubMed  Google Scholar 

  • Plenz D, Kitai ST (1999) A basal ganglia pacemaker formed by the subthalamic nucleus and external globus pallidus. Nature 400: 677–682.

    Article  CAS  PubMed  Google Scholar 

  • Raz A, Vaadia E, Bergman H (2000) Firing patterns and correlations of spontaneous 0discharge of pallidal neurons in the normal and the tremulous 1-Methyl-4-Phenyl-1,2,3,6-Tetrahydropyridine Vervet model of parkinsonism. J. Neurosci. 20: 8559–8571.

    CAS  PubMed  Google Scholar 

  • Rodriguez MC, Guridi OJ, Alvarez L, Mewes K, Macias R, Vitek J, DeLong MR, Obeso JA (1998) The subthalamic nucleus and tremor in parkinson’s disease. Mov. Disord. 13: 111–118.

    Article  PubMed  Google Scholar 

  • Sanchez-Vives MV, McCormick DA (1997) Functional properties of prigeniculate inhibition of dorsal lateral geniculate nucleus thalamocortical neurons in vitro. J. Neurosci. 17: 8880–8893.

    CAS  PubMed  Google Scholar 

  • Sanchez-Vives MV, Bal T, McCormick DA (1997) Inhibitory interactions between prigeniculate GABAergic neurons. J. Neurosci. 17: 8894–8908.

    CAS  PubMed  Google Scholar 

  • Sherman SM, Guillery RW (2001) Exploring the Thalamus. Academic Press, San Diego, pp. 144–167.

    Google Scholar 

  • Soltesz I, Lightowler S, Leresche N, Jassik-Gerschenfeld D, Pollard CE, Crunelli V (1991) Two inward currents and the transformation of low frequency oscillations of rat and cat thalamocortical cells. J. Physiol. 441: 175–197.

    CAS  PubMed  Google Scholar 

  • Steriade M, McCormick DA, Sejnowski TJ (1993) Thalamocortical oscillations in the sleeping and aroused brain. Science 262: 679–685.

    CAS  PubMed  Google Scholar 

  • Terman D, Rubin JE, Yew AC, Wilson CJ (2002) Activity patterns in a model for the subthalamopallidal network of the basal ganglia. J. Neurosci. 22: 2963–2976.

    CAS  PubMed  Google Scholar 

  • Toth T, Crunelli V. (1992) Computer simulations of the pacemaker oscillations of thalamocortical cells. Neuroreport 3: 65–68.

    Article  CAS  PubMed  Google Scholar 

  • Traub RD, Miles R (1991) Neural networks of hippocampus: Cambridge University Press, Cambridge.

    Google Scholar 

  • Ulrich D, Huguenard JR (1997) Nucleus-specific chloride homeostasis in rat thalamus. J. Neurosci. 17: 2348–2354.

    CAS  PubMed  Google Scholar 

  • Ulrich D, Huguenard JR (1996) γ-Aminobutyric acid type B receptor-dependent burst –firing in thalamic neurons: A dynamic clamp study. Proc. Natl. Acad. Sci. USA 93: 13245–13249.

    Google Scholar 

  • Vitek JL, Hashimoto T, Peoples J, DeLong MR, Bakay RA (2004) Acute stimulation in the external segment of the globus pallidus improves parkinsonian motor signs. Mov. Disord. 19: 907–915.

    Article  PubMed  Google Scholar 

  • Volkmann J, Sturm V, Weiss P, Kappler J, Voges J, Koulousakis A, Lehrke R, Hefter H, Freund HJ (1998) Bilateral high-frequency stimulation of the internal globus pallidus in advanced Parkinson’s disease. Ann. Neurol. 44: 953–961.

    Google Scholar 

  • von Krosigk M, Bal T, McCormick DA (1993) Cellular mechanisms of a synchronized oscillation in the thalamus. Science 261: 361–364.

    CAS  PubMed  Google Scholar 

  • Wang XJ, Golomb D, Rinzel J (1995) Emergent spindle oscillations and intermittent burst firing in a thalamic model: Specific neuronal mechanisms. Proc. Natl. Acad. Sci. USA 92: 5577–5581.

    Google Scholar 

  • Wichmann T, DeLong MR (2003) Pathophysiology of Parkinson’s disease: The MPTP primate model of the human disorder. Ann. N.Y. Acad. Sci. 991: 199–213.

    Article  CAS  PubMed  Google Scholar 

  • Yamamoto T, Hassler R, Huber C, Wagner A, Sasaki K (1983) Electrophysiologic studies on the pallido- and cerebellothalamic projections in squirrel monkeys (Saimiri sciureus). Exp. Brain Res. 51: 77–87.

    CAS  PubMed  Google Scholar 

  • Yamamoto T, Noda T, Miyata M, Nishimura Y (1984) Electrophysiological and morphological studies on thalamic neurons receiving entopedunculo- and cerebello-thalamic projections in the cat. Brain Res. 301: 231–242.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arash Hadipour-Niktarash.

Additional information

Action Editor: John Rinzel

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hadipour-Niktarash, A. A computational model of how an interaction between the thalamocortical and thalamic reticular neurons transforms the low-frequency oscillations of the globus pallidus. J Comput Neurosci 20, 299–320 (2006). https://doi.org/10.1007/s10827-006-6673-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10827-006-6673-5

Keywords

Navigation