Skip to main content

Advertisement

Log in

Reconstructing parameters of the FitzHugh–Nagumo system from boundary potential measurements

  • Published:
Journal of Computational Neuroscience Aims and scope Submit manuscript

Abstract

We consider distributed parameter identification problems for the FitzHugh–Nagumo model of electrocardiology. The model describes the evolution of electrical potentials in heart tissues. The mathematical problem is to reconstruct physical parameters of the system through partial knowledge of its solutions on the boundary of the domain. We present a parallel algorithm of Newton–Krylov type that combines Newton’s method for numerical optimization with Krylov subspace solvers for the resulting Karush–Kuhn–Tucker system. We show by numerical simulations that parameter reconstruction can be performed from measurements taken on the boundary of the domain only. We discuss the effects of various model parameters on the quality of reconstructions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Akcelik, V. (2002). Multiscale Newton–Krylov Methods for inverse acoustic wave propagation. Ph.D. thesis, Carnegie Mellon University, Pittsburgh, Pennsylvania.

  • Akcelik, V., Biros, G., Ghattas, O., Hill, J., Keyes, D., & van Bloemen Waanders, B. (2006). Parallel algorithms for PDE-constrained optimization. In: M. Heroux, P. Raghaven, & H. Simon (Eds.), Frontiers of parallel computing. SIAM.

  • Argentina, M., Coullet, P., & Krinsky, V. (2000). Head-on collisions of waves in an excitable FitzHugh–Nagumo system: a transition from wave annihilation to classical wave behavior. Journal of Theoretical Biology, 205, 47–52.

    Article  PubMed  CAS  Google Scholar 

  • Balay, S., Buschelman, K., Gropp, W. D., Kaushik, D., Knepley, M. G., McInnes, L. C. & et al. (2007). PETSc Homepage. http://www.mcs.anl.gov/petsc.

  • Banks, H. T., & Kunisch, K. (1989). Estimation techniques for distributed parameter systems. Boston, MA: Birkhäuser.

    Google Scholar 

  • Benzi, M., Haber, E., & Hanson, L. (2006). Multilevel algorithms for large-scale interior point methods in bound constrained optimization. Technical Report TR-2006-002-A, Department of Mathematics and Computer Science, Emory University. 16p.

  • Bernus, O., Verschelde, H., & Panfilov, A. V. (2002). Modified ionic models of cardiac tissue for efficient large scale computations. Physics in Medicine and Biology, 47, 1947–1959.

    Article  PubMed  Google Scholar 

  • Biegler, L., Ghattas, O., Heinkenschloss, M., & Bloemen-Waanders, B. v. (Eds.) (2003). Large-scale PDE-constrained optimization. In Lecture Notes in Computational Science and Engineering. Berlin: Springer-Verlag.

  • Biros, G., & Ghattas, O. (2005a). Parallel Lagrange–Newton–Krylov–Schur methods for PDE-constrained optimization. Part I: The Krylov-Schur solver. SIAM Journal on Scientific Computing, 27, 687–713.

    Article  Google Scholar 

  • Biros, G., & Ghattas, O. (2005b). Parallel Lagrange–Newton–Krylov–Schur methods for PDE-constrained optimization. Part II: The Lagrange–Newton solver and its application to optimal control of steady viscous flows. SIAM Journal on Scientific Computing, 27, 714–739.

    Article  Google Scholar 

  • Brooks, D. H., Ahmad, G. F., MacLeod, R. S., & Maratos, G. M. (1999). Inverse electrocardiography by simultaneous imposition of multiple constraints. IEEE Transactions on Biomedical Engineering, 46, 3–18.

    Article  PubMed  CAS  Google Scholar 

  • Bub, G., Shrier, A., & Glass, L. (2002). Spiral wave generation in heterogeneous excitable media. Physical Review Letters, 88, 058101.

    Article  PubMed  CAS  Google Scholar 

  • Chen, X., & Oshita, Y. (2006). Periodicity and uniqueness of global minimizers of an energy functional containing a long-range interaction. SIAM Journal on Mathematical Analysis, 37, 1299–1332.

    Article  Google Scholar 

  • Cheng, L. K., Bodley, J. M., & Pullan, A. J. (2003). Comparison of potential- and activation-based formulations for the inverse problem of electrocardiology. IEEE Transactions on Biomedical Engineering, 50, 11–22.

    Article  PubMed  Google Scholar 

  • Colli-Franzone P., & Pavarino, L. F. (2004). A parallel solver for reaction-diffusion systems in computational electrocardiology. Mathematical Models and Methods in Applied Sciences, 14, 883–911.

    Article  Google Scholar 

  • Courtemanche, M., Skaggs, W., & Winfree, A. T. (1990). Stable 3-dimensional action-potential circulation in the FitzHugh–Nagumo model. Physica D, 41, 173–182.

    Article  Google Scholar 

  • Cox, S. J. (2006). An adjoint method for channel localization. Mathematical Medicine and Biology, 23, 139–152.

    Article  PubMed  Google Scholar 

  • Cox, S. J., & Griffith, B. E. (2001). Recovering quasi-active properties of dendritic neurons from dual potential recordings. Journal of Computational Neuroscience, 11, 95–110.

    Article  PubMed  CAS  Google Scholar 

  • Cox S. J., & Ji, L. (2003) Discerning ionic currents and their kinetics from input impedance data. Bulletin of Mathematical Biology, 63, 909–932.

    Article  CAS  Google Scholar 

  • Cox, S. J., & Wagner, A. (2004). Lateral overdetermination of the FitzHugh–Nagumo system. Inverse Problems, 20, 1639–1647.

    Article  Google Scholar 

  • Dauby, P. C., Desaive, T., & Croisier, H. (2006). Standing waves in the FitzHugh–Nagumo model of cardiac electrical activity. Physical Review E, 73, 021908.

    Article  CAS  Google Scholar 

  • Davidenko, J. M., Pertsov, A. V., Salomonsz, R., Baxter, W., & Jalefe, J. (1992). Stationary and drifting spiral waves of excitation in isolated cardiac-muscle. Nature, 355, 349–351.

    Article  PubMed  CAS  Google Scholar 

  • Dennis, Jr J. E., & Schnabel, R. B. (1996). Numerical methods for unconstrained optimization and nonlinear equations. In Classics in Applied Mathematics. Philadelphia: SIAM.

    Google Scholar 

  • Eisenstat S. C., & Walker, H. F. (1994). Globally convergent inexact Newton methods, 4, 393–422.

    Google Scholar 

  • Elmer, C. E., & Van Vleck, E. S. (2005). Spatially discrete FitzHugh–Nagumo equations. SIAM Journal on Applied Mathematics, 65, 1153–1174.

    Article  Google Scholar 

  • Engl, H. W., Hanke, M., & Neubauer, A. (1996). Regularization of inverse problems. Dordrecht: Kluwer.

    Google Scholar 

  • FitzHugh, R. (1961). Impulses and physiological states in theoretical models of nerve membrane. Biophysical Journal, 1, 445–466.

    Article  PubMed  Google Scholar 

  • Franzone, P. C., Pavarino, L. F., & Taccardi, B. (2005). Simulating patterns of excitation, repolarization and action potential duration with cardiac bidomain and monodomain models. Mathematical Biosciences, 197, 35–66.

    Article  Google Scholar 

  • Gao, W., & Wang, J. (2004). Existence of wavefronts and impulses to FitzHugh–Nagumo equations. Nonlinear Analysis, 57, 667–676.

    Article  Google Scholar 

  • Haber, E., Ascher, U., & Oldenburg, D. (2000). On optimization techniques for solving nonlinear inverse problems. Inverse Problems, 16, 1263–1280.

    Article  Google Scholar 

  • Hansen, P. C., & O’Leary, D. P. (1993). The use of L-curve in the regularization of discrete ill-posed problems. SIAM Journal on Scientific Computing, 14, 1487–1503.

    Article  Google Scholar 

  • Hoffman, D. A., Magee, J. C., Colbert, C. M., & Johnston, D. (1997). K + Channel regulation of signal propagation in dendrites of hippocampal pyramidal neurons. Nature, 387, 869–875.

    Article  PubMed  CAS  Google Scholar 

  • Isakov, V. (1998). Inverse problems for partial differential equations. New York: Springer-Verlag.

    Google Scholar 

  • Knoll, D. A., & Keyes, D. E. (2004). Jacobian-free Newton–Krylov methods: A survey of approaches and applications. Journal of Comparative Physiology, 193, 357–397.

    Google Scholar 

  • Krupa, M., Sandstede, B., & Szmolyan, P. (1997). Fast and slow waves in the FitzHugh–Nagumo equation. Journal of Differential Equations, 133, 49–97.

    Article  Google Scholar 

  • MacLeod, R. S., & Brooks, D. H. (1998). Recent progress in inverse problems in electrocardiology. IEEE Engineering in Medicine and Biology Magazine, 17, 73–83.

    Article  PubMed  CAS  Google Scholar 

  • Moreau-Villéger, V., Delingette, H., Sermesant, M., Ashikaga, H., Faris, O., & McVeigh, E., et al. (2006). Building maps of local apparent conductivity of the epicardium with a 2D electrophysiological model of the heart. IEEE Transactions on Biomedical Engineering 53(8), 1457–1466.

    Google Scholar 

  • Murillo, M., & Cai, X.-C. (2004). A fully implicit parallel algorithm for simulating the non-linear electrical activity of the heart. Numerical Linear Algebra with Applications, 11, 261–277.

    Article  Google Scholar 

  • Murray, J. D. (1993). Mathematical biology. Berlin: Springer

    Google Scholar 

  • Nagumo, J., Arimoto, S., & Yoshizawa, S. (1962). An active pulse transmission line simulating nerve axon. Proceedings of the Institute of Radio Engineers, 50, 2061–2070.

    Google Scholar 

  • Nii, S. (1997). Stability of traveling multiple-front (multiple-back) wave solutions of the FitzHugh–Nagumo equations. SIAM Journal on Mathematical Analysis, 28, 1094–1112.

    Article  Google Scholar 

  • Nocedal, J. & Wright, S. J. (1999). Numerical optimization. New York: Springer-Verlag.

    Google Scholar 

  • Patel, S. G., & Roth, B. J. (2005). Approximate solution to the bidomain equations for electrocardiogram problems. Physical Review E, 72, 051931.

    Article  CAS  Google Scholar 

  • Pennacchio, M., Savare, G., & Franzone, P. C. (2006). Multiscale modeling for the bioelectric activity of the heart. SIAM Journal on Mathematical Analysis, 37, 1333–1370.

    Article  Google Scholar 

  • Pernarowski, M. (2001). Controllability of excitable systems. Bulletin of Mathematical Biology, 63, 167–184.

    Article  PubMed  CAS  Google Scholar 

  • Petersson, J. H. (2005). On global existence for semilinear parabolic systems. Nonlinear Analysis, 60, 337–347.

    Article  Google Scholar 

  • Riccio, M. L., Koller, M. L., & Gilmour, P. F. (1999). Electrical restitution and spatiotemporal organization during ventricular fibrillation. Circulation Research, 84, 955– 963.

    PubMed  CAS  Google Scholar 

  • Roth, B. J. (2004). Art Winfree and the bidomain model of cardiac tissue. Journal of Theoretical Biology, 230, 445–449.

    Article  PubMed  Google Scholar 

  • Saad, Y. (2003). Iterative methods for sparse linear systems, 2nd ed. Philadelphia: SIAM.

    Google Scholar 

  • Scott, A. C. (1975). The electrophysics of a nerve fiber. Reviews of Modern Physics, 47, 487–533.

    Article  Google Scholar 

  • Shahidi, V., Savard, P., & Nadeau, R. (1994). Forward and inverse problem of electrocardiography: Modeling and recovery of epicardial potentials in humans. IEEE Transactions on Biomedical Engineering, 41, 249–256.

    Article  PubMed  CAS  Google Scholar 

  • Sneyd, J., Dale, P. D., & Duffy, A. (1998). Traveling waves in buffered systems: applications to calcium waves. SIAM Journal on Applied Mathematics, 58, 1178–1192.

    Article  Google Scholar 

  • Suckley, R., & Biktashev, V. N. (2003). Comparison of asymptotics of heart and nerve excitability. Physical Review E, 68, 011902.

    Article  CAS  Google Scholar 

  • Tsai, J.-C., & Sneyd, J. (2005). Existence and stability of traveling waves in buffered systems. SIAM Journal on Applied Mathematics, 66, 237–265.

    Article  Google Scholar 

  • Vanier, M. C., & Bower, J.-M. (1999). A comparative survey of automated parameter-search methods for compartmental neural models. Journal of Computational Neuroscience, 7, 149–171.

    Article  PubMed  CAS  Google Scholar 

  • Vogel, C. R. (1996). Non-convergence of the L-curve regularization parameter selection method. Inverse Problems, 12, 535–547.

    Article  Google Scholar 

  • Vogel, C. R. (2002). Computational methods for inverse problems. In Frontiers in applied mathematics. Philadelphia: SIAM.

    Google Scholar 

  • Weiss, J. N., Garfinkel, A., Karagueuzian, H. S., Qu, Z., & Chen, P. S. (1999). Chaos and the transition to ventricular fibrillation—A new approach to antiarrhythmic drug evaluation. Circulation, 99, 2819–2826.

    PubMed  CAS  Google Scholar 

  • Willms, A. R., Baro, D. J., Harris-Warrick, R. M., & Guckenheimer, J. (1999). An improved parameter estimation method for Hodgkin–Huxley models. Journal of Computational Neuroscience, 6, 145–168.

    Article  PubMed  CAS  Google Scholar 

  • Winfree, A. T. (1990). Stable particle-like solutions to the nonlinear-wave equations of 3-dimensional excitable media. SIAM Review, 32, 1–53.

    Article  Google Scholar 

  • Yamada, H., & Nozaki, K. (1990). Interaction of pulses in dissipative systems. FitzHugh–Nagumo equations. Progress of Theoretical Physics, 84, 801–809.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuan He.

Additional information

Action Editor: David Terman

Rights and permissions

Reprints and permissions

About this article

Cite this article

He, Y., Keyes, D.E. Reconstructing parameters of the FitzHugh–Nagumo system from boundary potential measurements. J Comput Neurosci 23, 251–264 (2007). https://doi.org/10.1007/s10827-007-0035-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10827-007-0035-9

Keywords

Navigation