Skip to main content
Log in

The temporal structure of transient ON/OFF ganglion cell responses and its relation to intra-retinal processing

  • Published:
Journal of Computational Neuroscience Aims and scope Submit manuscript

Abstract

A subpopulation of transient ON/OFF ganglion cells in the turtle retina transmits changes in stimulus intensity as series of distinct spike events. The temporal structure of these event sequences depends systematically on the stimulus and thus carries information about the preceding intensity change. To study the spike events' intra-retinal origins, we performed extracellular ganglion cell recordings and simultaneous intracellular recordings from horizontal and amacrine cells. Based on these data, we developed a computational retina model, reproducing spike event patterns with realistic intensity dependence under various experimental conditions. The model's main features are negative feedback from sustained amacrine onto bipolar cells, and a two-step cascade of ganglion cell suppression via a slow and a fast transient amacrine cell. Pharmacologically blocking glycinergic transmission results in disappearance of the spike event sequence, an effect predicted by the model if a single connection, namely suppression of the fast by the slow transient amacrine cell, is weakened. We suggest that the slow transient amacrine cell is glycinergic, whereas the other types release GABA. Thus, the interplay of amacrine cell mediated inhibition is likely to induce distinct temporal structure in ganglion cell responses, forming the basis for a temporal code.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ammermüller J, Kolb H (1995) The organization of the turtle inner retina. I. ON and OFF-center pathways. J. Comp. Neurol. 358: 1–34.

    Article  PubMed  Google Scholar 

  • Ammermüller J, Muller J, Kolb H (1995) The organization of the turtle inner retina. II. Analysis of color-coded and directionally selective cells. J. Comp. Neurol. 358: 35–62.

    Article  PubMed  Google Scholar 

  • Ammermüller J, Kolb H (1996) Functional architecture of the turtle retina. Prog. Retin. Eye Res. 15: 393–433.

    Article  Google Scholar 

  • Ariel M, Daw NW, Rader RK (1983) Rhythmicity in rabbit retinal ganglion cell responses. Vision Res. 23: 1485–1493.

    Article  PubMed  CAS  Google Scholar 

  • Awatramani GB, Slaughter MM (2000) Origin of transient and sustained responses in ganglion cells of the retina. J. Neurosci. 20: 7087–7095.

    PubMed  CAS  Google Scholar 

  • Belgum JH, Dvorak DR, McReynolds JS (1982) Sustained synaptic input to ganglion cells of mudpuppy retina. J. Physiol. 326: 91–108.

    PubMed  CAS  Google Scholar 

  • Belgum JH, Dvorak DR, McReynolds JS (1983) Sustained and transient synaptic inputs to ON – OFF ganglion cells in the mudpuppy retina. J. Physiol. 340: 599–610.

    PubMed  CAS  Google Scholar 

  • Belgum JH, Dvorak DR, McReynolds JS (1984) Strychnine blocks transient but not sustained inhibition in mudpuppy retinal ganglion cells. J. Physiol. 354: 273–286.

    PubMed  CAS  Google Scholar 

  • Berry MJ, Brivanlou IH, Jordan TA, Meister M (1999) Anticipation of moving stimuli by the retina. Nature 398: 334–338.

    Article  PubMed  CAS  Google Scholar 

  • Berry MJ, Warland DK, Meister M (1997) The structure and precision of retinal spike trains. Proc. Natl. Acad. Sci. USA 94: 5411–5416.

    Article  PubMed  CAS  Google Scholar 

  • Berry MJ, Meister M (1998) Refractoriness and neural precision. J. Neurosci. 18: 2200–2211.

    PubMed  CAS  Google Scholar 

  • Bowling DB (1980) Light response of ganglion cells in the retina of the turtle. J. Physiol. 299: 173–196.

    PubMed  CAS  Google Scholar 

  • Burns ME, Lamb TD (2003) Visual transduction by rod and cone photoreceptors. In: LM Chalupa, JH Werner, eds. Visual Neurosciences. MIT Press, Cambridge, MA, pp. 215–233.

    Google Scholar 

  • Cajal SR y (1892) The structure of the retina (Thorpe SA and Glickstein M, trans 1972) Thomas, Springfield, IL.

  • Dearworth JR, Granda AM (2002) Multiplied functions unify shapes of ganglion-cell receptive fields in retina of turtle. J. Vis. 2: 204–217.

    PubMed  Google Scholar 

  • Dowling JE (1987) The retina: An approachable part of the brain. Belknapp Press, Cambridge, MA.

    Google Scholar 

  • Eckhorn R, Reitboeck HJ, Arndt M, Dicke P (1990) Feature linking via synchronization among distributed assemblies: Simulations of results from cat visual cortex. Neural Comput. 2: 293–307.

    Google Scholar 

  • Eldred WD, Cheung K (1989) Immunocytochemical localization of glycine in the retina of the turtle (Pseudemys scripta). Vis. Neurosci. 2: 331–338.

    PubMed  CAS  Google Scholar 

  • Flannery BP, Teukolski SA, Press WH, Vettering WT (1993) Numerical recipes in C. Cambridge UP, Cambridge, MA.

    Google Scholar 

  • Gaudiano P (1994) Simulations of X and Y retinal ganglion cell behavior with a nonlinear push-pull model of spatiotemporal retinal processing. Vision Res. 34: 1767–1784.

    Article  PubMed  CAS  Google Scholar 

  • Golcich MA, Morgan IG, Dvorak DR (1990) Selective abolition of OFF-responses in kainic acid-lesioned chicken retina. Brain Res. 535: 288–300.

    Article  PubMed  CAS  Google Scholar 

  • Granda AM, Fulbrook JE (1989) Classification of turtle retinal ganglion cells. J. Neurophysiol. 62: 723–737.

    PubMed  CAS  Google Scholar 

  • Guiloff GD, Jones J, Kolb H (1988) Organization of the inner plexiform layer of the turtle retina: An electron microscopic study. J. Comp. Neurol. 272: 280–292.

    Article  PubMed  CAS  Google Scholar 

  • Hennig MH, Funke K (2001) A biophysically realistic simulation of the vertebrate retina. Neurocomputing 38–40: 659–665.

    Article  Google Scholar 

  • Hennig MH, Funke K, Wörgötter F (2002) The influence of different retinal subcircuits on the nonlinearity of ganglion cell behavior. J. Neurosci. 22: 8726–8738.

    PubMed  CAS  Google Scholar 

  • Itzhaki A, Perlman I (1984) Light adaptation in luminosity horizontal cells in the turtle retina. Vision Res. 24: 1119–1126.

    Article  PubMed  CAS  Google Scholar 

  • Jensen RJ, DeVoe RD (1982) Ganglion cells and (dye-coupled) amacrine cells in the turtle retina that have possible synaptic connection. Brain Res. 240: 146–150.

    Article  PubMed  CAS  Google Scholar 

  • Keat J, Reinagel P, Reid RC, Meister M (2001) Predicting every spike: A model for the responses of visual neurons. Neuron 30: 803–817.

    Article  PubMed  CAS  Google Scholar 

  • Kenyon GT, Moore B, Jeffs J, Denning KS, Stephens GJ, Travis BJ, George JS, Theiler J, Marshak DW (2003) A model of high-freqeuncy oscillatory potentials in retinal ganglion cells. Vis. Neurosci. 20: 465–480.

    Article  PubMed  Google Scholar 

  • Kittila CA, Granda AM (1994) Functional morphologies of retinal ganglion cells in the turtle. J. Comp. Neurol. 350: 623–645.

    Article  PubMed  CAS  Google Scholar 

  • Lukasiewicz PD, Werblin FS (1990) The spatial distribution of excitatory and inhibitory inputs to ganglion cell dendrites in the tiger salamander retina. J. Neurosci. 10: 210–221.

    PubMed  CAS  Google Scholar 

  • Lukasiewicz PD, Lawrence JE, Valentino TL (1995) Desensitizing glutamate receptors shape excitatory synaptic inputs to tiger salamander retinal ganglion cells. J. Neurosci. 15: 6189–6199.

    PubMed  CAS  Google Scholar 

  • MacNeil MA, Masland RH (1998) Extreme diversity among amacrine cells: implications for function. Neuron 20: 971–982.

    Article  PubMed  CAS  Google Scholar 

  • Maguire G, Lukasiewicz PD, Werblin FS (1989) Amacrine cell interactions underlying the response to change in the tiger salamander retina. J. Neurosci. 10: 210–221.

    Google Scholar 

  • Mainen ZF, Sejnowski TJ (1995) Reliability of spike timing in neocortical neurons. Science 268: 1503–1506.

    PubMed  CAS  Google Scholar 

  • Marchiafava PL (1979) The responses of retinal ganglion cells to stationary and moving visual stimuli. Vision Res. 19: 1203–1211.

    Article  PubMed  CAS  Google Scholar 

  • Marchiafava PL, Weiler R (1982) The photoresponses of structurally identified amacrine cells in the turtle retina. Proc. Royal Soc. London B 214: 403–415.

    Article  CAS  Google Scholar 

  • Masland RH (2001a) Neuronal diversity in the retina. Curr. Opin. Neurobiol. 11: 431–436.

    Article  PubMed  CAS  Google Scholar 

  • Masland RH (2001b) The fundamental plan of the retina. Nat. Neurosci. 4: 877–886.

    Article  PubMed  CAS  Google Scholar 

  • Miller RF (1979) The neuronal basis of ganglion cell receptive field organization and the physiology of amacrine cells. In: FO Schmitt, FG Worden, eds. The Neuroscience, Fourth Study Program. MIT Press, Cambridge, MA. pp. 227–245.

    Google Scholar 

  • Miller RF, Dacheux RF (1976) Synaptic organization and ionic basis of ON and OFF channels in the mudpuppy retina. III. A model of ganglion cell receptive field organization based on chloride-free experiments. J. Gen. Physiol. 67: 679–690.

    Article  PubMed  CAS  Google Scholar 

  • Morgan IG (1992) What do amacrine cells do? Prog. Retin. Res. 11: 193–214.

    Article  Google Scholar 

  • Muller JF, Ammermüller J, Normann RA, Kolb H (1991) Synaptic inputs to physiologically defined turtle retinal ganglion cells. Vis. Neurosci. 7: 409–429.

    PubMed  CAS  Google Scholar 

  • Müller F, Kaupp UB (1998) Signaltransduktion in Sehzellen. Naturwissenschaften 85: 49–61.

    Article  PubMed  Google Scholar 

  • Netzer E, DeKorver L, Ammermüller J, Kolb H (1997) Neural circuitry and light responses of the dopamine amacrine cell in the turtle retina. Mol. Vis. 3: 6–12.

    PubMed  Google Scholar 

  • Nirenberg S, Meister M (1997) The light response of retinal ganglion cells is truncated by a displaced amacrine cell circuit. Neuron 18: 637–650.

    Article  PubMed  CAS  Google Scholar 

  • Normann RA, Perlman I (1979a) The effect of background illumination on the photoresponses of red and green cones. J. Physiol. 286: 491–507.

    PubMed  CAS  Google Scholar 

  • Normann RA, Perlman I (1979b) Signal transmission from red cones to horizontal cells in the turtle retina. J. Physiol. 286: 509– 524.

    PubMed  CAS  Google Scholar 

  • Puchalla JL, Schneidmann E, Harris RA, Berry MJ (2005) Redundancy in the population code of the retina. Neuron 46: 493–504.

    Article  PubMed  CAS  Google Scholar 

  • Roska B, Nemeth E, Werblin F (1998) Response to change is facilitated by a three-neuron disinhibitory pathway in the tiger salamander retina. J. Neurosci. 18: 3451–3459.

    PubMed  CAS  Google Scholar 

  • Sakai HM, Naka K-I (1987a) Signal transmission in the catfish retina. IV. Transmission to ganglion cells. J. Neurophysiol. 58: 1307–1328.

    PubMed  CAS  Google Scholar 

  • Sakai HM, Naka K-I (1987b) Signal transmission in the catfish retina. V. Sensitivity and circuit. J. Neurophysiol. 58: 1329–1350.

    PubMed  CAS  Google Scholar 

  • Sakai HM, Naka K-I (1988) Neuron network in catfish retina. Prog. Retin. Res. 7: 149–208.

    Article  Google Scholar 

  • Schwartz EA (1973) Organization of ON-OFF cells in the retina of the turtle. J. Physiol. 230: 1–14.

    PubMed  CAS  Google Scholar 

  • Sestokas AK, Lehmkuhle S, Kratz KE (1991) Relationship between response latency and amplitude for ganglion and geniculate X- and Y-cells in the cat. Int. J. Neurosci. 60: 59–64.

    PubMed  CAS  Google Scholar 

  • Teeters J, Jacobs A, Werblin F (1997) How neural interactions form neural responses in the salamander retina. J. Comput. Neurosci. 4: 5–27.

    Article  PubMed  CAS  Google Scholar 

  • Toyoda J, Hashimoto H, Ohtsu K (1973) Bipolar-amacrine transmission in the carp retina. Vision Res. 13: 295–307.

    Article  PubMed  CAS  Google Scholar 

  • van Hateren JH (1997) Processing of natural time series of intensities by the visual system of the blowfly. Vision Res. 37: 3407–3416.

    Article  PubMed  CAS  Google Scholar 

  • van Hateren JH, Rüttiger L, Sun H, Lee BB (2002) Processing of natural temporal stimuli by macaque retinal ganglion cells. J. Neurosci. 22: 9945–9960.

    PubMed  CAS  Google Scholar 

  • Victor JD (1987) The dynamics of the cat retinal X cell centre. J. Physiol. 386: 219–246.

    PubMed  CAS  Google Scholar 

  • Victor JD, Purpura KP (1996) Nature and precision of temporal coding in visual cortex: A metric-space analysis. J. Neurophysiol. 76: 1310–1326.

    PubMed  CAS  Google Scholar 

  • Vigh J, Witkovsky P (2004) Neurotransmitter actions on transient amacrine and ganglion cells of the turtle retina. Vis. Neurosci. 21: 1–11.

    Article  PubMed  Google Scholar 

  • Werblin FS, Dowling JE (1969) Organization of the retina of the mudpuppy, Necturus maculosus. II. Intracellular recording. J. Neurophysiol. 32: 339–355.

    PubMed  CAS  Google Scholar 

  • Werblin FS (1977) Regenerative amacrine cell depolarization and the formation of ON – OFF ganglion cell response. J. Physiol. 264: 767–785.

    PubMed  CAS  Google Scholar 

  • Werblin FS, Maguire G, Lukasiewicz PD, Eliasof S, Wu SM (1988) Neural interactions mediating the detection of motion in the retina of the tiger salamander. Vis. Neurosci. 1: 317–329.

    PubMed  CAS  Google Scholar 

  • Weiler R, Ball AK, Ammermüller J (1991) Neurotransmitter systems in the turtle retina. Prog. Retin. Res. 10: 1–26.

    Article  CAS  Google Scholar 

  • Wilson HR (1997) A neural model of foveal light adaptation and afterimage formation. Vis. Neurosci. 14: 403–423.

    PubMed  CAS  Google Scholar 

  • Zhagloul KA, Boahen K (2004) Optic nerve signals in a neuromorphic chip I: outer and inner retina models. IEEE Trans. Bio-Med. Eng. 51: 657–666.

    Article  Google Scholar 

  • Zucker CL, Ehinger B (1993) Synaptic connections involving immunoreactive glycine receptors in the turtle retina. Vis. Neurosci. 10: 907–914.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andreas Thiel.

Additional information

Action Editor: Jonathan D. Victor

Rights and permissions

Reprints and permissions

About this article

Cite this article

Thiel, A., Greschner, M. & Ammermüller, J. The temporal structure of transient ON/OFF ganglion cell responses and its relation to intra-retinal processing. J Comput Neurosci 21, 131–151 (2006). https://doi.org/10.1007/s10827-006-7863-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10827-006-7863-x

Keywords

Navigation