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Abstract

Nonlinear dynamics provides a complementary framework to control theory for the

quantitative analysis of the oculomotor control system. This paper presents a number

of findings relating to the aetiology and mechanics of the pathological ocular oscillation

jerk congenital nystagmus (jerk CN). A range of time series analysis techniques were

applied to both recorded jerk CN waveforms and simulated waveforms produced by

an established model in which the oscillations are a consequence of an unstable neural

integrator. The results of the time series analysis were then interpreted within the

framework of a generalised model of the unforced oculomotor system.

This work suggests that for jerk oscillations, the origin of the instability lies in one

of the five oculomotor subsystems, rather than in the final common pathway (the neu-

ral integrator and muscle plant). Additionally, experimental estimates of the linearised

foveation dynamics imply that a refixating fast phase induced by a near-homoclinic tra-

jectory will result in periodic oscillations. Local dimension calculations show that the

dimension of the experimental jerk CN data increases during the fast phase, indicating

that the oscillations are not periodic, and hence that the refixation mechanism is of

greater complexity than a homoclinic reinjection. The dimension increase is hypothe-

sised to result either from a signal-dependent noise process in the saccadic system, or

the activation of additional oculomotor components at the beginning of the fast phase.

The modification of a recent saccadic system model to incorporate biologically realistic

signal-dependent noise is suggested, in order to test the first of these hypotheses.

∗Now at: Mathematics Institute, University of Warwick, Coventry CV4 7AL, UK
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1 Introduction

The oculomotor system is well suited to the quantitative study of sensorimotor processing

(Robinson, 1986). Single cell recordings have enabled the identification of many of the

neural pathways associated with eye movement control, enabling meaningful mathematical

models of the control circuitry to be developed. Additionally, eye movements can be

accurately recorded in the laboratory, providing high quality time series data which can

be used to test and develop such models.

The majority of models developed thus far have been based on control theory (Car-

penter, 1988). These models have had considerable success in elucidating the functional

organisation of the oculomotor system (Leigh and Zee, 1999). A significant achievement of

the control approach has been the prediction of a common neural integrator, subsequently

confirmed experimentally (Robinson, 1968; Cohen and Komatsuzaki, 1972; Zee et al., 1981;

Cannon and Robinson, 1987). This successful prediction supported the assumption that

individual blocks of the control models can be directly identified with separate classes of

neurons in the brain stem. However, in subsequent modelling of pathological eye move-

ments (Optican and Zee, 1984; Jacobs and Dell’Osso, 2004), the number of assumed blocks

far exceeds the number of known classes of neurons so that this assumption becomes ques-

tionable, motivating the need for alternative modelling strategies.

Techniques based on nonlinear dynamics provide a complementary approach to control

theory in the analysis of the oculomotor system (Clement et al., 2002a). The last few

years have seen the development of differential equation models (Gancarz and Grossberg,

1998; Broomhead et al., 2000) together with the application of time series analysis to

eye movement recordings (Shelhamer, 1997; Abadi et al., 1997; Clement et al., 2002b,c).

A previous paper showed that one advantage of the nonlinear dynamics approach is the

capacity of bifurcation analysis to reveal the full range of behaviour that a model is capable

of producing (Akman et al., 2005). The present paper describes the use of nonlinear time

series techniques to investigate hypotheses suggested by oculomotor models regarding the

aetiology and mathematical characterisation of oscillatory ocular disorders. More generally,

it is demonstrated that these techniques provide a quantitative means of testing such

models against experimental data.

Section 2 of the paper introduces the reader to the functional organisation of the dif-

ferent oculomotor subsystems. Thereafter, section 3 details the construction of a gen-

eralised model of the unforced oculomotor system for horizontal eye movements. This

model provides a framework for interpreting the results of the time series analysis. The

characterisation of a pathological oculomotor system in terms of the model is discussed in

section 4, where it is hypothesised that the condition known as jerk congenital nystagmus

(jerk CN) is a consequence of a bifurcation. Section 5 describes the data reconstruction

method (delay embedding) which forms the basis of the computational techniques used to

check and expand upon this hypothesis. The results of applying these techniques to both

2



recorded jerk CN data and waveforms simulated by an unstable neural integrator model

are presented in section 6. The implications of the work are discussed in section 7.

The results of this study indicate that in jerk CN, the initial instability is caused by a

fixed point (that corresponds to stable gaze at the primary position, 0o) losing stability in a

1-dimensional bifurcation. Moreover, estimates of the eigenvalues of the linearisation at this

fixed point suggest that the most likely source of this bifurcation is one of the oculomotor

subsystems, rather than the neural integrator or muscle plant. Additionally, a model of

the linearised dynamics about the fixed point derived from the eigenvalue estimates implies

that a fast phase comprising a deterministic refixation induced by a near-homoclinic orbit

will result in a limit cycle attractor. Local dimension calculations show that the dimension

of the jerk CN attractor increases during the fast phase, implying that a limit cycle is not

a reasonable approximation to the true behaviour. Two possible mechanisms that could

account for the dimension increase are discussed: the activation of additional oculomotor

components as the cycle enters the fast phase, or a signal-dependent increase in the variance

of the saccadic control signal. It is remarked that both would result in a fast phase that is

dynamically more complex than a homoclinic reinjection.

More generally, it is suggested that the eigenvalues of linearisation and local dimen-

sion are quantitative experimental measurements that can be used in the development of

comprehensive CN models. Within this framework, it is proposed that a model capable

of simulating the local dimension variation could be obtained by modifying an existing

saccadic system model to incorporate realistic signal-dependent noise.

2 Oculomotor control and congenital nystagmus

The oculomotor system controls the movement of the eyes so as to ensure that the image of

the object of interest falls on the high resolution region of the retina called the fovea. This

process is referred to as foveation (Ditchburn, 1973). Resolution of detail decreases sharply

away from the fovea, and is also degraded if images slip over the fovea at velocities greater

than a few degrees per second. Optimal visual performance is therefore only attained when

images are held steady on this region (Westheimer and McKee, 1975).

Depending on the stimuli and viewing conditions, the foveation task can involve up

to five oculomotor subsystems: the saccadic, smooth pursuit, vestibular, optokinetic and

vergence systems. The saccadic system provides rapid shifts of gaze (saccades) to bring

about foveation of new targets. The smooth pursuit system matches eye velocity with

target velocity to provide a stable foveal image when tracking slow-moving objects in the

visual field. The function of the vestibular system is to stabilise gaze during brief head

rotations by generating an eye movement which has velocity equal and opposite to head

velocity. The optokinetic system matches eye velocity to the global retinal image velocity in

order to maintain stable gaze during sustained head motion. Finally, the vergence system
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maintains foveation during motion of the target towards or away from the eyes (Carpenter,

1988; Leigh and Zee, 1999).

The vestibular system is driven by non-visual signals from the semicircular canals, while

the other systems are driven by visual signals encoding target information. In response to

this sensory input, each of the oculomotor subsystems generates a velocity-coded command

signal. A copy of this signal is sent to a complex of neurons, the common neural integrator

(NI), which integrates it to produce a position-coded signal. The position and velocity

signals are then summed and relayed to the relevant ocular motoneurons. These send the

final motor command to the eye muscles, producing a shift in the eye position (Carpenter,

1988; Leigh and Zee, 1999). In control models, the ocular motoneurons and eye muscles

are referred to collectively as the muscle plant. Here, the five oculomotor subsystems will

be referred to as the oculomotor command system (OCS). A schematic representation of

the oculomotor system architecture is shown in figure 1.

Congenital nystagmus (CN) is an involuntary, bilateral oscillation of the eyes that is

present in approximately 1 in 4000 of the population (Abadi and Dickinson, 1986; Abadi

and Bjerre, 2002). The oscillations are conjugate and occur primarily in the horizontal

plane. The oscillation generally consists of a slow phase, which takes the retinal image of

the visual target away from the fovea, followed by a fast or slow phase which moves the

image back onto the fovea (Dell’Osso and Daroff, 1975; Abadi and Dickinson, 1986; Abadi

et al., 1991). CN subjects tend to have poor visual acuity due to the reduced foveation

time (Abadi and Sandikcioglu, 1975; Abadi and Worfolk, 1989; Bedell and Loshin, 1991).

A common waveform observed in adults is jerk CN, composed of an increasing exponential

slow phase followed by a saccadic fast phase. The oscillation is referred to as right-beating

or left-beating depending on the direction of the fast phase. Recordings from two subjects

with left-beating jerk nystagmus can be seen in figure 2.

3 Modelling the oculomotor control system for horizontal

eye movements: a nonlinear dynamics approach

Quantitative investigations of the dynamics of the muscle plant have revealed that it can

be modelled as a linear system which is at least second order (Robinson, 1964; Goldstein,

1987). Writing x(j) for the jth time derivative of x, the most general equation describing

the plant dynamics is thus

g(k) + pk−1g
(k−1) + . . .+ p1ġ + p0g = ql

(

Rn(l) + b(l)
)

+ ql−1

(

Rn(l−1) + b(l−1)
)

+ . . .+ q1

(

Rṅ+ ḃ
)

+ q0 (Rn+ b) (1)

with k ≥ 2, l ≥ 0 and q0 6= 0. Here, g is horizontal eye position, n is the NI output,

b =
∑

K=S,P,V,OKN,V G bK is the signal from the OCS (cf. figure 1) and R is a positive
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constant which determines the relative weighting of the position and velocity inputs to the

muscle plant.

The equation for the NI output n is

ṅ = −
1

NT
n+ b

where the time constant NT determines the drift of the eye back to primary position from

eccentric gaze. NT is of the order of 25s in normal subjects (Becker and Klein, 1973).

When it can be assumed that the sensory input to the oculomotor subsystems is negligible

(such as during viewing of a stationary target in the primary position, or when the eyes

are closed), the dynamics of each oculomotor subsystem can be approximated by a set

of autonomous, ordinary differential equations. The combined dynamics of the unforced

OCS can thus be written as ẏ = f (y), where y ∈ R
q (with q a finite integer) combines

the state vectors of each subsystem, and f combines the corresponding vector fields. The

velocity command b can thus be expressed as b = G (y) for some scalar function G, where

G incorporates any velocity biases that may result in a nonzero neural integrator null

position (Goldman et al., 2001).

Introducing the state vector x =
(

g, ġ, . . . , g(k−1)
)T

enables the plant equation (1) to

be written in the vectorised form

ẋ = Ax + S (n,y)

where A is the k × k matrix

A =



















0 1 0 . . . 0

0 0 1 . . . 0
...

...
...

. . .
...

0 0 0 . . . 1

−p0 −p1 −p2 . . . −pk−1



















and S (n,y) = (0, . . . , 0, S (n,y))T ∈ R
k, with S (n,y) a scalar function representing the

right-hand-side of (1) expressed as a function of n and y. The final equations for the

unforced oculomotor dynamics are thus

ẋ = Ax + S (n,y) (2)

ṅ = −
1

NT
n+G (y) (3)

ẏ = f (y) . (4)

These will sometimes be written in the condensed form ż = F (z) for convenience, where

z = (x, n,y) ∈ R
D, with D = k + q + 1. The equations have a skew-product form, as the

vector field of (4) does not contain any terms in x and n. The plant and neural integrator

dynamics (2)-(3) are thus slaved to the OCS dynamics (4), which determine the qualitative

behaviour of the full system ż = F (z) (Stark, 1999).
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4 Characterisation of a pathological oculomotor system

In terms of the modelling approach presented here, a normal oculomotor system corre-

sponds to the unforced dynamics ż = F (z) having a single, stable fixed point z̄ of the form

z̄ = (0, . . .0, n̄, ȳ). For such a system, after motion of the eye driven by sensory input, the

eye comes to rest at the primary position. A pathological oculomotor system - such as jerk

CN - develops when z̄ becomes unstable through a bifurcation, leading to an attractor for

which the eye does not come to rest at 0o (e.g. a stable fixed point with g 6= 0, a stable

limit cycle, a strange attractor).1

Equations (2)-(4) imply that the Jacobian derivative DzF (z̄) of F (z) at z̄ is given by

DzF (z̄) =









A ∂S
∂n

(n̄, ȳ) ∂S
∂y

(n̄, ȳ)

01×k − 1
NT

∂G
∂y

(ȳ)

0q×k 0q×1 Dyf (ȳ)









where 0r×s is the r×s matrix of zeros. Writing − 1
Tj

for the jth eigenvalue2 of A, it follows

from the block upper-triangular form ofDzF (z̄) that its eigenvalues are
{

− 1
T1
,− 1

T2
, . . . ,− 1

Tk

}

together with − 1
NT

and the eigenvalues of Dyf (ȳ).3 Since Tj > 0 for 1 ≤ j ≤ k, z̄ can only

be unstable if the neural integrator is unstable (NT < 0) or ȳ is an unstable fixed point of

the OCS ẏ = f (y) (i.e. Dyf (ȳ) has one or more eigenvalues with positive real part). Of

these two possibilities, Optican et al suggested the former as a mechanism for generating

jerk CN, on the basis of a control model (Optican and Zee, 1984). In their model, the slow

phases of the waveform are a consequence of an unstable NI, resulting from a pathological

positive velocity feedback loop. The fast phases are corrective saccades, triggered when

the eye position exceeds a threshold level (Optican and Zee, 1984). In terms of the present

notation, the unstable NI model posits that z̄ has lost stability as a result of the time con-

stant NT changing sign, giving a positive eigenvalue of DzF (z̄), rather than the eigenvalue

−0.04 characteristic of normal subjects. The alternative - that ȳ undergoes a bifurcation

in the OCS ẏ = f (y) - was suggested in (Broomhead et al., 2000), where an instability of

the saccadic system was considered. In both cases, it can be proved that the skew-product

form of ż = F (z) implies that the corresponding bifurcation in the full system will be of

the same type (for example, a Hopf bifurcation in the OCS will induce a Hopf bifurcation

in the full system).

1The centripetal oscillations observed in some normal subjects as they fixate a target at an eccentric gaze

angle (physiological endpoint nystagmus) do not correspond to a pathological system by this definition, since

they are driven by visual signals, rather than an endogenous instability; once the subject stops attempting

to maintain the eccentric eye position, the oscillations cease.
2Conventionally, it is assumed that the plant is overdamped (Robinson, 1964; Optican and Zee, 1984;

Goldstein, 1987).
3It should be noted that the block upper-triangular form of DzF (z̄) is a consequence of ż = F (z) being

a skew-product.
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5 Delay embedding of jerk CN waveforms

In order to test the hypothesis that jerk CN is caused by the bifurcation of a fixed point

z̄ corresponding to stable fixation at the primary position, a number of methods from

nonlinear time series analysis were applied to data obtained from two adult subjects (A

and B) with jerk nystagmus. Both subjects had conjugate and uniplanar eye movements,

with Snellen visual acuities of 6/12 in the right and left eyes. Neither subject exhibited

any ocular or neurological disorders. Informed consent was obtained according to the

Declaration of Helsinki.

Binocular horizontal eye movements were monitored using an IRIS 6500 (Skalar Med-

ical) system, a head mounted device based on the infrared reflection method. The head

was restrained by a head rest and the subjects instructed to fixate a 1o stationary distant

target in the primary position for 30s. Calibration was carried out by asking the subjects

to follow a sinusoidally moving stimulus with an amplitude of ±5o. The analogue output

of the system was filtered through a 100Hz low-pass filter, sampled at 5ms intervals for

10s and then digitised to 12 bit accuracy. The system was linear to ±20o with a resolution

of 0.03o. For both subjects, the time series obtained from the left eye was used for the

analysis. Blinks were removed by thresholding an estimate of eye velocity obtained by

convolving the traces with an 11 point derivative filter (Gibson et al., 1992). Figure 2

shows portions of the time series recorded from the two subjects.

The same computational techniques applied to the recorded CN traces were also applied

to a simulated jerk waveform generated by the unstable NI model of Optican et al ((Optican

and Zee, 1984)), to determine the extent to which such a model is able to account for the

experimental data. In order to mimic the observational noise produced by the IRIS 6500,

the simulated time series was sampled at 5ms intervals for 10s, and Gaussian white noise

with standard deviation equal to the system resolution was added to the sampled signal.4

Portions of the resulting time series can be seen in the right panel of figure 7.

5.1 The method of delays

The techniques used here are based on the method of delays (Broomhead and King,

1986; Gibson et al., 1992; Ott et al., 1994; Kantz and Schreiber, 1997). As stated above,

eye movements were recorded from the CN subjects during viewing of a stationary tar-

get in the primary position. It can therefore be assumed that these time series have

been obtained by sampling the eye position component g (z(t)) of a particular trajec-

tory {z (t) : t ≥ 0, z (0) = z0} of ż = F (z) every τ seconds (τ = 0.005) a total of N times

(N ≤ 2000). Let zk = z (kτ) and gk = g (zk) for 1 ≤ k ≤ N , so that {z1, z2, . . . , zN} is the

4As the quantisation error associated with the analogue-to-digital conversion process is much smaller

than 0.03o, the dominant source of observational error introduced by the IRIS 6500 is due to the resolution

constraints of the device.
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sampled trajectory and {g1, g2, . . . , gN} is the corresponding time series. The delay vectors

{w1,w2, . . . ,wN−d+1} obtained by taking delays of length d are then defined as follows:

wk = (gk, gk+1, . . . , gk+d−1)
T .

It is also assumed that asymptotically, the dynamics of ż = F (z) are confined to an

attractor A lying in anm-dimensional, smooth, compact manifold with boundaryM ⊂ R
D.

Letting {φt : t ∈ R} represent the flow of ż = F (z), so that z (t) = φt (z0), wk can be

written as wk = Φ (zk) where the delay map Φ : M → R
d is defined by

Φ (z) =
(

g (z) , g (φτ (z)) , . . . , g
(

φ(d−1)τ (z)
))T

.

A well-known result from applied dynamical systems theory, due to Takens, implies that

if d ≥ 2m + 1 and certain genericity conditions hold, Φ is an embedding of M in R
d; i.e.

Φ (M) is a smooth submanifold of R
d with Φ : M → Φ (M) a diffeomorphism (a smooth

map with a smooth inverse) (Takens, 1981).5 The delay map therefore induces a flow

ψt = Φ ◦ φt ◦Φ−1 on Φ (M) such that the dynamics on Φ (M) under ψt are equivalent to

the dynamics on M under φt, up to the smooth change of coordinates Φ. The dynamics

on M are thus reconstructed in R
d by the delay map. Indeed, many important quanti-

ties defined by φt are invariant under the embedding. These are coordinate-independent

quantities, such as the dimensions of A and M , the Lyapunov exponents of the flow and

the eigenvalues of linearisation at fixed points. Moreover, because wk+1 = ψτ (wk), the se-

quence {w1,w2, . . . ,wN−d+1} is a sampled trajectory of the reconstructed dynamics, and

hence the invariant quantities can be recovered from the delay vectors (Broomhead and

King, 1986; Healey et al., 1991; Gibson et al., 1992; Ott et al., 1994; Kantz and Schreiber,

1997).

5.2 Choice of the delay length d

A useful tool when determining a suitable choice of the delay length d is the global tra-

jectory matrix X of the time series. X is defined as the (N − d+ 1) × d matrix whose

kth row is 1√
N

wT
k . The singular value decomposition (SVD) of X provides information on

the distribution of the delay vectors in R
d (Broomhead and King, 1985). Assuming that

the time series is stationary with zero mean, the right singular vectors of X provide an

orthonormal basis of R
d such that in the limit N → ∞, the coordinates of the delay vectors

in the new basis are uncorrelated. Moreover, the variance of the jth coordinate of the delay

vectors in the SVD basis is σ2
j , where σj is the singular value of X corresponding to the

jth right singular vector (Broomhead and King, 1986). By convention, σj ≥ σj−1. Hence,

if the first d− 1 singular vectors of X contain a significant proportion of the total variance

5The original Takens’ Theorem assumes that M is a smooth, compact submanifold of the system’s phase

space. For Euclidian phase spaces, however, it is often the case that the attractor lies in a compact ball,

that is, a smooth, compact manifold with boundary. (Huke, 1993) extends Takens Theorem to this case.
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(i.e.
∑d−1

j=1 σ
2
j /
∑d

j=1 σ
2
j ≈ 1), it can be inferred that the image of A under the delay map

Φ lies in a d− 1 dimensional linear subspace of R
d, and hence that M has effectively been

reconstructed in R
d by Φ. (It should be noted that this does not necessarily imply that Φ

is an embedding, although this is a reasonable working assumption).

For the time series of subjects A and B,
∑d−1

j=1 σ
2
j /
∑d

j=1 σ
2
j > 0.9999 for d ≥ 7 in both

cases; i.e. for d ≥ 7, more than 99.99% of the variance lies in the first d − 1 singular

vectors. In view of this, d was taken equal to 7 in the subsequent analysis of both sets of

data. Applying the same analysis to the simulated waveform from the unstable NI model,

it was also found that
∑d−1

j=1 σ
2
j /
∑d

j=1 σ
2
j > 0.9999 for d ≥ 7; d was therefore set to 7 in

the analysis of this data set as well.

6 Analysis of the reconstructed attractors

This section presents the main results of the paper. Section 6.1 describes a technique for

estimating fixed points of the reconstructed jerk CN dynamics, and shows the result of

carrying out this procedure on the experimental and model time series. Sections 6.2 and

6.3 provide a theoretical background to two further techniques; the computation of the local

dimension of the reconstructed attractor, and the estimation of eigenvalues of linearisation

at fixed points of ż = F (z) from the delay vectors. Section 6.4 gives the result of applying

these techniques to the experimental and model data sets in the neighbourhood of the delay

vectors obtained from the fixed point estimation process, and the subsequent inferences

that can be made regarding the origin of the jerk instability.

Following this, section 6.5 details the construction of an analytical Poincaré map ob-

tained by combining the eigenvalue estimates from the experimental data with a fast phase

modelled as a homoclinic reinjection. An analysis of this map implies that the jerk CN

attractor should be a limit cycle. Finally, section 6.6 describes the use of local dimension

calculations at different points on the reconstructed data sets to determine whether a limit

cycle is a reasonable approximation to the actual behaviour.

6.1 Estimates of the reconstructed hypothetical fixed points

If a fixed point z̄ of ż = F (z) does exist, its image under Φ is a fixed point of the dynamical

system induced by Φ, and must lie in a region where the velocity of the flow is low.

Writing w̄ = Φ (z̄), the form of Φ implies that w̄ would lie on the principal diagonal

Sp
(

(1, . . . , 1)T
)

of the delay space R
d. A reasonable estimate of w̄ is therefore provided

by the delay vector w ∈ {w1, . . . ,wN−d+1} of minimum velocity lying within a small

distance δ of the diagonal. The upper panel of figure 3 shows the projection of the delay

vectors for subject B onto the first two singular vectors of the global trajectory matrix,

together with the estimate of w̄. The corresponding plot for subject A can be seen in the

left panel of figure 9. For both time series, the velocity of the reconstructed trajectory
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at wk was approximated by (wk+1 − wk) /τ , and δ was set to be 1
20th of the radius of

the reconstructed attractor, as estimated by the quantity maxk ‖wk‖. The delay vector

obtained by carrying out the same calculation on the trajectory matrix for the model data

can be seen in the left panel of figure 7.

6.2 Calculation of local dimension using SVD

A common tool for analysing the reconstructed attractor in the neighbourhood of a given

point w ∈ {w1, . . . ,wN−d+1} is the associated local trajectory matrix (Broomhead et al.,

1987; Kirby, 2000). Given ε > 0, let Bε (w) represent the set of points wk for which

‖wk − w‖ < ε; i.e. the open ball of radius ε centred at w. Then if there are Nε points in

Bε (w), the local trajectory matrixXε (w) is defined as theNε×dmatrix whose rows consist

of the vectors 1√
Nε

(wk − w)T with wk ∈ Bε (w). The SVD of Xε (w) provides useful

information about the geometric structure of the reconstructed data in the neighbourhood

of w (Broomhead et al., 1987; Broomhead and Jones, 1989; Kirby, 2000; Hundley and

Kirby, 2003). Following the notation for the global trajectory matrix, the jth singular

value of Xε (w) will be written as σj (ε) and the jth singular vector as cj (ε).

For sufficiently small ε, each vector of Bε (w) − w lies in the tangent space TwΦ (M)

of the manifold Φ (M) at w. Also, for 1 ≤ j ≤ d, σj (ε) is the root mean square (RMS)

projection of the vectors in Bε (w)−w onto cj (ε). Consequently, it is reasonable to assume

that there are m singular vectors of Xε (w) which span TwΦ (M), for sufficiently small ε

(Broomhead et al., 1987; Hundley and Kirby, 2003). Write the indices of these vectors

as {j1, . . . , jm}, and the indices of the remaining d−m vectors as {jm+1, . . . , jd}. It then

follows that in the limit Nε → ∞ of an isotropic, uniformly sampled neighbourhood of w,

σjk
(ε) ∼ ε + O

(

ε2
)

for 1 ≤ k ≤ m and σjk
(ε) ∼ εr(k) + O

(

εr(k)+1
)

for m + 1 ≤ k ≤ d,

where r (k) ≥ 2. In principle, the dimension m of M can therefore be determined by

observing the scaling behaviour of the singular values as ε is increased (Broomhead et al.,

1987; Broomhead and Jones, 1989; Kirby, 2000; Hundley and Kirby, 2003).

In practice, however, noise and anisotropy of the data modify the scaling behaviour.

In particular, additive white noise uncorrelated with the time series causes the singular

values which scale nonlinearly in the noise-free case to scale linearly with ε, or to be

independent of ε. What is actually seen depends on the size of ε relative to the magnitude

of the noise. When the data points spread beyond the extent of the ball in the direction

of a particular singular vector, the corresponding singular value scales linearly with ε.

Conversely, when ε is greater than the extent of the data points in this direction, the

corresponding singular value is independent of ε, with square approximately equal to the

square of the noise-free value plus the variance of the noise. Similarly, even in the absence of

noise, if the reconstructed attractor is thin in a particular direction - due, say, to a negative

Lyapunov exponent of large modulus - when ε is greater than the extent of the attractor

in that direction, the corresponding singular value is independent of ε. An estimate of m
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is therefore provided by the number of singular values dL that scale linearly with ε or are

constant above a level below which the singular values are believed to be dominated by

noise, referred to as the noise floor (Broomhead et al., 1987; Broomhead and Jones, 1989;

Healey et al., 1991). The quantity dL can in practice, however, both underestimate and

overestimate m, depending on factors such as noise and strongly contracting Lyapunov

exponents; it can be thought of more generally as the local dimension of the data at w,

since it is the minimum number of degrees of freedom needed to describe the data at that

point.

6.3 Estimating eigenvalues of the linearisation at a fixed point

In the case where w lies close to a fixed point w̄ of the reconstructed dynamics, correspond-

ing to a fixed point z̄ of ż = F (z), dL eigenvalues of DzF (z̄) can be estimated from a linear

fit of the evolution under ψτ of the projections of the vectors in Bε (w)−w onto the first dL

singular vectors of Xε(w) (Healey et al., 1991). This can be seen easily in the case where

the eigenvalues {λ1, . . . , λD} of DzF (z̄) are real and distinct.6 Let ui be the eigenvector of

DzF (z̄) associated with λi, scaled to have unit norm, and write zk− z̄ =
∑D

i=1 Zikui. Then

for sufficiently small ε, if wk,wk+1 ∈ Bε (w), it follows from the linearisation of ż = F (z)

at z̄ and the Taylor expansion of Φ about z̄ that

wk − w̄ ≈

D
∑

i=1

Zikũi (5)

wk+1 − w̄ ≈
D
∑

i=1

eλiτZikũi, (6)

where ũi = DzΦ (z̄)ui. Since, w ≈ w̄, (5) shows that each vector of Bε (w) − w lies

approximately in the linear space L (w̄) spanned by the columns of DzΦ (z̄). It can be

shown that:

‖ũi‖1 =





d−1
∑

j=0

ejλiτ



 |Dzg (z̄)ui| . (7)

(7) and (5) therefore imply that if λi < 0 with |λi| ≫ 0 or |Dzg (z̄)ui| ≈ 0, L (w̄) will

be thin in the direction of ũi, in the sense that the relative variance of the data in the ũi

direction will be small.

It is reasonable to assume that the thin directions will give rise to singular values of

Xε(w) which have a magnitude commensurate with the noise floor. The other directions

will give rise to singular values that scale linearly, or are constant, at values greater than

the level of the noise. Relabelling the latter directions as {ũ1, . . . , ũdL
}, the points of

Bε (w) − w are thus effectively confined to the dL-dimensional subspace L̂ (w̄) of L (w̄)

spanned by {ũ1, . . . , ũdL
}, with the first dL singular vectors {c1 (ε) , . . . , cdL

(ε)} of Xε (w)

6It is straightforward to extend this analysis to the case where DzF (z̄) has complex eigenvalues.
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approximating a basis for L̂ (w̄). When w lies close to a fixed point of the dynamics, the

local dimension thus computes the number of significant eigendirections of the linearisation,

which may differ from m.

As the points of Bε (w) − w effectively lie in a proper subset of the delay space R
d,

attempting to estimate eigenvalues of DzF (z̄) directly from pairs wk − w,wk+1 − w ∈

Bε (w)−w is an ill-posed numerical problem. The eigenvalues {λ1, . . . , λdL
} associated with

{u1, . . . ,udL
} can, however, be robustly estimated by projecting the points of Bε (w) −w

onto L̂ (w̄) (Healey et al., 1991). Define ŵk to be the projection of wk − w onto the basis

{c1 (ε) , . . . , cdL
(ε)}, so that ŵk = CT

ε (wk − w), where Cε is the d × dL matrix whose

jth column is cj (ε). It then follows from (5) and (6) (together with the approximation

w ≈ w̄), that ŵk+1 ≈ Λŵk, where

Λ =
(

CT
ε Ũ
)

diag
{

eλ1τ , . . . , eλdL
τ
}(

CT
ε Ũ
)−1

,

and Ũ is the d × dL matrix [ũ1, . . . , ũdL
]. Writing {µ1, . . . , µdL

} for the eigenvalues of Λ,

the form of Λ implies that λj = 1
τ

ln (µj) for 1 ≤ j ≤ dL. Estimates of {λ1, . . . , λdL
} can

therefore be obtained from an estimate of Λ.

In practice, Λ is estimated by collecting a subset

{

(ŵf1 , ŵf1+1) , . . . ,
(

ŵfFN
, ŵfFN

+1

)}

of the SN pairs of projected delay vectors {ŵk, ŵk+1} for which wk,wk+1 ∈ Bε (w). The

approximation ŵfj+1 ≈ Λŵfj
implies that W2 ≈ W1Λ

T , where W1 and W2 are the FN ×

dL matrices with jth rows ŵT
fj

and ŵT
fj+1 respectively. Λ can therefore be estimated by

finding the matrix Y which solves the least-squares problem minY ∈R
dL×dL ‖W2 −W1Y ‖2

2.

By construction W1 is full rank, giving the following least-squares estimate ΛLS of Λ

(Barnett, 1990):

ΛLS =
(

W T
2 W1

) (

W T
1 W1

)−1
.

The remaining TN = SN −FN pairs of projected delay vectors {ŵk, ŵk+1} with wk,wk+1 ∈

Bε (w) are used to test the fit. These will be written as

{

(ŵc1 , ŵc1+1) , . . . ,
(

ŵcTN
, ŵcTN

+1

)}

.

In summary, it is possible to estimate a given eigenvalue λi of DzF (z̄) from the delay

vectors wk lying in the neighbourhood of w̄, unless λi is large and negative or Dzg (z̄) is

close to being orthogonal to the eigenvector ofDzF (z̄) corresponding to λi. The eigenvalues

of DzF (z̄) which can be estimated from the data will be referred to here as the observable

eigenvalues, and will be assumed to be those that effectively determine the local behaviour

of ż = F (z) in the neighbourhood of z̄.
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6.4 Calculation of local dimension and eigenvalues of linearisation at the

fixed point estimates

6.4.1 Results for the experimental data

The scaling of the local singular values with the ball radius ε at the estimate of the hy-

pothetical fixed point w̄ is shown in figure 4 for both experimental time series. In order

to compute the local dimension dL from the singular values, it is necessary to obtain an

estimate of the noise floor. Under the assumption that the observational noise introduced

by the IRIS 6500 is additive and white, the ratio of the resolution (0.03o) to the standard

deviation of the unnormalised data was taken as the noise floor estimate, written σn. This

gave the values σn = 0.0641 for subject A and σn = 0.0232 for subject B. For both A and

B there are three singular values lying above σn which scale linearly with ε or are constant,

giving a local dimension dL of 3 (see figure 4).

Following the computation of dL, estimates
{

λ̂1, λ̂2, λ̂3

}

of the observable eigenvalues

{λ1, λ2, λ3} of DzF (z̄) were obtained from points lying within an ε-ball of the fixed point

estimate over a range of ε values. For each choice of ε, 75% of the pairs {ŵk, ŵk+1} with

wk,wk+1 ∈ Bε (w) were used to calculate the least-squares fit ΛLS to the map Λ, while

the remaining 25% were used to test the accuracy of the fit. Over the chosen ε ranges, the

normalised RMS error

EF =
1

ε

√

√

√

√

1

FN

FN
∑

j=1

∥

∥ŵfj+1 − ΛLSŵfj

∥

∥

2

2

for the fit vectors was found to be comparable to the normalised RMS error

ET =
1

ε

√

√

√

√

1

TN

TN
∑

j=1

∥

∥ŵcj+1 − ΛLSŵcj

∥

∥

2

2

for the test vectors, with maximum values of EF = 0.0683, ET = 0.0755 for subject A,

and EF = 0.0477, ET = 0.0400 for subject B. The estimates were real-valued over all the ε

ranges considered. After each calculation of ΛLS , the λ̂is were sorted so that λ̂1 > λ̂2 > λ̂3.

The accuracy of the estimates was gauged by employing a simple bootstrap technique to

approximate the probability distributions of the λ̂is about the true values. For each choice

of ε, 5000 Monte Carlo samples
{

λ̂
(p)
1 , λ̂

(p)
2 , λ̂

(p)
3

}

were generated. Each Monte Carlo sample

was obtained by calculating ΛLS after using a uniform random number generator to remove

a random fraction of the FN pairs used for the least-squares fit. For each 1 ≤ i ≤ 3, the

distribution of λ̂
(p)
i about λ̂i was taken to reflect the underlying distribution of λ̂i about λi,

enabling confidence intervals to be constructed (Press et al., 1992). Figure 5 shows the λ̂i

values obtained over the ε ranges considered. Also shown are the 95% confidence intervals

(

λ̂i − 1.96σ
(

λ̂p
i − λ̂i

)

, λ̂i + 1.96σ
(

λ̂p
i − λ̂i

))
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calculated from the bootstrap samples. (Here, and thereafter, σ (.) denotes the standard

deviation of its argument).

It can be seen that for both subjects, the eigenvalue estimates and confidence intervals

are stable over the chosen ε ranges. The final estimates of {λ1, λ2, λ3} were taken to be

those computed for the value of ε giving the smallest fit error. These are given in table 1,

together with the 95% confidence interval and normalised standard error λ̂E
i =

σ
(

λ̂
(p)
2 −λ̂2

)

|λ̂2|
for each estimate, and the corresponding fit and prediction errors.

For both experimental data sets, the small RMS errors for the fit and test vectors

coupled with the stability of the eigenvalue estimates over a range of ball radii are good

evidence for a fixed point w̄ of the reconstructed dynamics. In addition, the points in

the time series corresponding to w̄ coincide with foveation (cf. the right panel of figure

9). The evidence for w̄ thus suggests the existence of a fixed point z̄ = Φ−1 (w̄) of

the unforced oculomotor dynamics ż = F (z) representing stationary gaze at the primary

position, hypothesised in section 4. The confidence intervals for the eigenvalue estimates

strongly suggest that λ1 > 0 and λ3 < 0, with |λ3| ≫ |λ1| ≫ 0. Plots showing the

eigenvectors {e1, e2, e3} of the least-squares fit ΛLS to Λ together with the points ŵk used

to compute ΛLS enable the negative eigenvalue λ3 to be identified with the fast phase

of the jerk oscillation, that is the saccadic movement which returns the retinal image to

the vicinity of the fovea. The positive eigenvalue λ1 appears to correspond to the slow

phase, the low velocity movement of the retinal image away from the foveal region. The

identification of λ1 and λ3 with the slow and fast phases is illustrated in the lower panel

of figure 3, which shows plots of ŵk and {e1, e2, e3} for the choice of ball radius used to

obtain the final eigenvalue estimates from the time series of subject B.

In contrast to the positive assertions that can be made regarding the signs of λ1 and λ3,

for both subjects the sign of λ2 cannot be unambiguously determined since the confidence

intervals for λ̂2 contain 0. The estimate µ̂2 of the eigenvalue µ2 of Λ is equal to 0.9998 ±

0.0340 for subject A and 0.9935±0.0104 for subject B (errors represent the 95% confidence

intervals). These values suggest that µ2 ≈ 1 in both cases, corresponding to a direction

of the dynamics in the neighbourhood of z̄ along which trajectories have velocity close to

zero (cf. the orientation of e2 in the lower panel of figure 3). Since λ̂2 = 1
τ

ln (µ̂2), it seems

reasonable to infer that λ2 ≈ 0, with a consequently high normalised standard error λ̂E
2

(see table 1). Indeed, it is clear that even moderate noise will cause perturbations to the

estimates of µ2 that will preclude the possibility of estimating λ2 to a sufficiently high

accuracy to determine whether λ2 > 0 or λ2 < 0.

6.4.2 Results for the model data

The singular value scaling at the delay vector obtained by using the fixed point estimation

method on the unstable NI model data can be seen in the top left panel of figure 8. As for

the experimental data, the ratio of the IRIS 6500 resolution to the standard deviation of
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the unnormalised time series was taken as an estimate of the noise floor σn, yielding the

value σn = 0.0186. There are two singular values lying above σn which scale linearly with

ε, giving a local dimension dL of 2. This contrasts with the value 3 of dL observed at the

fixed point estimates for the experimental time series.

Table 2 gives the final estimates {η̂1, η̂2} of the eigenvalues {η1, η2} of the matrix

ln
(

Λ
1
τ

)

; these quantities are the result of applying the same procedure that was used

to estimate the observable eigenvalues of DzF (z̄) from the experimental time series. The

95% confidence intervals calculated from 5000 Monte Carlo samples
{

η̂
(p)
1 , η̂

(p)
2

}

generated

using the bootstrap technique described in the previous section are also shown in the table,

together with the normalised standard error η̂E
i =

σ
(

η̂
(p)
2 −η̂2

)

|η̂2| of each estimate, and the fit

and prediction errors. The small values of EF and ET indicate that, as for the experimental

data, the dynamics during the low velocity phase of the cycle can be well approximated

with a linear model. Moreover, the confidence intervals clearly imply that η1 > 0 and

η2 < 0. Plots of the eigenvectors of Λ show that η1 corresponds to the drift resulting

from the unstable NI while η2 corresponds to the corrective saccades which refixate the

target. The unstable NI model can thus account for two of the eigenvalues observed in the

experimental data, λ1 and λ3, but not the near-zero eigenvalue λ2.

6.4.3 Interpretation of the eigenvalue estimates

The eigenvalue estimates for the jerk CN data suggests that DzF (z̄) possesses at least

one positive eigenvalue. This result is consistent with z̄ having lost stability through a

bifurcation, as proposed in section 4. As stated therein, the eigenvalues of DzF (z̄) are the

eigenvalues of the muscle plant together with the NI eigenvalue − 1
NT

, which is of the order

of −0.04 in normal subjects, and the eigenvalues of the OCS derivative Dyf (ȳ). Moreover,

since the muscle plant eigenvalues are negative, z̄ can only lose stability as a consequence

of NT becoming negative, or Dyf (ȳ) developing an eigenvalue with positive real part. The

identification of λ1 with the destabilising slow phase together with the fact the eigenvalue

spectrum suggests a codimension 1 bifurcation means the most likely scenario is that z̄

has lost stability through a 1-dimensional bifurcation in the OCS, yielding the positive

eigenvalue λ1, and λ2 is negative (NT > 0), reflecting a normal, stable integrator. The

inability of the unstable NI to account for the near-zero eigenvalue provides further evidence

for this hypothesis. The eigenvalue estimates thus suggest that the origin of the bifurcation

is one of the oculomotor subsystems rather than the NI.

6.5 Construction of a Poincaré map incorporating a fast phase modelled

as a homoclinic reinjection

Control models of jerk CN assume that the fast phase of the oscillation is a saccadic

correction of the ocular drift away from the target. An error-correcting saccade is activated
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when the eye position or velocity crosses a threshold level (Optican and Zee, 1984; Tusa

et al., 1992; Dell’Osso, 2002; Jacobs and Dell’Osso, 2004). In models based on nonlinear

dynamics, the fast phase is a consequence of the orientation of a slow manifold in the

system phase space. The sections of trajectories representing the fast phase are constrained

to the slow manifold, which intersects a fixed point representing fixation of the target.

As a consequence, the fast phases are forced to terminate close to the target position

(Broomhead et al., 2000; Akman et al., 2005). Both types of models thus result in a

fast phase which is a deterministic refixation of the target. Within the framework of

the generalised oculomotor model ż = F (z), the simplest object associated with such a

mechanism is an orbit Γ̃ that is nearly homoclinic to z̄. i.e. an orbit which lies close to a

trajectory Γ such that φt (z) → z̄ as t → ∞ and as t → −∞ for z ∈ Γ. The existence of

Γ̃ ensures that points lying sufficiently close to z̄ at the beginning of a CN cycle will be

reinjected back into the neighbourhood of z̄ at the end of the cycle. As z̄ represents the

eye lying at rest in the primary position, the reinjection induced by Γ̃ models a refixating

fast phase.

Combining this assumption of a near-homoclinic orbit with the eigenvalue estimates

enables the construction of a Poincaré map; that is a function P defined on a set Σ

intersecting the flow of ż = F (z) transversally which maps the point at which a trajectory

first intersects Σ to the point at which it next intersects Σ. The analysis of the map P

provides information on the behaviour of the full higher-dimensional flow. In particular,

stable and unstable fixed points of P give rise respectively to stable and unstable periodic

orbits of ż = F (z) that pass through Σ (Guckenheimer and Holmes, 1983; Glendinning,

1994; Alligood et al., 1996).

Following (Guckenheimer and Holmes, 1983) and (Glendinning, 1994), an explicit ex-

pression for such a map P can be obtained by expressing P as the composition of two maps;

a map P1 obtained from the dynamics in the neighbourhood of z̄ - corresponding to the mo-

tion of the eye close to foveation - and a map constructed by considering the dynamics out-

side this neighbourhood - corresponding to the reinjection mechanism which brings the im-

age of the target back into the vicinity of the fovea at the end of the CN cycle. The relative

magnitudes of the eigenvalues then imply that ż = F (z) should possess a limit cycle attrac-

tor, as will now be shown.

Derivation of P

Poincaré’s Linearisation Theorem states that it is possible to choose a coordinate transfor-

mation such that the dynamics in the neighbourhood of z̄ are the same as the linearised

dynamics (Glendinning, 1994). Assume that this transformation has been applied after

shifting z̄ to the origin 0. The flow in the neighbourhood of 0 can then be approximated

by the flow in the 3-dimensional space spanned by the eigenvectors of the transformed

vector field associated with the observable eigenvalues {λ1, λ2, λ3} of DzF (z̄). Writing
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(X1, X2, X3) for the coordinates in the eigenvector basis, the dynamics are thus given by:

Xi (t) = eλitXi (0) : 1 ≤ i ≤ 3. (8)

By rescaling the Xis, it can be assumed that the neighbourhood within which this approx-

imation holds lies in the cube {|Xi| ≤ 1 : 1 ≤ i ≤ 3} (see figure 6). Let Σ be the side of

the cube defined by X3 = 1 and Σ′ the side defined by X1 = 1. Since λ1 > 0 > λ2 ≫ λ3,

trajectories intersect Σ as they enter the neighbourhood of 0 (see the lower panel of figure

3). If the X1 coordinate of the point at which a given trajectory intersects Σ is positive,

the trajectory intersects Σ′ as it exits the neighbourhood of 0, while if it is negative, it

intersects the side of the cube opposite Σ′ (see figure 6).

Define P1 to be the map which takes points on Σ to points on Σ′. (8) implies that the

time t̄ taken for a point with X1 > 0 to be mapped from Σ to Σ′ by P1 is

t̄ =
1

λ1
ln

(

1

X1

)

. (9)

Writing the coordinates on Σ′ as (X3, X2), it then follows from (8) that P1 has the form

P1 (X1, X2) =

(

Xδ1
1

Xδ2
1 X2

)

(10)

where δ1 = −λ3
λ1

and δ2 = −λ2
λ1

. Next, define P2 to be the map which takes points on Σ′

to points on Σ. i.e. the map induced by the near-homoclinic orbit Γ̃. Since the X1-axis

is the unstable manifold of the origin, it can be assumed that Γ̃ intersects Σ′ at (0, 0).

Approximating P2 by its Taylor expansion about (0, 0) yields

P2 (X3, X2) = E

(

X3

X2

)

+ e, (11)

where the 2 × 2 matrix E represents the Jacobian derivative of P2 evaluated at (0, 0),

and e = P2 (0, 0) (Guckenheimer and Holmes, 1983; Glendinning, 1994). P2 is an affine

mapping which sends a disc of points centred at (0, 0) on Σ′ to a distorted disc of points

centred at e on Σ (see figure 6). e can thus be thought of as the error in the correction to

the drift of the eye away from the target produced by the fast phase. Composing P2 with

P1 gives the required Poincaré map P. Substituting (10) and (11) into P = P2 ◦P1 leads

to the expression below:

P (X1, X2) = E

(

Xδ1
1

Xδ2
1 X2

)

+ e.

Simplification of P

Using the fact that the time-of-flight t̄ is bounded enables P to be simplified. t̄ must be

bounded above by some value t2, reflecting the minimum frequency of the nystagmus, and
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bounded below by some value t1, reflecting the minimum residency time of the target image

in the foveal region. Writing α = e−λ1t2 and β = e−λ1t1 , (9) implies that on the domain

of P, α ≤ X1 ≤ β and hence αδ2 ≤ Xδ2
1 ≤ βδ2 . Computing t1 and t2 from the time series

gives the values α = 0.0040, β = 0.4405 for subject A and α = 0.0392, β = 0.4925 for

subject B (Akman, 2000). Setting λ2 equal to − 1
NT

with the standard NI time constant

of 25s yields δ2 = 9.7580 × 10−4 for A, and δ2 = 19.7667 × 10−4 for B. For both subjects,

these values imply αδ2 , βδ2 ≈ 1. This gives Xδ2
1 ≈ 1, whence the final approximation

P (X1, X2) = E

(

Xδ1
1

X2

)

+ e. (12)

Defining X = (X1, X2)
T and p (X) =

(

Xδ1
1 , X2

)T

enables (12) to be written in the

vectorised form

P (X) = Ep (X) + e. (13)

Analysis of P

As P is a return map, it must map points in its domain back onto Σ. This places restrictions

on E which can be used to deduce that P is a contraction mapping on a closed subset of

its domain. The condition on P can be expressed as ‖P (X)‖∞ ≤ 1 for all X in the domain

of P, where ‖.‖∞ represents the vector and matrix infinity norm. (13) implies

‖P (X)‖∞ ≤ ‖E‖∞ ‖p (X)‖∞ + ‖e‖∞ ≤ ‖E‖∞ max
X∈Σ,α≤X1≤β

‖p (X)‖∞ + ‖e‖∞ .

By definition, ‖p (X)‖∞ = max
{

Xδ1
1 , |X2|

}

. Since −λ3 ≫ λ1, δ1 > 1 and thus for X ∈ Σ

with α ≤ X1 ≤ β,
∣

∣

∣Xδ1
1

∣

∣

∣ ≤ βδ1 < 1. As |X2| ≤ 1 on Σ, maxX∈Σ,α≤X1≤β ‖p (X)‖∞ = 1. A

minimally sufficient condition for P to map its domain into Σ is therefore ‖E‖∞ ≤ 1−‖e‖∞.

So now let X = (X1, X2)
T and X′ = (X ′

1, X
′
2)

T lie in the domain of P. Then by (13),

P (X) − P
(

X′) = E
(

p (X) − p
(

X′)) .

Using the Mean Value Theorem, the expression above can be written as

P (X) − P
(

X′) = EJ (ξ)
(

X − X′)

where J (ξ) is the Jacobian derivative of p evaluated at a point ξ = (ξ1, ξ2)
T lying on

the line segment between X and X′. J = diag
{

δ1ξ
δ1−1
1 , 1

}

, and so the expression above

implies

∥

∥P (X) − P
(

X′)∥
∥

∞ ≤ ‖E‖∞ max
{

δ1ξ
δ1−1
1 , 1

}

∥

∥X − X′∥
∥

∞

≤ (1 − ‖e‖∞) max
{

δ1β
δ1−1, 1

}

∥

∥X − X′∥
∥

∞ .
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The eigenvalue ratio δ1 has the value 7.0886 for subject A and 11.2025 for subject B, giving

δ1β
δ1−1 = 0.0482 for A and δ1β

δ1−1 = 0.0081 for B. Hence, max
{

δ1β
δ1−1, 1

}

= 1 in both

cases, leading to the final inequality

∥

∥P (X) − P
(

X′)∥
∥

∞ ≤ (1 − ‖e‖∞)
∥

∥X − X′∥
∥

∞ .

Finally, let Σ̄ be the largest closed subset of the domain of P such that P
(

Σ̄
)

⊆ Σ̄. Since

0 < 1−‖e‖∞ < 1, P is a contraction mapping on Σ̄, and so has a unique, globally attracting

fixed point in this set. It follows that there is an attracting periodic orbit of ż = F (z) in

a tubular neighbourhood of Γ̃. The attractor A of ż = F (z) should therefore be a limit

cycle, giving a periodic eye position time series.

6.6 Calculation of local dimension around the jerk CN cycle

The simplest attractor A of ż = F (z) that could produce oscillatory behaviour is a stable

limit cycle; indeed it was argued in the last section that a fast phase comprising a homoclinic

refixation will lead to an attractor of this type. For such an attractor, the finite dimensional

manifold M containing A is A itself, and so the dimension of M is 1. It therefore follows

from the discussion of sections 6.2 and 6.3 that for both experimental data sets, dL should

equal 1 on the reconstructed trajectory, except at points in the vicinity of the reconstructed

fixed point w̄, where dL reflects the dimension of the linearised dynamics rather than of

M . Since, the local dimension is 3 at w̄ (see figure 4), dL should therefore decrease towards

1 as the trajectory leaves the neighbourhood of w̄ during the slow phase, before increasing

back to 3 towards the end of the fast phase as the trajectory reenters the vicinity of the

fixed point. Indeed, a variation in dL of this type was observed for the unstable NI model

data, for which the underlying attractor is periodic (Optican and Zee, 1984). Figure 7

shows 3 points of the reconstructed attractor bounded away from the foveation region at

which dL was computed. The scaling of the local singular values at each point is presented

in figure 8. The singular value plots show that dL decreases from 2 at foveation to 1 at the

beginning of the fast phase, before increasing back to 2 at the end of the fast phase.

In order to determine whether dimension changes consistent with a limit cycle occur in

the experimental data sets, dL was calculated at 3 points of the reconstructed attractors

roughly coincident in terms of cycle phase with those used for the model data. The points

chosen for the time series of subject A are shown in figure 9, while the corresponding

local singular value plots are presented in figure 10. It can be seen that dL decreases

to 2 early in the slow phase, increases to 4 as the cycle enters the fast phase, before

decreasing back to 3 as the fast phase terminates. The same variation in dL was observed

for the time series of subject B. The increase in dL which occurs at the start of the fast

phase is inconsistent with a limit cycle, and comprises strong evidence that jerk CN is

not intrinsically periodic. Moreover, as the deterministic refixating fast phase modelled

in section 6.5 predicts periodicity, the local dimension calculations indicate that the fast
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phase is more dynamically complex than a homoclinic reinjection.

7 Implications of the time series analysis

7.1 Jerk nystagmus is caused by a bifurcation in the oculomotor com-

mand system

It is currently believed, on the basis of control models of the oculomotor system, that CN

either results from an unstable neural integrator (Optican and Zee, 1984; Tusa et al., 1992),

or from an instability of the smooth pursuit system (Harris, 1995; Dell’Osso, 2002; Jacobs

and Dell’Osso, 2004).

By proposing a generalised model of the unforced oculomotor system and relating it

to recorded jerk nystagmus time series using nonlinear dynamics techniques, evidence has

been found supporting the hypothesis that the initial loss of stability in jerk CN is caused

by a bifurcation at a fixed point corresponding to stable gaze at the primary position.

Furthermore, by matching the experimentally measured eigenvalues of linearisation at this

fixed point with those predicted by the model, and comparing with the results obtained

from simulated data produced by the unstable NI model of Optican et al ((Optican and

Zee, 1984)), it has been deduced that the bifurcation is unlikely to have it’s origin in the

NI. The loss of stability appears instead to be induced by a bifurcation in one of the five

oculomotor subsystems, referred to collectively in the oculomotor system model as the

oculomotor command system. Moreover, since the bifurcation is 1-dimensional, it cannot

be the direct cause of jerk CN, but is likely to be a preliminary instability preceding

oscillatory behaviour caused by a secondary bifurcation (e.g. a Hopf bifurcation). The NI

cannot be the cause of this secondary bifurcation either, as the equation for the NI (3)

is 1-dimensional, and thus any bifurcation associated with the NI must be 1-dimensional

also. These conclusions are in agreement with a previous study that also rejected the NI as

the cause of jerk CN, on the basis of estimates of the NI time constant from experimental

data (Harris, 1995).

Since the OCS represents the combined dynamics of the oculomotor subsystems, the

primary and secondary bifurcations leading to CN oscillations could, in principle, be caused

by parameter changes in any of the individual components. Indeed, there appears to be no

a priori reason to favour a particular system, such as smooth pursuit, as the origin of the

bifurcations, purely on the basis of the morphology of the resulting time series. This point

has been further illustrated by a recent nonlinear dynamics model of the saccadic system

which is able to generate CN waveforms with both slow and fast phases, despite having no

slow eye movement components (Broomhead et al., 2000). A range of CN waveforms can

be simulated by the model by varying parameters representing the strength of the saccadic

braking pulse and the reaction time of saccadic burst neurons to the motor error signal that

drives their firing (Broomhead et al., 2000; Akman et al., 2005). In the model, a fixed point
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representing stable gaze at the primary position loses stability in a pitchfork bifurcation

as the braking strength is increased, producing a pair of stable fixed points corresponding

to hypometric saccades. As the braking strength is increased still further, the fixed points

undergo Hopf bifurcations, leading to a pair of limit cycle attractors corresponding to left-

beating and right-beating jerk oscillations (Akman et al., 2005). This picture is consistent

with the proposition that the jerk instability is caused by a 1-dimensional bifurcation at a

fixed point, followed by a secondary bifurcation which generates an oscillation.

7.2 The fast phase in jerk CN is not a simple deterministic refixation

Current models of jerk CN based on both control theory ((Optican and Zee, 1984; Tusa

et al., 1992; Dell’Osso, 2002; Jacobs and Dell’Osso, 2004)) and nonlinear dynamics ((Broom-

head et al., 2000; Akman et al., 2005)) produce fast phases that are a deterministic refix-

ation of the target. As detailed in section 6.5, an analytical return map can be derived

by combining the simplest model of such a fast phase - a near-homoclinic orbit - with a

model of the slow phase dynamics obtained from the data. The latter is derived using the

estimates of the eigenvalues of linearisation at the fixed point z̄ representing stationary

fixation at primary. Analysis of the return map implies that the attractor of the system

should be a stable limit cycle. Consequently, the local dimension dL of the attractor should

decrease towards 1 as the cycle moves away from the foveation position. By contrast, dL

was found to increase from the value 3 at foveation to 4 just prior to the fast phase. The

increase in dL comprises strong evidence against a limit cycle, and suggests a genuinely

aperiodic system. This finding is consistent with a previous study which found evidence

that the jerk CN attractor may contain several unstable periodic orbits (Clement et al.,

2002c). Moreover, it implies that for a model to fully account for the data, it must result in

a fast phase with greater complexity than a reinjection of the flow into the neighbourhood

of z̄, induced by a near-homoclinic orbit.

7.3 Signal-dependent noise may account for the nonperiodic nature of

jerk CN

The local dimension estimates suggest that the jerk CN attractor A is more complex than

the simplest oscillatory mechanism; a stable limit cycle. One possible explanation of the

observed variation in dL consistent with the implication of a higher-dimensional attractor

is that the dimension m of the manifold M containing A is greater than or equal to 4, with

contracting directions causing m to be under-estimated in certain regions of A. It follows

that additional oculomotor components must be activated as the cycle enters the fast phase,

leading to a higher-dimensional refixation mechanism than a homoclinic reinjection.

Alternatively, the variation in local dimension may indicate the presence of a signal-

dependent noise process. Experimental recordings of human motor unit activity show

that the standard deviation of motoneuron firing increases with the mean level of activity
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(Clammam, 1969; Matthews, 1996). In a recent study, Harris and Wolpert incorporated

this observation into a control model of the saccadic system by modelling the saccadic

velocity command bS (t) as the sum of a deterministic signal uS (t) and a zero-mean, white

noise process wS (t) with variance proportional to |uS (t)|2 (Harris and Wolpert, 1998).

They found that the mean firing profiles for uS (t) which minimised post-saccadic posi-

tional variance produced saccades with position and velocity profiles very similar to those

observed experimentally. Harris and Wolpert concluded from this that signal-dependent

noise is a significant component of the saccadic system (Harris and Wolpert, 1998). As

the firing of the saccadic burst neurons is maximal just prior to a saccade (van Gisbergen

et al., 1981), such noise might account for the increase in local dimension at the start

of the fast phase, and the subsequent aperiodicity of the waveform. Moreover, it would

result in a refixation which was stochastic, consistent with the finding that aperiodicity is

incompatible with a low-dimensional refixation.

7.4 Nonlinear time series analysis can be used to test and develop im-

proved oculomotor models

The eigenvalue and local dimension estimates reported here can be viewed in the context

of a growing number of nonlinear dynamics techniques currently being employed to com-

plement control theory in developing biologically realistic models of the oculomotor system

(Shelhamer, 1997; Clement et al., 2002a,b,c; Akman et al., 2005). Bifurcation analysis of

such models enables predictions to be made regarding which particular behaviours should

be observed when system parameters are manipulated experimentally, and in which order

the transitions between behaviours will be observed (Wilson, 1999; Akman et al., 2005).

Nonlinear time series analysis can assist in the validation and development of the mod-

els by providing quantitative techniques for assessing whether the predicted bifurcations

occur experimentally. Moreover, time series analysis can uncover new bifurcations, which

realistic models must be able to reproduce.

Following this approach, a comprehensive jerk CN model should be able to reproduce

the eigenvalue estimates and variations in local dimension reported here. In particular, all

current models of jerk CN generate periodic oscillations, and thus do not fully reflect the

observed behaviour (Optican and Zee, 1984; Broomhead et al., 2000; Jacobs and Dell’Osso,

2004). The dimension estimates suggest that incorporating the signal-dependent noise

characteristic of human motoneurons may lead to more realistic models. For example,

using the results of Harris and Wolpert, the saccadic model proposed in (Broomhead et al.,

2000) could be modified by adding a white noise process with variance proportional to the

mean firing rate of the saccadic burst neurons to the velocity command. The importance

of signal-dependent noise as a contributing factor to the jerk mechanism could then be

assessed by computing dL for time series generated by the model. If it was found that

dL was not significantly affected by the inclusion of signal-dependent noise, it would be
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reasonable to infer that the dimension variation was due instead to the recruitment of

additional oculomotor components prior to the fast phase. This hypothesis could be tested

in turn by calculating the local dimension for eye movements simulated by a model which

included a broader range of oculomotor subsystems, such as smooth pursuit.
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Subject A Subject B

λ̂1 40.9921 ± 9.1294 (0.1136) 20.2361 ± 5.4983 (0.1386)

λ̂2 −0.0320 ± 13.1070 (208.9715) −1.3009 ± 4.1209 (1.6161)

λ̂3 −290.5783 ± 28.4076 (0.0499) −226.6948 ± 50.4033 (0.1134)

EF 0.0629 0.0349

ET 0.0745 0.0367

Table 1: Final estimates of the observable eigenvalues λi of DzF (z̄) obtained from the

experimental data. Errors correspond to the 95% confidence intervals calculated from

the bootstrap samples. The normalised standard errors λ̂E
i of the estimates are shown in

brackets. EF and ET denote the RMS error of the least-squares fit ΛLS to the map Λ for

the fit and test vectors respectively.

η̂1 15.0415 ± 0.4373 (0.0148)

η̂2 −48.5301 ± 1.5326 (0.0161)

EF 0.0144

ET 0.0145

Table 2: Final estimates of the eigenvalues ηi of the matrix ln
(

Λ
1
τ

)

for the simulated jerk

CN data generated by the unstable NI model of Optican et al. Errors correspond to the

95% confidence intervals calculated from the bootstrap samples. The normalised standard

errors η̂E
i of the estimates are given in brackets. EF and ET denote the RMS error of the

least-squares fit ΛLS to the map Λ for the fit and test vectors respectively.
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Figure 1: Functional organisation of the oculomotor system for horizontal eye movements.

The saccadic system is driven by target position T while the smooth pursuit system re-

sponds to target velocity Ṫ . The vestibular and optokinetic systems are driven by a head

velocity signal Ḣ provided by the semicircular canals and visual system respectively. The

vergence system is driven by the distance to the target D. bK=velocity signal from sub-

system K, b=velocity signal from the OCS, n=position signal from the neural integrator,

g=horizontal eye position. (Modified from figure 12.2 of (Carpenter, 1988)).
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Figure 2: Portions of eye movement recordings obtained from two subjects (A and B)

with jerk nystagmus. 0o indicates gaze straight ahead (primary position). Positive values

represent rightward movements.
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Figure 3: Global and local dynamics reconstructed from the time series of subject B using

the method of delays. Upper panel. Global dynamics. Projections of the delay vectors

wk onto the first two singular vectors {c1, c2} of the global trajectory matrix X. FP

represents the estimate w of the hypothetical fixed point w̄, while the dotted line is the

projection of the principal diagonal of the delay space onto c1 and c2. Lower panel.

Dynamics in the neighbourhood of the fixed point estimate. Projections of wk − w onto

the first two singular vectors {c1 (ε) , c2 (ε)} of the local trajectory matrix Xε (w), for the

choice of ball radius ε used to obtain the final estimate ΛLS of the linear map Λ governing

the dynamics in the SVD basis. {e1, e2, e3} represent the eigenvectors of ΛLS ; the arrows

indicate the direction of the flow along the eigenvectors.
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ż = F (z), derived from the experimental data. The origin corresponds to a fixed point

z̄, representing stationary gaze at the primary position, which has undergone a bifurcation

leading to the jerk instability. Within the cube, the dynamics are approximately linear

and represent the motion of the eye close to foveation. The dynamics outside the cube are

assumed to be a reinjection mechanism induced by a near-homoclinic orbit Γ̃, modelling a

refixating fast phase. A return map P to the surface of section Σ is obtained by composing

two maps P1 and P2, where P1 - constructed from the flow inside the cube - maps from

Σ to Σ′, and P2 - constructed from the flow outside the cube - maps from Σ′ to Σ.
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Figure 7: Left panel. Projection of the delay vectors wk for the unstable NI model data

onto the first two singular vectors {c1, c2} of the global trajectory matrix X. MVP denotes

the delay vector obtained by applying the fixed point estimation technique of section 6.1 to

the wks, while #1, #2 and #3 denote the points in the CN cycle at which dL was computed

to investigate the local dimension changes consistent with a limit cycle. The dotted line is

the projection of the principal diagonal of the delay space onto c1 and c2. Right panel.

The time series values corresponding to the points at which dL was calculated. The tick

marks on the horizontal axis represent 100ms intervals while those on the vertical axis

denote intervals of 0.5o.
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Figure 8: Local singular value scaling at points MVP, #1, #2 and #3 of figure 7. In each

plot, the dotted line indicates the noise floor σn. For points MVP, #1 and #3, the solid

line shows the orientation at which the singular values scale linearly with the ball radius ε.

For point #2, the upper solid line represents a scaling exponent of 1. The lower solid line

represents a scaling exponent of 3, for which the corresponding singular value represents

the curvature of the attractor orthogonal to the principal singular vector.
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Figure 9: Left panel. Projection of the delay vectors wk for subject A onto the first

two singular vectors {c1, c2} of the global trajectory matrix X. FP denotes the estimate

of the fixed point w̄, while #1, #2 and #3 denote the points in the CN cycle at which

dL was computed to assess if dim (M) = 1. The dotted line is the projection of the

principal diagonal of the delay space onto c1 and c2. Right panel. The time series values

corresponding to the points at which the local dimension was calculated. The tick marks

on the horizontal axis represent 50ms intervals while those on the vertical axis denote

intervals of 0.25o.
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Figure 10: Local singular value scaling at points #1, #2 and #3 of figure 9. In each plot,

the dotted line indicates the noise floor σn, while the solid line shows the orientation at

which the singular values scale linearly with the ball radius ε.
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