Skip to main content

Advertisement

Log in

Optimal deep brain stimulation of the subthalamic nucleus—a computational study

  • Published:
Journal of Computational Neuroscience Aims and scope Submit manuscript

Abstract

Deep brain stimulation (DBS) of the subthalamic nucleus, typically with periodic, high frequency pulse trains, has proven to be an effective treatment for the motor symptoms of Parkinson’s disease (PD). Here, we use a biophysically-based model of spiking cells in the basal ganglia (Terman et al., Journal of Neuroscience, 22, 2963–976, 2002; Rubin and Terman, Journal of Computational Neuroscience, 16, 211–235, 2004) to provide computational evidence that alternative temporal patterns of DBS inputs might be equally effective as the standard high-frequency waveforms, but require lower amplitudes. Within this model, DBS performance is assessed in two ways. First, we determine the extent to which DBS causes Gpi (globus pallidus pars interna) synaptic outputs, which are burstlike and synchronized in the unstimulated Parkinsonian state, to cease their pathological modulation of simulated thalamocortical cells. Second, we evaluate how DBS affects the GPi cells’ auto- and cross-correlograms. In both cases, a nonlinear closed-loop learning algorithm identifies effective DBS inputs that are optimized to have minimal strength. The network dynamics that result differ from the regular, entrained firing which some previous studies have associated with conventional high-frequency DBS. This type of optimized solution is also found with heterogeneity in both the intrinsic network dynamics and the strength of DBS inputs received at various cells. Such alternative DBS inputs could potentially be identified, guided by the model-free learning algorithm, in experimental or eventual clinical settings.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Benabid, A. (2003). Deep brain stimulation for Parkinson’s disease. Current Opinion in Neurobiology, 13, 696–706.

    Article  CAS  PubMed  Google Scholar 

  • Benabid, A., Koudsie, A., Benazzouz, A., Piallat, B., Krack, P., Limousin-Dowsey, P., et al. (2001). Advances in neurology, Vol 86: Parkinson’s disease, chapter deep brain stimulation for Parkinson’s disease. Philadelphia: Lippincott Williams & Wilkins.

    Google Scholar 

  • Benazzouz, A., Gao, D., Ni, Z., Piallat, B., Bouali-Benazzouz, R., & Benabid, A. (2000). Effect of high-frequency stimulation of the subthalamic nucleus on the neuronal activities of the substantia nigra pars reticulata and the ventrolateral nucleus of the thalamus. Neuroscience, 99, 289–295.

    Article  CAS  PubMed  Google Scholar 

  • Bergman, H., Feingold, A., Nini, A., Raz, A., Slovin, H., Abeles, M., et al. (1998). Physiological aspects of information processing in the basal ganglia of normal and parkinsonian primates. Trends in Neurosciences, 21, 32–38.

    Article  CAS  PubMed  Google Scholar 

  • Beurrier, C., Bioulac, B., Audin, J., & Hammond, C. (2001). High-frequency stimulation produces a transient blockade of voltage-gated currents in subthalamic neurons. Journal of Neurophysiology, 85, 1351–1356.

    CAS  PubMed  Google Scholar 

  • Boraud, T., Bezard, E., Bioulac, B., & Gross, C. (1996). High frequency stimulation of the internal globus pallidus (gpi) simultaneously improves parkinsonian symptoms and reduces the firing frequency of gpi neurons in the mptp treated monkey. Neuroscience Letters, 215, 17–20.

    Article  CAS  PubMed  Google Scholar 

  • Deep Brain Stimulation for Parkinson’s Disease Study Group. (2001). Deep-brain stimulation of the subthalamic nucleus or the pars interna of the globus pallidus in Parkinson’s disease. New England Journal of Medicine, 345, 956–963.

    Article  Google Scholar 

  • Feng, X., Shea-Brown, E., Greenwald, B., Rabitz, H., & Kosut, R. (2007). Toward closed-loop optimization of deep brain stimulation for Parkinson’s disease: concepts and lessons from a computational model. Journal of Neural Engineering, 4(2), L14-L21.

    Article  PubMed  Google Scholar 

  • Goldberg, D. (1989). Genetic algorithms in search, optimization and machine learning. Boston, MA.: Addison-Wesley.

    Google Scholar 

  • Hahn, P., Lee, D., Russo, G., Vitek, J., & McIntyre, C. (2005). Stimulation on a model of subthalamopallidal network activity. Society for Neuroscience Abstracts, 331.6.

  • Hariz, M., Shamsgovara, P., Johansson, F., Hariz, G., & Fodstad, H. (1999). Tolerance and tremor rebound following long-term chronic thalamic stimulation for parkinsonian and essential tremor. Stereotactactic and Functional Neurosurgery, 72, 208–218.

    Article  CAS  Google Scholar 

  • Hashimoto, T., Elder, E., Okun, M., Patrick, S., & Vitek, J. (2003). Stimulation of the subthalaic nucleus changes the firing pattern of pallidal neurons. Journal of Neuroscience 23, 1916–1923.

    CAS  PubMed  Google Scholar 

  • Hauptmann, C., Popovych, O. V., & Tass, P. A. (2005). Delayed feedback control of synchronization in locally coupled neuronal networks. Neurocomputing, 65, 759–767.

    Article  Google Scholar 

  • Kleiner-Fisman, G., Fisman, D. N., Sime, E., Saint-Cyr, J. A., Lozano, A. M., & Lang, A. E. (2003). Long-term of bilateral deep brain stimulation of the subthalamic nucleus in patients with advanced Parkinson’s disease. Jounal of Neurosurgery, 99, 489–495.

    Article  Google Scholar 

  • Krack, P., Batir, A., van Blercom, N., Chabardes, S., Fraix, V., Ardouin, C., et al. (2003). Five-year follow-up of bilateral stimulation of the subthalamic nucleus in advanced Parkinson’s disease. New England Journal of Medicine, 349, 1925–1934.

    Article  CAS  PubMed  Google Scholar 

  • Lyons, K., Koller, W., Wilkinson, S., & Pahwa, R. (2001). Long term safety and efficacy of unilateral deep brain stimulation of the thalamus for parkinsonian tremor. Journal of Neurology, Neurosurgery and Psychiatry, 71, 682–684.

    Article  CAS  Google Scholar 

  • Magnin, M., Morel, A., & Jeanmonod, D. (2000). Single-unit analysis of the pallidum, thalamus, and subthalamic nucleus in parkinsonian patients. Neuroscience, 96, 549–564.

    Article  CAS  PubMed  Google Scholar 

  • Maurice, N., Thierry, A., Glowinski, J., & Deniau, J. (2003). Spontaneous and evoked activity of substantia nigra pars reticulata neurons during highfrequency stimulation of the subthalamic nucleus. Journal of Neuroscience, 23, 9929–9936.

    CAS  PubMed  Google Scholar 

  • McIntyre, C. C., & Grill, W. M. (2002). Extracellular stimulation of central neurons: Influence of stimulus waveform and frequency on neuronal output. Journal of Neurophysiology, 88, 1592–1604.

    PubMed  Google Scholar 

  • McIntyre, C., Grill, W., Sherman, D., & Thakor, N. V. (2004). Celluar effects of deep brain stimulation: Model-based study of activation and inhibition. Journal of Neurophysiology, 91, 1457–1469.

    Article  PubMed  Google Scholar 

  • Montgomery, E., & Baker, K. (2000). Mechanisms of deep brain stimulation and future technical developments. Neurological Research, 22, 259–266.

    PubMed  Google Scholar 

  • Nini, A., Feingold, A., Slovin, H., & Bergman, H. (1995). Neurons in the globus pallidus do not show correlated activity in the normal monkey, but phase-locked oscillations appear in the mptp model of parkinsonism. Journal Neurophysiology, 74, 1800–1805.

    CAS  Google Scholar 

  • Okun, M., Tagliati, M., Pourfar, M., Fernandez, H,. Rodriguez, R., Alterman, R., et al. (2005). Management of referred deep brain stimulation failures: A retrospective analysis from 2 movement disorders centers. Archives of Neurology, 62, 1250–1255.

    Article  PubMed  Google Scholar 

  • Olanow, W., Brin, M., & Obeso, J. (2000). The role of deep brain stimulation as a surgical treatment for Parkinson’s disease. Neurology, 55(Supp.6):S60–S66.

    CAS  PubMed  Google Scholar 

  • Popovych, O. V., Hauptmann, C., & Tass, P.A. (2005). Effective desynchronization by nonlinear delayed feedback. Physical Review Letters, 94, 164102-1-4.

    Article  PubMed  Google Scholar 

  • Rizzone, M., Lanotte, M., Bergamasco, B., Tavella, A., Torre, E., Faccani, G., et al. (2001). Deep brain stimulation of the subthalamic nucleus in Parkinson’s disease: Effects of variation in stimulation parameters. Journal of Neurology, Neurosurgery and Psychiatry, 71, 215–219.

    Article  CAS  Google Scholar 

  • Rodriguez-Oroz, M. C., Obeso, J. A., Lang, A. E., Houeto, J. L., Pollak, P., et al. (2005). Bilateral deep brain stimulation in Parkinson’s disease: A multicentre study with 4 years follow-up. Brain, 128, 2240–2249.

    Article  CAS  PubMed  Google Scholar 

  • Rodriguez-Oroz, M. C., Zamarbide, I., Guridi, J., Palmero, M. R., & Obeso, J. A. (2004). Efficacy of deep brain stimulation of the subthalamic nucleus in Parkinson’s disease 4 years after surgery: Double blind and open label evaluation. Journal of Neurology, Neurosurgery and Psychiatry, 75, 1382–1385.

    Article  CAS  Google Scholar 

  • Rosenblum, M., & Pikovsky, A. (2004). Delayed feedback control of collective synchrony: An approach to suppression of pathological brain rhythms. Physical Review E, 70, 041904-1-11.

    Article  Google Scholar 

  • Rubin, J., & Terman, D. (2004). High frequency stimulation of the subthalamic nucleus eliminates pathological thalamic rhythmicity in a computational model. Journal of Computational Neuroscience, 16, 211–235.

    Article  PubMed  Google Scholar 

  • Tass, P. A. (1999). Phase resetting in medicine and biology. Stochastic modeling and data analysis. Berlin: Springer.

    Google Scholar 

  • Tass, P. A. (2001). Desynchronizing double-pulse phase resetting and application to deep brain stimulation. Biological Cybernetics, 85, 343–354.

    Article  CAS  PubMed  Google Scholar 

  • Tass, P. A. (2003). A model of desynchronizing deep brain stimulation with a demand-controlled coordinated reset of neural subpopulations. Biological Cybernetics, 89, 81–88.

    Article  PubMed  Google Scholar 

  • Terman, D., Rubin, J., Yew, A., & Wilson, C. J. (2002). Activity patterns in a model for the subthalamopallidal network of the basal ganglia. Journal of Neuroscience, 22, 2963–2976.

    CAS  PubMed  Google Scholar 

  • Windels, F., Bruet, N., Poupard, A., Urbain, N., Chouvet, G., Feuerstein, C., et al. (2000). Effects of high frequency stimulation of subthalamic nucleus on extracellular glutamate and gaba in substantia nigra and globus pallidus in the normal rat. European Journal of Neuroscience, 12, 4141–4146.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eric Shea-Brown.

Additional information

Action Editor: Steven J. Schiff

Xiao-Jiang Feng and Eric Shea-Brown contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Feng, XJ., Shea-Brown, E., Greenwald, B. et al. Optimal deep brain stimulation of the subthalamic nucleus—a computational study. J Comput Neurosci 23, 265–282 (2007). https://doi.org/10.1007/s10827-007-0031-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10827-007-0031-0

Keywords

Navigation