Skip to main content
Log in

Parameter estimation for a leaky integrate-and-fire neuronal model from ISI data

  • Published:
Journal of Computational Neuroscience Aims and scope Submit manuscript

Abstract

The Ornstein-Uhlenbeck process has been proposed as a model for the spontaneous activity of a neuron. In this model, the firing of the neuron corresponds to the first passage of the process to a constant boundary, or threshold. While the Laplace transform of the first-passage time distribution is available, the probability distribution function has not been obtained in any tractable form. We address the problem of estimating the parameters of the process when the only available data from a neuron are the interspike intervals, or the times between firings. In particular, we give an algorithm for computing maximum likelihood estimates and their corresponding confidence regions for the three identifiable (of the five model) parameters by numerically inverting the Laplace transform. A comparison of the two-parameter algorithm (where the time constant τ is known a priori) to the three-parameter algorithm shows that significantly more data is required in the latter case to achieve comparable parameter resolution as measured by 95% confidence intervals widths. The computational methods described here are a efficient alternative to other well known estimation techniques for leaky integrate-and-fire models. Moreover, it could serve as a template for performing parameter inference on more complex integrate-and-fire neuronal models.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Abramowitz, M., & Stegun, I. R. (1972). Handbook of mathematical functions (9th ed.). New York: Dover Publications Inc.

    Google Scholar 

  • Arnold, L. (1974). Stochastic differential equations: Theory and applications. New York: John Wiley and Sons.

    Google Scholar 

  • Bender, C. M., & Orzag, S. A. (1978). Advanced mathematical methods for scientists and engineers. New York: McGraw Hill.

    Google Scholar 

  • Broyden, C. G. (1965). A class of methods for solving nonlinear simultaneous equations. Mathematical Computing, 19, 577–593.

    Article  Google Scholar 

  • Burkitt, A. N., & Clark, G. M. (2000). Calculation of interspike intervals for integrate-and-fire neurons with poisson distribution of synaptic inputs. Neural Computation, 12, 1789–1820.

    Article  PubMed  CAS  Google Scholar 

  • Burkitt, A. N. (2001). Balanced neurons: Analysis of leaky integrate-and-fire neurons with reversal potentials. Biological Cybernetics, 85, 247–255.

    Article  CAS  Google Scholar 

  • Burkitt, A. N. (2006a). A review of the integrate-and-fire neuron model: I. Homogenous synaptic input. Biological Cybernetics, 95, 1–19.

    Article  PubMed  CAS  Google Scholar 

  • Burkitt, A. N. (2006b). A review of the integrate-and-fire neuron model: II. Inhomogenous synaptic input and network properties. Biological Cybernetics, 95, 97–112.

    Article  PubMed  CAS  Google Scholar 

  • Capocelli, R. M., & Ricciardi, L. M. (1972). On the inverse of the first passage time probability problem. Journal of Applied Probability, 9, 270–287.

    Article  Google Scholar 

  • Churchill, R. V. (1981). Operational mathematics. New York: McGraw Hill.

    Google Scholar 

  • D’Amore, L., Laccetti, G., & Murli, A. (1999). An implementation of a fourier series method for the numerical inversion of the laplace transform. ACM Transactions on Mathematical Software, 25, 279–305.

    Article  Google Scholar 

  • Darling, D., & Siegert, A. (1953). The first passage problem for a continuous markov process. Annals of Mathematical Statistics, 24, 624–639.

    Article  Google Scholar 

  • De Hoog, F. R., Knight, J. H., & Stokes, A. N. (1982). An improved method for numerical inversion of laplace transforms. SIAM Journal of Scientific and Statistical Computing, 3, 357–366.

    Article  Google Scholar 

  • Ditlevsen, S., & Ditlevsen, O. (2006). Parameter estimation from observations of first-passage times of the Ornstein–Uhlenbeck process and the feller process. Presented at the fifth computational stochastic mechanics conference.

  • Hodgkin, A. L., & Huxley, A. F. (1952). A quantitative description of membrane current and its application to conduction and excitation in nerves. Journal of Physiology, 117, 500–544.

    PubMed  CAS  Google Scholar 

  • Inoue, J., Sato, S., & Ricciardi, L. (1995). On the parameter estimation for diffusion models of single neuron’s activities. Biological Cybernetics, 73, 209–221.

    Article  PubMed  CAS  Google Scholar 

  • Jolivet, R., & Gerstner, W. (2004). Predicting spike times of a detailed conductance-based neuron model driven by stochastic spike arrival. Journal of Physiology (Paris), 98, 442–451.

    Article  Google Scholar 

  • Jolivet, R., Lewis, T. J., & Gerstner, W. (2004). Generalized integrate-and-fire models of neuronal activity approximate spike trains of a detailed model to a high degree of accuracy. Journal of Neurophysiology, 92, 959–976.

    Article  PubMed  Google Scholar 

  • Jolivet, R., Rauch, A., Lüscher, H. R., & Gerstner, W. (2006). Predicting spike timing of neocortical pyramidal neurons by simple threshold models. Journal of Computational Neuroscience, 21, 35–49.

    Article  PubMed  Google Scholar 

  • Kano, P. O., Moysey, B., & Moloney, J. V. (2005). Application of weeks method for the numerical inversion of the laplace transform of the matrix exponential. Computational Mathematical Sciences, 3, 335–372.

    Google Scholar 

  • Karlin, S., & Taylor, H. (1981). A second course in stochastic processes. New York: Academic Press.

    Google Scholar 

  • Keat, J., Reinagel, P., Reid, R. K., & Meister, M. (2001). Predicting every spike: A model for the responses of visual neurons. Neuron, 30, 803–817.

    Article  PubMed  CAS  Google Scholar 

  • Lánský, P., Sacerdote, L., & Tomassetti, F. (1995). On the comparison of Feller and Ornstein–Uhlenbeck models for neural activity. Biological Cybernetics, 73, 457–465.

    Article  PubMed  Google Scholar 

  • Lánský, P., Sanda, P., & He, J. (2006). The parameters of the stochastic leaky integrate-and-fire neuronal model. Journal of Computational Neuroscience, 21, 211–223.

    Article  PubMed  Google Scholar 

  • Lebedev, N. N. (1972). Special functions and their applications. New York: Dover Publications.

    Google Scholar 

  • Lehmann, E. L. (1983). Theory of point estimation. New York: John Wiley and Sons.

    Google Scholar 

  • Miller, J. C. P. (1955). National Physical Laboratory, tables of Weber parabolic cylinder functions. London: Her Majesty’s Stationary Office.

    Google Scholar 

  • Morris, C., & Lecar, H. (1981). Voltage oscillations in the barnacle giant muscle fiber. Biophysical Journal, 35, 193–213.

    PubMed  CAS  Google Scholar 

  • Paninski, L., Pillow, J. W., & Simoncelli, E. P. (2004). Maximum likelihood estimation of a stochastic integrate-and-fire neural encoding model. Neural Computation, 16, 2533–2561.

    Article  PubMed  Google Scholar 

  • Pillow, J. W., Paninski, L., Uzzel, V. J., Simoncelli, E. P., & Chichilnisky, E. J. (2005). Prediction and decoding of retinal ganglion cell responses with a probabilistic spiking model. The Journal of Neuroscience, 25(47), 11003–11013.

    Article  PubMed  CAS  Google Scholar 

  • Plesser, H. E., & Tanaka, S. (1997). Stochastic resonance in a model neuron with reset. Physics Letters A, 225, 228–234.

    Article  CAS  Google Scholar 

  • Rabinovich, M. I., Varona, P., Selverston, A. I., & Abarbanel, H. D. I. (2006). Dynamical principles in neuroscience. Reviews of Modern Physics, 70, 1213–1265.

    Article  Google Scholar 

  • Ricciardi, L., & Sacerdote, L. (1977). The Ornstein–Uhlenbeck process as a model for neuronal activity. Biological Cybernetics, 35, 1–9.

    Article  Google Scholar 

  • Ricciardi, L., & Sato, S. (1988). First passage time density and moments of the Ornstein–Uhlenbeck process. Journal of Applied Probability, 25, 43–57.

    Article  Google Scholar 

  • Sharp, A. A., O’Neil, M. B., Abbott, L. F., & Marder, E. (1993a). The dynamic clamp: Artificial conductances in biological neurons. Trends in Neuroscience, 16, 389–394.

    Article  CAS  Google Scholar 

  • Sharp, A. A., O’Neil, M. B., Abbott, L. F., & Marder, E. (1993b). The dynamic clamp: Computer-generated conductances in real neurons. Journal of Neurophysiology, 69, 992–995.

    PubMed  CAS  Google Scholar 

  • Shimokawa, T., Pakdaman, K., & Sato, S. (1999). Time-scale matching in the response of a leaky integrate-and-fire neuron model to periodic stimulus with additive noise. Physical Review E, 59, 3427–3443.

    Article  CAS  Google Scholar 

  • Siegert, A. J. F. (1951). On the first passage time probablity functioin. Physical Review, 81, 617–623.

    Article  Google Scholar 

  • Stein, R. B. (1965). A theoretical analysis of neuronal variability. Biophysical Journal, 5, 173–194.

    Article  PubMed  CAS  Google Scholar 

  • Stephens, M. A. (1974). Edf statistics for goodness of fit and some comparisons. Journal of the American Statistical Association, 69, 730–737.

    Article  Google Scholar 

  • Tuckwell, H. (1988). Introduction to theoretical neurobiology. Volume 2: Nonlinear and stochastic theories. Cambridge: Cambridge University Press.

    Google Scholar 

  • Uhlenbeck, G., & Ornstein, L. (1954). On the theory of brownian motion (1930). In: N. Wax (Ed.), Selected papers in noise and stochastic processes. New York: Dover Publications.

    Google Scholar 

  • Weeks, W. T. (1966). Numerical inversion of the laplace transform using laguerre functions. Journal of Association of Computational Mathematics, 13, 419–429.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paul Mullowney.

Additional information

Action Editor: Wulfram Gerstner

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mullowney, P., Iyengar, S. Parameter estimation for a leaky integrate-and-fire neuronal model from ISI data. J Comput Neurosci 24, 179–194 (2008). https://doi.org/10.1007/s10827-007-0047-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10827-007-0047-5

Keywords

Navigation