Skip to main content
Log in

Spike-frequency adaptation generates intensity invariance in a primary auditory interneuron

  • Published:
Journal of Computational Neuroscience Aims and scope Submit manuscript

Abstract

Adaptation of the spike-frequency response to constant stimulation, as observed on various timescales in many neurons, reflects high-pass filter properties of a neuron’s transfer function. Adaptation in general, however, is not sufficient to make a neuron’s response independent of the mean intensity of a sensory stimulus, since low frequency components of the stimulus are still transmitted, although with reduced gain. We here show, based on an analytically tractable model, that the response of a neuron is intensity invariant, if the fully adapted steady-state spike-frequency response to constant stimuli is independent of stimulus intensity. Electrophysiological recordings from the AN1, a primary auditory interneuron of crickets, show that for intensities above 60 dB SPL (sound pressure level) the AN1 adapted with a time-constant of ~40 ms to a steady-state firing rate of ~100 Hz. Using identical random amplitude-modulation stimuli we verified that the AN1’s spike-frequency response is indeed invariant to the stimulus’ mean intensity above 60 dB SPL. The transfer function of the AN1 is a band pass, resulting from a high-pass filter (cutoff frequency at 4 Hz) due to adaptation and a low-pass filter (100 Hz) determined by the steady-state spike frequency. Thus, fast spike-frequency adaptation can generate intensity invariance already at the first level of neural processing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Baccus, S. A., & Meister, M. (2002). Fast and slow contrast adaptation in retinal circuitry. Neuron, 36, 909–919.

    Article  PubMed  CAS  Google Scholar 

  • Barlow, H. B. (1961). Possible principles underlying the transformation of sensory messages. In W. Rosenblith (Ed.), Sensory communication (pp. 217–234). Cambridge, MA: MIT Press.

    Google Scholar 

  • Benda, J., & Herz, A. V. M. (2003). A universal model for spike-frequency adaptation. Neural Computation, 15, 2523–2564.

    Article  PubMed  Google Scholar 

  • Benda, J., Longtin, A., & Maler, L. (2005). Spike-frequency adaptation separates transient communication signals from background oscillations. Journal of Neuroscience, 25, 2312–2321.

    Article  PubMed  CAS  Google Scholar 

  • Brenner, N., Bialek, W., & de Ruyter van Steveninck, R. (2000). Adaptive rescaling maximizes information transfer. Neuron, 26, 695–702.

    Article  PubMed  CAS  Google Scholar 

  • Cartling, B. (1996). A low-dimensional, time resolved and adapting model neuron. International Journal of Neural Systems, 7, 237–246.

    Article  PubMed  CAS  Google Scholar 

  • Dean, I., Harper, N. S., & McAlpine, D. (2005). Neural population coding of sound level adapts to stimulus statistics. Nature Neuroscience, 8, 1684–1689.

    Article  PubMed  CAS  Google Scholar 

  • Doolan, J. M., & Pollack, G. S. (1985). Phonotactic specifity of the cricket Teleogryllus oceanicus: Intensity-dependent selectivity for temporal parameters of the stimulus. Journal of Comparative Physiology, A, 157, 223–233.

    Article  Google Scholar 

  • Esch, H., Huber, F., & Wohlers, D. W. (1980). Primary auditory neurons in crickets: Physiology and central projections. Journal of Comparative Physiology, A, 137, 27–38.

    Article  Google Scholar 

  • Fairhall, A. L., Lewen, G. D., Bialek, W., & de Ruyter van Steveninck, R. R. (2001). Efficiency and ambiguity in an adaptive neural code. Nature, 412, 787–792.

    Article  PubMed  CAS  Google Scholar 

  • Fourcaud-Trocmé, N., Hansel, D., van Vreeswijk, C., & Brunel, N. (2003). How spike generation mechanisms determine the neuronal response to fluctuating inputs. Journal of Neuroscience, 23, 11628–11640.

    PubMed  Google Scholar 

  • French, A. S., Höger, U., Sekizawa, S. I., & Torkkeli, P. H. (2001). Frequency response functions and information capacities of paired spider mechanoreceptor neurons. Biological Cybernetics, 85, 293–300.

    Article  PubMed  CAS  Google Scholar 

  • French, A. S., & Torkkeli, P. H. (1994). The time course of sensory adaptation in the cockroach tactile spine. Neuroscience Letters, 178, 147–150.

    Article  PubMed  CAS  Google Scholar 

  • Fuhrmann, G., Markram, H., & Tsodyks, M. (2002). Spike frequency adaptation and neocortical rhythms. Journal of Neurophysiology, 88, 761–770.

    PubMed  Google Scholar 

  • Gabbiani, F., & Krapp, H. G. (2006). Spike-frequency adaptation and intrinsic properties of an identified, looming-sensitive neuron. Journal of Neurophysiology, 96, 2951–2962.

    Article  PubMed  Google Scholar 

  • Gabbiani, F., Krapp, H. G., Hatsopoulos, N., Mo, C. H., Koch, C., & Laurent, G. (2004). Multiplication and stimulus invariance in a looming-sensitive neuron. Journal of physiology Paris, 98, 19–34.

    Article  Google Scholar 

  • Hennig, R. M. (1988). Ascending auditory interneurons in the cricket Teleogryllus commodus (Walker): Comparative physiology and direct connections with afferents. Journal of Comparative Physiology, A, 163, 135–143.

    Article  CAS  Google Scholar 

  • Hennig, R. M. (2003). Acoustic feature extraction by cross-correlation in crickets? Journal of Comparative Physiology, A, 189, 589–598.

    Article  CAS  Google Scholar 

  • Hennig, R. M., & Weber, T. (1997). Filtering of temporal parameters of the calling song by cricket females of two closely related species: A behavioural analysis. Journal of Comparative Physiology A, 180, 621–630.

    Article  Google Scholar 

  • Horseman, G., & Huber, F. (1994a). Sound localisation in crickets I: Contralateral inhibition of an ascending auditory interneuron (AN1) in the cricket Gryllus bimaculatus. Journal of Comparative Physiology, A, 175, 389–398.

    Google Scholar 

  • Horseman, G., & Huber, F. (1994b). Sound localisation in crickets II: Modelling the role of a simple neural network in the prothoracic ganglion. Journal of Comparative Physiology, A, 175, 399–413.

    Article  Google Scholar 

  • Huber, F., Moore, T. E., & Loher, W. (1989). Cricket behavior and neurobiology. Ithaca, NY: Cornell University Press.

    Google Scholar 

  • Kim, K. J., & Rieke, F. (2003). Slow Na+ inactivation and variance adaptation in salamander retinal ganglion cells. Journal of Neuroscience, 23, 1506–1516.

    PubMed  CAS  Google Scholar 

  • Knight, B. W. (1972). Dynamics of encoding in a population of neurons. Journal of General Physiology, 59, 734–766.

    Article  PubMed  CAS  Google Scholar 

  • Kvale, M. N., & Schreiner, C. E. (2004). Short-term adaptation of auditory receptive fields to dynamic stimuli. Journal of Neurophysiology, 91, 604–612.

    Article  PubMed  Google Scholar 

  • Laughlin, S. B. (1989). The role of sensory adaptation in the retina. Journal of Experimental Biology, 146, 39–62.

    PubMed  CAS  Google Scholar 

  • Maravall, M., Petersen, R. S., Fairhall, A. L., Arabzadeh, E., & Diamond, M. E. (2007). Shifts in coding properties and maintenance of information transmission during adaptation in barrel cortex. PLoS Biology, 5(2), e19.

    Article  PubMed  CAS  Google Scholar 

  • Marsat, G., & Pollack, G. S. (2005). Effect of the temporal pattern of contralateral inhibition on sound localization cues. Journal of Neuroscience, 25, 6137–6144.

    Article  PubMed  CAS  Google Scholar 

  • Nelken, I., Fishbach, A., Las, L., Ulanovsky, N., & Farkas, D. (2003). Primary auditory cortex of cats: Feature detection or something else? Biological Cybernetics, 89, 397–406.

    Article  PubMed  Google Scholar 

  • Nelson, M. E., Xu, Z., & Payne, J. R. (1997). Characterization and modeling of P-type electrosensory afferent responses to amplitude modulations in a wave-type electric fish. Journal of Comparative Physiology, A, 181, 532–544.

    Article  CAS  Google Scholar 

  • Park, T. J., Klug, A., Holinstat, M., & Grothe, B. (2004). Interaural level difference processing in the lateral superior olive and the inferior colliculus. Journal of Neurophysiology, 92, 289–301.

    Article  PubMed  Google Scholar 

  • Pollack, G. S. (1988). Selective attentiion in an insect auditory neuron. Journal of Neuroscience, 8, 2635–2639.

    PubMed  CAS  Google Scholar 

  • Pollack, G. S., & El-Feghaly, E. (1993). Calling song recognition in the cricket Teleogryllus oceanicus: Comparison of the effects of stimulus intensity and sound spectrum on selectivity for temporal patterns. Journal of Comparative Physiology, A, 171, 759–765.

    Article  Google Scholar 

  • Press, W. H., Teukolsky, S. A., Vetterling, W. T., & Flannery, B. P. (1992). Numerical recipes in C (2nd edn.). Cambridge: Cambridge University Press.

    Google Scholar 

  • Reinagel, P. (2001). Neurobiology: The many faces of adaptation. Nature, 412, 776–777.

    Article  PubMed  CAS  Google Scholar 

  • Römer, H., & Krusch, M. (2000). A gain-control mechanism for processing of chorus sounds in the afferent auditory pathway of the bushcricket Tettigonia viridissima (Orthoptera; Tettigoniidae). Journal of Comparative Physiology, A, 186, 181–191.

    Article  Google Scholar 

  • Sanchez-Vives, M. V., Nowak, L. G., & McCormick, D. A. (2000). Membrane mechanisms underlying contrast adaptation in cat area 17 in vivo. Journal of Neuroscience, 20, 4267–4285.

    PubMed  CAS  Google Scholar 

  • Schildberger, K. (1984). Temporal selectivity of identified auditory neurons in the cricket brain. Journal of Comparative Physiology A, 155, 171–185.

    Article  Google Scholar 

  • Schildberger, K., & Hörner, M. (1988). The function of auditory neurons in cricket phonotaxis. Journal of Comparative Physiology, A, 163, 621–631.

    Article  Google Scholar 

  • Smirnakis, S. M., Berry, M. J., Warland, D. K., Bialek, W., & Meister, M. (1997). Adaptation of retinal processing to image contrast and spatial scale. Nature, 386, 69–73.

    Article  PubMed  CAS  Google Scholar 

  • Sobel, E. C., & Tank, D. W. (1994). In vivo Ca2+ dynamics in a cricket auditory neuron: An example of chemical computation. Science, 263, 823–826.

    Article  PubMed  CAS  Google Scholar 

  • Solomon, S. G., Peirce, J. W., Dhruv, N. T., & Lennie, P. (2004). Profound contrast adaptation early in the visual pathway. Neuron, 42, 155–162.

    Article  PubMed  CAS  Google Scholar 

  • Ulanovsky, N., Las, L., Farkas, D., & Nelken, I. (2004). Multiple time scales of adaptation in auditory cortex neurons. Journal of Neuroscience, 24, 10440–10453.

    Article  PubMed  CAS  Google Scholar 

  • Wang, X. J. (1998). Calcium coding and adaptive temporal computation in cortical pyramidal neurons. Journal of Neurophysiology, 79, 1549–1566.

    PubMed  CAS  Google Scholar 

  • Weber, T., Thorson, J., & Huber, F. (1981). Auditory behaviour of the cricket I dynamics of compensated walking and discrimination paradigms on the kramer treadmill. Journal of Comparative Physiology A, 141, 215–232.

    Article  Google Scholar 

  • Wiskott, L. (2003). Slow feature analysis: A theoretical analysis of optimal free responses. Neural Computation, 15, 2147–2177.

    Article  PubMed  Google Scholar 

  • Wohlers, D. W., & Huber, F. (1982). Processing of sound signals by six types of neurons in the prothoracic ganglion of the cricket, Gryllus campestrisL. Journal of Comparative Physiology A, 146, 161–173.

    Article  Google Scholar 

  • Xu, Z., Payne, J. R., & Nelson, M. E. (1996). Logarithmic time course of sensory adaptation in electrosensory afferent nerve fibers in a weakly electric fish. Journal of Neurophysiology, 76, 2020–2032.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jan Benda.

Additional information

Action Editor: Israel Nelken

Rights and permissions

Reprints and permissions

About this article

Cite this article

Benda, J., Hennig, R.M. Spike-frequency adaptation generates intensity invariance in a primary auditory interneuron. J Comput Neurosci 24, 113–136 (2008). https://doi.org/10.1007/s10827-007-0044-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10827-007-0044-8

Keywords

Navigation