Skip to main content
Log in

A model for modulation of neuronal synchronization by D4 dopamine receptor-mediated phospholipid methylation

  • Published:
Journal of Computational Neuroscience Aims and scope Submit manuscript

Abstract

We describe a new molecular mechanism of dopamine-induced membrane protein modulation that can tune neuronal oscillation frequency to attention-related gamma rhythm. This mechanism is based on the unique ability of D4 dopamine receptors (D4R) to carry out phospholipid methylation (PLM) that may affect the kinetics of ion channels. We show that by deceasing the inertia of the delayed rectifier potassium channel, a transition to 40 Hz oscillations can be achieved. Decreased potassium channel inertia shortens spike duration and decreases the interspike interval via its influence on the calcium-dependent potassium current. This mechanism leads to a transition to attention-related gamma oscillations in a pyramidal cell-interneuron network. The higher frequency and better synchronization is observed with PLM affecting pyramidal neurons only, and recurrent excitation between pyramidal neurons is important for synchronization. Thus dopamine-stimulated methylation of membrane phospholipids may be an important mechanism for modulating firing activity, while impaired methylation can contribute to disorders of attention.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Abdolmaleky, H. M., Cheng, K. H., Faraone, S. V., Wilcox, M., Glatt, S. J., Gao, F., et al. (2006). Hypomethylation of MB-COMT promoter is a major risk factor for schizophrenia and bipolar disorder. Human Molecular Genetics, 15(21), 3132–3145.

    PubMed  CAS  Google Scholar 

  • Aguirre-Samudio, A. J., & Nicolini, H. (2005). DRD4 polymorphism and the association with mental disorders. Revista de Investigacion Clinica, 57(1), 65–75 (article in Spanish).

    PubMed  CAS  Google Scholar 

  • Ahveninen, J., Kahkonen, S., Tiitinen H., Pekkonen E., Huttunen J., Kaakkola S., et al. (2000). Suppression of transient 40-Hz auditory response by haloperidol suggests modulation of human selective attention by dopamine D2 receptors. Neuroscience Letters, 292, 29–32.

    PubMed  CAS  Google Scholar 

  • Alfimova, M., Golimbet, V., Gritsenko, I., Lezheiko, T., Abramova, L., Strel’tsova, M., et al. (2006). Dopamine system genes interaction and neurocognitive traits in patients with schizophrenia, their relatives and healthy controls from general population. Zhurnal Nevrologii i Psikhiatrii Imeni S S Korsakova, 106, 57–63 (article in Russian).

    PubMed  CAS  Google Scholar 

  • Avale, M. E., Falzone, T. L., Gelman, D. M., Low, M. J., Grandy, D. K., & Rubinstein, M. (2004). The dopamine D4 receptor is essential for hyperactivity and impaired behavioral inhibition in a mouse model of attention deficit/hyperactivity disorder. Molecular Psychiatry, 9(7), 718–726.

    PubMed  CAS  Google Scholar 

  • Axelrod, J., & Hirata, F. (1981). Phospholipid methylation and membrane function. Annals of the New York Academy of Sciences, 373(1), 51–53.

    PubMed  CAS  Google Scholar 

  • Benjamin, J., Li, L., Patterson, C., Greenberg, B. D., Murphy, D. L., & Hamer, D. H. (1996). Population and familial association between the D4 dopamine receptor gene and measures of novelty seeking. Nature Genetics, 12, 81–84.

    PubMed  CAS  Google Scholar 

  • Benjamin, J., Osher, Y., Kotler, M., Gritsenko, I., Nemanov, L., Belmaker, R. H., et al. (2000). Association between tridimensional personality questionnaire (TPQ) traits and three functional polymorphisms: Dopamine receptor D4 (DRD4), serotonin transporter promoter region (5-HTTLPR) and catechol O-methyltransferase (COMT). Molecular Psychiatry, 5, 96–100.

    PubMed  CAS  Google Scholar 

  • Bezanilla, F. (2000). The voltage sensor in voltage-dependent ion channels. Physiological Reviews, 80, 555–592.

    PubMed  CAS  Google Scholar 

  • Bond, P. J., & Sansom, M. S. (2007). Bilayer deformation by the Kv channel voltage sensor domain revealed by self-assembly simulations. Proceedings of the National Academy of Sciences of the United States of America, 104, 2631–2636.

    PubMed  CAS  Google Scholar 

  • Borgers, C., Epstein, S., & Kopell, N. (2005). Background gamma rhythmicity and attention in cortical local circuits: A computational study. Proceedings of the National Academy of Sciences of the United States of America, 19, 7002–7007.

    Google Scholar 

  • Borisyuk, R., Denham, M., Hoppensteadt, F., Kazanovich, Y., & Vinogradova, O. (2001). Oscillatory model of novelty detection. Network, 12, 1–20.

    PubMed  CAS  Google Scholar 

  • Brookes, K., Xu, X., Chen, W., Zhou, K., Neale, B., Lowe, N., et al. (2006). The analysis of 51 genes in DSM-IV combined type attention deficit hyperactivity disorder: Association signals in DRD4, DAT1 and 16 other genes. Molecular Psychiatry, 11, 934–953.

    PubMed  CAS  Google Scholar 

  • Buia, C., & Tiesinga, P. (2006). Attentional modulation of firing rate and synchrony in a model cortical network. Journal of Computational Neuroscience, 20, 247–264.

    PubMed  Google Scholar 

  • Burgess, J. R., Stevens, L., Zhang, W., & Peck, L. (2000). Long-chain polyunsaturated fatty acids in children with attention-deficit hyperactivity disorder. American Journal of Clinical Nutrition, 71, 327S–330S.

    PubMed  CAS  Google Scholar 

  • Cannon, B., Hermansson, M., Gyorke, S., Somerharju, P., Virtanen, J. A., & Cheng, K. H. (2003). Regulation of calcium channel activity by lipid domain formation in planar lipid bilayers. Biophysical Journal, 85, 933–942.

    Article  PubMed  CAS  Google Scholar 

  • Cascio, M. (2005). Connexins and their environment: Effects of lipids composition on ion channels. Biochimica et Biophysica Acta, 1711, 142–153.

    PubMed  CAS  Google Scholar 

  • Chang, H. M., Reitstetter, R., & Gruener, R. (1995a). Lipid–ion channel interactions: Increasing phospholipid headgroup size but not ordering acyl chains alters reconstituted channel behavior. Journal of Membrane Biology, 145, 13–19.

    CAS  Google Scholar 

  • Chang, H. M., Reitstetter, R., Mason, R. P., & Gruener, R. (1995b). Attenuation of channel kinetics and conductance by cholesterol: An interpretation using structural stress as a unifying concept. Journal of Membrane Biology, 143, 51–63.

    CAS  Google Scholar 

  • Chrobak, J. J., & Buzsaki, G. (1998). Gamma oscillations in the entorhinal cortex of the freely behaving rat. Journal of Neuroscience, 18, 388–398.

    PubMed  CAS  Google Scholar 

  • Clarke, A. L., Petrou, S., Walsh, J. V. J., & Singer, J. J. (2002). Modulation of BK(Ca) channel activity by fatty acids: Structural requirements and mechanism of action. American Journal of Physiology Cell Physiology, 283, C1441–1453.

    PubMed  CAS  Google Scholar 

  • De La Garza, R., & Madras, B. K. (2000). [(3)H]PNU-101958, a D(4) dopamine receptor probe, accumulates in prefrontal cortex and hippocampus of non-human primate brain. Synapse, 37, 232–244.

    PubMed  CAS  Google Scholar 

  • Demiralp, T., Herrmann, C. S., Erdal, M. E., Ergenoglu, T., Keskin, Y. H., Ergen, M., et al. (2007). DRD4 and DAT1 polymorphisms modulate human gamma band responses. Cerebral Cortex, 17(5):1007–1019. doi:10.1093/cercor/bhl011.

    Google Scholar 

  • Deol, S., Bond, P., & Sansom, M. (2004). Lipid–protein interactions of integral membrane proteins: A comparative simulation study. Biophysical Journal, 87, 3737–3749.

    PubMed  CAS  Google Scholar 

  • Deth, R. C. (2003). Molecular origins of human attention: The dopamine-folate connection (pp. 2–246). Kluwer, Boston, MA.

    Google Scholar 

  • Deth, R. C., Kuznetsova, A., & Waly, M. (2004). Attention-related signaling activities of the D4 dopamine receptor. In M. I. Posner (Ed.), Cognitive neuroscience of attention (pp. 269–282). Guilford Publications, NY.

    Google Scholar 

  • Deth, R. C., Mehta, S., Tan, W., Liu, Y. F., & Marshall, J. (1999). D4 dopamine receptors co-localize with the synaptic scaffolding protein SAP-97 and glutamate receptors in rat brain extracts. Society for Neuroscience Abstract, 25, 2214.

    Google Scholar 

  • Ding, Y. C., Chi, H. C., Grady, D. L., Morishima, A., Kidd, J. R., Kidd, K. K., et al. (2002). Evidence of positive selection acting at the human dopamine receptor D4 gene locus. Proceedings of the National Academy of Sciences of the United States of America, 99, 309–314.

    PubMed  CAS  Google Scholar 

  • Dong, Y., & White, F. J. (2003). Dopamine D1-class receptors selectively modulate a slowly inactivating potassium current in rat medial prefrontal cortex pyramidal neurons. Journal of Neuroscience, 23(7), 2686–2695.

    PubMed  CAS  Google Scholar 

  • Dzirasa, K., Ribeiro, S., Costa, R., Santos, L. M., Lin, S. C., Grosmark, A., et al. (2006). Dopaminergic control of sleep–wake states. Journal of Neuroscience, 26(41), 10577–10589.

    PubMed  CAS  Google Scholar 

  • Ebstein, R. P., Novick, O., Umansky, R., Priel, B., Osher, Y., Blaine, D., et al. (1996). Dopamine D4 receptor (D4DR) exon III polymorphism associated with the human personality trait of novelty seeking. Nature Genetics, 12, 78–80.

    PubMed  CAS  Google Scholar 

  • Engel, A. K. U., Moll, C. K., Fried, I., & Ojemann, G. A. (2005). Invasive recordings from the human brain: Clinical insights and beyond. Nature Reviews Neuroscience, 6(1), 35–47.

    PubMed  CAS  Google Scholar 

  • Ermentrout, B. (2002). Simulating, analyzing, and animating dynamical systems: A guide to xppaut for researchers and students. Society for Industrial and Applied Mathematics, Philadelphia, PA.

  • Fell, J., Fernandez, G., Klaver, P., Elger, C. E., & Fries, P. (2003). Is synchronized neuronal gamma activity relevant for selective attention? Brain Research, 42, 265–272.

    Google Scholar 

  • Forlenza, O. V., Schaeffer, E. L., & Gattaz, W. F. (2007). The role of phospholipase A2 in neuronal homeostasis and memory formation: Implications for the pathogenesis of Alzheimer’s disease. Journal of Neural Transmission, 114, 231–238.

    PubMed  CAS  Google Scholar 

  • Freites, J. A., Tobias, D. J., von Heijne, G., & White, S. H. (2005). Interface connections of a transmembrane voltage sensor. Proceedings of the National Academy of Sciences of the United States of America, 102, 15059–15064.

    PubMed  CAS  Google Scholar 

  • Fries, P., Reynolds, J. H., Rorie, A. E., & Desimone, R. (2001). Modulation of oscillatory neuronal synchronization by selective visual attention. Science, 291, 1560–1563.

    PubMed  CAS  Google Scholar 

  • Gandhi, C. R., & Ross, D. H. (1989). Influence of ethanol on calcium, inositol phospholipids and intracellular signaling mechanisms. Experientia, 45, 407–413.

    PubMed  CAS  Google Scholar 

  • Gao, W. J. (2007). Acute clozapine suppresses synchronized pyramidal synaptic network activity by increasing inhibition in the ferret prefrontal cortex. Journal of Neurophysiology, 97(2), 1196–1208.

    PubMed  CAS  Google Scholar 

  • Golimbet, V., Gritsenko, I., Alfimova, M., Lezheiko, T., Abramova, L., Barkhatova, A., et al. (2005a). Dopamine receptor DRD4 gene polymorphism and its association with schizophrenia spectrum disorders and personality traits in patients. Zhurnal Nevrologii i Psikhiatrii Imeni S S Korsakova, 105, 42–47 (article in Russian).

    CAS  Google Scholar 

  • Golimbet, V., Lebedeva, I., Gritsenko, I., Korovaitseva, G., Alfimova, M., Lezheiko, T., et al. (2005b). A study of some genes related to serotoninergic and dopaminergic systems and auditory evoked-potentials (P300) in patients with schizophrenia and spectrum disorders and their first-degree relatives. Zhurnal Nevrologii i Psikhiatrii Imeni S S Korsakova, 105, 35–41 (article in Russian).

    CAS  Google Scholar 

  • Gorospe, W. C., & Conn, P. M. (1988). Restoration of the LH secretory response in desensitized gonadotropes. Molecular and Cellular Endocrinology, 59, 101–110.

    PubMed  CAS  Google Scholar 

  • Grayson, D. R., Chen, Y., Costa, E., Dong, E., Guidotti, A., Kundakovic, M., et al. (2006). The human reelin gene: Transcription factors (+), repressors (–) and the methylation switch (+/–) in schizophrenia. Pharmacology & Therapeutics, 111(1), 272–286.

    CAS  Google Scholar 

  • Gruhn, M., Guckenheimer, J., Land, B., & Harris-Warrick, R. M. (2005). Dopamine modulation of two delayed rectifier potassium currents in a small neural network. Journal of Neurophysiology, 94, 2888–2900.

    PubMed  CAS  Google Scholar 

  • Guan, Z. Z., Wang, Y. N., Xiao, K. Q., Hu, P. S., & Liu, J. L. (1999). Activity of phosphatidylethanolamine-N-methyltransferase in brain affected by Alzheimer’s disease. Neurochemistry International, 34, 41–47.

    PubMed  CAS  Google Scholar 

  • Herrmann, C. S., & Demiralp, T. (2005). Human EEG gamma oscillations in neuropsychiatric disorders. Clinical Neurophysiology, 116, 2719–2733.

    PubMed  CAS  Google Scholar 

  • Hirata, F., Strittmatter, W. J., & Axelrod, J. (1979). Beta-adrenergic receptor agonists increase phospholipid methylation, membrane fluidity, and beta-adrenergic receptor-adenylate cyclese coupling. Proceedings of the National Academy of Sciences of the United States of America, 76, 368–372.

    PubMed  CAS  Google Scholar 

  • Hirata, F., & Axelrod, J. (1980). Phospholipid methylation and biological signal transmission. Science, 209(4461), 1082–90.

    PubMed  CAS  Google Scholar 

  • Hirata, F., Tallman, J. F., Henneberry, R. C., Mallorga, P., Strittmatter, W. J., & Axelrod, J. (1981). Phospholipid methylation: A possible mechanism of signal transduction across biomembranes. Progress in Clinical and Biological Research, 63, 383–388.

    PubMed  CAS  Google Scholar 

  • Hitzemann, R. J., & Harris, R. A. (1984). Developmental changes in synaptic membrane fluidity: A comparison of 1,6-diphenyl-1,3,5-hexatriene (DPH) and 1-[4-(trimethylamino)phenyl]-6-phenyl-1,3,5-hexatriene (TMA-DPH). Brain Research, 316, 113–20.

    PubMed  CAS  Google Scholar 

  • Hitzemann, R., Hirschowitz, J., Panini, A., Mark, C., & Garver, D. (1984). Membranes, methylation and lithium responsive psychoses. Nutrition & Health, 3(3), 153–162.

    CAS  Google Scholar 

  • Hitzemann, R., Mark, C., Hirschowitz, J., & Garver, D. (1985). Characteristics of phospholipid methylation in human erythrocyte ghosts: Relationship(s) to the psychoses and affective disorders. Biological Psychiatry, 20, 397–407.

    PubMed  CAS  Google Scholar 

  • Horrocks, L. A., & Farooqui, A. A. (2004). Docosahexaenoic acid in the diet: Its importance in maintenance and restoration of neural membrane function. Prostaglandins, Leukotrienes and Essential Fatty Acids, 70, 361–72.

    CAS  Google Scholar 

  • Inanobe, A., Yoshimoto, Y., Horio, Y., Morishige, K. J., Hibino, H., Matsumoto, S., et al. (1999). Characterization of G-protein-gated K + channels composed of Kir3.2 subunits in dopaminergic neurons of the substantia nigra. Journal of Neuroscience, 19, 1006–1017.

    PubMed  CAS  Google Scholar 

  • James, S. J., Cutler, P., Melnyk, S., Jernigan, L. S. J., Gaylor, D. W., & Neubrander, J. A. (2004). Metabolic biomarkers of increased oxidative stress and impaired methylation capacity in children with autism. American Journal of Clinical Nutrition, 80, 1611–1617.

    PubMed  CAS  Google Scholar 

  • Jiang, Y., Lee, A., Chen, J., Cadene, M., Chait, B. T., & MacKinnon, R. (2002). Crystal structure and mechanism of a calcium-gated potassium channel. Nature, 417(6888), 515–522.

    PubMed  CAS  Google Scholar 

  • Jiang, Y., Lee, A., Chen, J., Ruta, V., Cadene, M., Chait, B. T., et al. (2003a). X-ray structure of a voltage-dependent K + channel. Nature, 423, 33–41.

    CAS  Google Scholar 

  • Jiang, Y., Ruta, V., Chen, J., Lee, A., & MacKinnon, R. (2003b). The principle of gating charge movement in a voltage-dependent K + channel. Nature, 423, 42–48.

    CAS  Google Scholar 

  • Just, M. A., Cherkassky, V. L., Keller, T. A., & Minshew, N. J. (2004). Cortical activation and synchronization during sentence comprehension in high-functioning autism: Evidence of underconnectivity. Brain, 127, 1811–1821.

    PubMed  Google Scholar 

  • Kahkonen, S., & Ahveninen, J. (2002). Combination of magneto- and electroencephalography in studies of monoamine modulation on attention. Methods and Findings in Experimental and Clinical Pharmacology, 24(Suppl C), 27–34.

    PubMed  CAS  Google Scholar 

  • Kahkonen, S., Ahveninen, J., Jaaskelainen, I. P., Kaakkola, S., Naatanen, R., Huttunen, J., et al. (2001). Effects of haloperidol on selective attention: A combined whole-head MEG and high-resolution EEG study. Neuropsychopharmacology, 25, 498–504.

    PubMed  CAS  Google Scholar 

  • Kelsoe, J. R. J., Tolbert, L. C., Crews, E. L., & Smythies, J. R. (1982). Kinetic evidence for decreased methionine adenosyltransferase activity in erythrocytes from schizophrenics. Journal of Neuroscience Research, 8, 99–103.

    PubMed  CAS  Google Scholar 

  • Kim, E., & Sheng, M. (1996). Differential K + channel clustering activity of PSD-95 and SAP97, two related membrane-associated putative guanylate kinases. Neuropharmacology, 35, 993–1000.

    PubMed  CAS  Google Scholar 

  • Kopell, N., Ermentrout, G. B., Whittington, M. A., & Traub, R. D. (2000). Gamma rhythms and beta rhythms have different synchronization properties. Proceedings of the National Academy of Sciences of the United States of America, 97, 1867–1872.

    PubMed  CAS  Google Scholar 

  • Kwon, J. S., O’Donnell, B. F., Wallenstein, G. V., Greene, R. W., Hirayasu, Y., Nestor, P. G., et al. (1999). Gamma frequency-range abnormalities to auditory stimulation in schizophrenia. Archives of General Psychiatry, 56, 1001–1005.

    PubMed  CAS  Google Scholar 

  • LaHoste, G. J., Swanson, J. M., Wigal, S. B., Glabe, C., Wigal, T., King, N., et al. (1996). Dopamine D4 receptor gene polymorphism is associated with attention deficit hyperactivity disorder. Molecular Psychiatry, 1, 121–124.

    PubMed  CAS  Google Scholar 

  • Lanau, F., Zenner, M. T., Civelli, O., & Hartman, D. S. (1997). Epinephrine and norepinephrine act as potent agonists at the recombinant human dopamine D4 receptor. Journal of Neurochemistry, 68, 804–812.

    Article  PubMed  CAS  Google Scholar 

  • Laumonnier, F., Roger, S., Guerin, P., Molinari, F., M′rad, R., Cahard, D., et al. (2006). Association of a functional deficit of the BK Ca channel, a synaptic regulator of neuronal excitability, with autism and mental retardation. American Journal of Psychiatry, 163, 1622–1629.

    PubMed  Google Scholar 

  • Lavine, N., Ethier, N., Oak, J. N., Pei, L., Liu, F., Trieu, P., et al. (2002). G protein-coupled receptors form stable complexes with inwardly rectifying potassium channels and adenylyl cyclase. Journal of Biological Chemistry, 277, 46010–46019.

    PubMed  CAS  Google Scholar 

  • Laviolette, S. R., Lipski, W. J., & Grace, A. A. (2005). A subpopulation of neurons in the medial prefrontal cortex encodes emotional learning with burst and frequency codes through a dopamine D4 receptor-dependent basolateral amygdala input. Journal of Neuroscience, 25(26), 6066–6075.

    PubMed  CAS  Google Scholar 

  • Lebel, C. P., & Schatz, R. A. (1990). Altered synaptosomal phospholipid metabolism after toluene: Possible relationship with membrane fluidity, Na+, K+-adenosine triphosphatase and phospholipid methylation. Journal of Pharmacology and Experimental Therapeutics, 253, 1189–1197.

    PubMed  CAS  Google Scholar 

  • Lee, A. G. (2002). A calcium pump made visible. Current Opinion in Structural Biology, 12(4), 547–554.

    PubMed  CAS  Google Scholar 

  • Lee, A. G. (2003). Lipid–protein interactions in biological membranes: A structural perspective. Biochimica et Biophysica Acta, 1612, 1–40.

    PubMed  CAS  Google Scholar 

  • Lee, K. J. (2006). Energetics of rotational gating mechanisms of an ion channel induced by membrane deformation. Physical Review E, 73, 021909.

    Google Scholar 

  • Lee, S. Y., Lee, A., Chen, J., & MacKinnon, R. (2005). Structure of the KvAP voltage-dependent K channel and its dependence on the lipid membrane. Proceedings of the National Academy of Sciences of the United States of America, 102, 15441–15446.

    PubMed  CAS  Google Scholar 

  • Lewine, J. D., Andrews, R., Chez, M., Patil, A. A., Devinsky, O., Smith, M., et al. (1999). Magnetoencephalographic patterns of epileptiform activity in children with regressive autism spectrum disorders. Pediatrics, 104(3 Pt 1), 405–418.

    PubMed  CAS  Google Scholar 

  • Lisman, J. E., & Idiart, M. A. (1995). Storage of 7 ± 2 short-term memories in oscillatory subcycles. Science, 267, 1512–1515.

    PubMed  CAS  Google Scholar 

  • Lisman, J. E., & Otmakhova, N. A. (2001). Storage, recall, and novelty detection of sequences by the hippocampus: Elaborating on the SOCRATIC model to account for normal and aberrant effects of dopamine. Hippocampus, 11, 551–568.

    PubMed  CAS  Google Scholar 

  • Liu, L. X., Burgess, L. H., Gonzalez, A. M., Sibley, D. R., & Chiodo, L. A. (1999). D2S, D2L, D3 and D4 dopamine receptors couple to a voltage-dependent potassium current in N18TG2 x mesencephalon hybrid cell (MES-23.5) via distinct G proteins. Synapse, 31, 108–118.

    PubMed  CAS  Google Scholar 

  • Long, S. B., Campbell, E. B., & Mackinnon, R. (2005). Crystal structure of a mammalian voltage-dependent Shaker family K+ channel. Science, 309(5736), 897–903.

    PubMed  CAS  Google Scholar 

  • Lundbaek, J. A., Birn, P., Hansen, A. J., Sogaard, R., Nielsen, C., Girshman, J., et al. (2004). Regulation of sodium channel function by bilayer elasticity: The importance of hydrophobic coupling. Effects of micelle-forming amphiphiles and cholesterol. Journal of General Physiology, 123, 599–621.

    PubMed  CAS  Google Scholar 

  • McAdams, C. J., & Maunsell, J. H. (1999). Effects of attention on orientation-tuning functions of single neurons in macaque cortical area V4. Journal of Neuroscience, 19, 431–441.

    PubMed  CAS  Google Scholar 

  • McCaddon, A. (2006). Homocysteine and cognition—A historical perspective. Journal of Alzheimer’s Disease, 9(4), 361–380.

    PubMed  CAS  Google Scholar 

  • McIntosh, T. J., & Simon, S. A. (2006). Roles of bilayer material properties in function and distribution of membrane proteins. Annual Review of Biophysics and Biomolecular Structure, 35, 177–198.

    PubMed  CAS  Google Scholar 

  • Meininger, V., Phan, T., Camelin, J. C., Gauthier, A., Mizoule, J., Benavides, J., et al. (1984). Methylation of erythrocyte membrane phospholipids: Correlation with membrane viscosity. Study of normal and parkinsonian subjects. Revue Neurologique (Paris), 140, 488–492.

    CAS  Google Scholar 

  • Miller, C. (2000). An overview of the potassium channel family. Genome Biology, 1(4), REVIEWS0004.

    Google Scholar 

  • Morere, D. A., Alarcon, R. D., Monti, J. A., Walter-Ryan, W. G., Bancroft, A. J., Smythies, J. R., et al. (1986). Medication effects on one-carbon metabolism in schizophrenia, mania, and major depression. Journal of Clinical Psychopharmacology, 6, 155–161.

    PubMed  CAS  Google Scholar 

  • Mrzijak, L., Bergson, C., Pappy, M., Huff, R., Levenson, R., & Goldman-Rakic, P. S. (1996). Localization of dopamine D4 receptors in GABAergic neurons of the primate brain. Nature, 381, 245–248.

    Google Scholar 

  • Nishizawa, M., & Nishizawa, K. (2006). Interaction between K channel gate modifier hanatoxin and lipid bilayer membranes analyzed by molecular dynamics simulation. European Biophysics Journal, 35, 373–381.

    PubMed  CAS  Google Scholar 

  • Oak, J. N., Oldenhof, J., & Van Tol, H. H. (2000). The dopamine D(4) receptor: One decade of research. European Journal of Pharmacology, 405, 303–327.

    PubMed  CAS  Google Scholar 

  • Oliver, D., Lien, C. C., Soom, M., Baukrowitz, T., Jonas, P., & Fakler, B. (2004). Functional conversation between A-type and delayed rectifier K+ channels by membrane lipids. Science, 304, 263–274.

    Google Scholar 

  • Otmakhova, N. A., & Lisman, J. E. (1999). Dopamine selectively inhibits the direct cortical pathway to the CA1 hippocampal region. Journal of Neuroscience, 19, 1437–1445.

    PubMed  CAS  Google Scholar 

  • Perez, M. F., White, F. J., & Hu, X. T. (2006). Dopamine D2 receptor modulation of K+ channel activity regulates excitability of nucleus accumbens neurons at different membrane potentials. Journal of Neurophysiology, 96, 2217–2228. doi:10.1152/jn.00254.2006.

    Google Scholar 

  • Pillai, G., Brown, N. A., McAllister, G., Milligan, G., & Seabrook, G. R. (1998). Human D2 and D4 dopamine receptors couple through betagamma G-protein subunits to inwardly rectifying K+ channels (GIRK1) in a Xenopus oocyte expression system: Selective antagonism by L-741,626 and L-745,870 respectively. Neuropharmacology, 37, 983–987.

    PubMed  CAS  Google Scholar 

  • Reynolds, J. H., Pasternak, T., & Desimone, R. (2000). Attention increases sensitivity of V4 neurons. Neuron, 26, 703–714.

    PubMed  CAS  Google Scholar 

  • Rivera, A., Trias, S., Penafiel, A., Angel Narvaez, J., Diaz-Cabiale, Z., Moratalla, R., et al. (2003). Expression of D4 dopamine receptors in striatonigral and striatopallidal neurons in the rat striatum. Brain Research, 989, 35–41.

    PubMed  CAS  Google Scholar 

  • Robbe, D., Montgomery, S. M., Thome, A., Rueda-Orozco, P. E., McNaughton, B. L., & Buzsaki, G. (2006). Cannabinoids reveal importance of spike timing coordination in hippocampal function. Nature Neuroscience, 9, 1526–1533.

    PubMed  CAS  Google Scholar 

  • Ross, S. B. (1991). Synaptic concentration of dopamine in the mouse striatum in relationship to the kinetic properties of the dopamine receptors and uptake mechanism. Journal of Neurochemistry, 56, 22–29.

    PubMed  CAS  Google Scholar 

  • Sanyal, S., & Van Tol, H. H. (1997). Review the role of dopamine D4 receptors in schizophrenia and antipsychotic action. Journal of Psychiatric Research, 31, 219–232.

    PubMed  CAS  Google Scholar 

  • Schaeffer, E. L., Bassi, F. Jr., & Gattaz, W. F. (2005). Inhibition of phospholipase A2 activity reduces membrane fluidity in rat hippocampus. Journal of Neural Transmission, 112, 641–647.

    PubMed  CAS  Google Scholar 

  • Schaeffer, E. L., & Gattaz, W. F. (2007). Requirement of hippocampal phospholipase A2 activity for long-term memory retrieval in rats. Journal of Neural Transmission, 114, 379–385

    PubMed  CAS  Google Scholar 

  • Schmidt, D., Jiang, Q., & MacKinnon, R. (2006). Phospholipids and the origin of cationic gating charges in voltage sensors. Nature, 444, 775–779.

    PubMed  CAS  Google Scholar 

  • Seeman, P., Guan, H. C., & Van Tol, H. H. (1993). Dopamine receptors elevated in schizophrenia. Nature, 365, 441–445.

    PubMed  CAS  Google Scholar 

  • Selley, M. L. (2006). A metabolic link between S-adeno-sylhomocysteine and polyunsaturated fatty acid metabolism in Alzheimer’s disease. Neurobiology of Aging, 24, 903–907. doi:10.1016/j.neurobiolaging.2006.08.003.

  • Sharma, A., Kramer, M. L., Wick, P. F., Liu, D., Chari, S., Shim, S., et al. (1999). D4 dopamine receptor-mediated phospholipid methylation and its implications for mental illnesses such as schizophrenia. Molecular Psychiatry, 4, 235–246.

    PubMed  CAS  Google Scholar 

  • Spenser, K. M., Nestor, P. G., Niznikiewicz, M. A., Salisbury, D. F., Shenton, M. E., & McCarley, R. W. (2003). Abnormal neural synchrony in schizophrenia. Journal of Neuroscience, 23(19), 7407–7411.

    Google Scholar 

  • Sperotto, M. M., May, S., & Baumgaertner, A. (2006). Modeling of proteins in membranes. Chemistry and Physics of Lipids, 141, 2–29.

    PubMed  CAS  Google Scholar 

  • Strittmatter, W. J., Hirata, F., & Axelrod, J. (1979). Increased Ca2+-ATPase activity associated with methylation of phospholipids in human erythrocytes. Biochemical and Biophysical Research Communications, 88, 147–153.

    PubMed  CAS  Google Scholar 

  • Strittmatter, W. J., Hirata, F., & Axelrod, J. (1981). Regulation of the beta-adrenergic receptor by methylation of membrane phospholipids. Advances in Cyclic Nucleotide Research, 14, 83–91.

    PubMed  CAS  Google Scholar 

  • Swanson, J., Oosterlaan, J., Murias, M., Schuck, S., Flodman, P., Spence, M. A., et al. (2000). Attention deficit/hyperactivity disorder children with a 7-repeat allele of the dopamine receptor D4 gene have extreme behavior but normal performance on critical neuropsychological tests of attention. Proceedings of the National Academy of Sciences of the United States of America, 97, 4754–4759.

    PubMed  CAS  Google Scholar 

  • Swanson, J. M., Kinsbourne, M., Nigg, J., Lanphear, B., Stefanatos, G. A., Volkow, N., et al. (2007). Etiologic subtypes of attention-deficit/hyperactivity disorder: Brain imaging, molecular genetic and environmental factors and the dopamine hypothesis. Neuropsychology Review, 17, 39–59.

    PubMed  Google Scholar 

  • Tiesinga, P. H. E., Fellous, J. M., Salinas, E., Jose, J. V., & Sejnowski, T. J. (2004). Synchronization as a mechanism for attentional gain modulation. Neurocomputing, 58–60, 641–646.

    PubMed  Google Scholar 

  • Tiesinga, P. H. E., & Sejnowsk, T. J. (2004). Rapid temporal modulation of synchrony by competition in cortical interneuron networks. Neural Computation, 16, 251–275.

    PubMed  CAS  Google Scholar 

  • Tiffany, A. M., Manganas, L. N., Kim, E., Hsueh, Y. P., Sheng, M., & Trimmer, J. S. (2000). PSD-95 and SAP97 exhibit distinct mechanisms for regulating K+ channel surface expression and clustering. Journal of Cell Biology, 148, 147–158.

    PubMed  CAS  Google Scholar 

  • Tillman, T. S., & Cascio, M. (2003). Effects of membrane lipids on ion channel structure and function. Cell Biochemistry and Biophysics, 38, 161–190.

    PubMed  CAS  Google Scholar 

  • Traub, R., Contreras, D., Cunningham, M., Murray, H., LeBeau, F., Roopun, A., et al. (2005). Single-column thalamocortical network model exhibiting gamma oscillations, sleep spindles, and epileptogenic bursts. Journal of Neurophysiology, 93, 1829–30.

    Google Scholar 

  • Traub, R., Whittington, M., Buhl, E., Jefferys, J., & Faulkner, H. (1999). On the mechanism of the gamma to beta frequency shift in neuronal oscillations induced in rat hippocampal slices by tetanic stimulation. Journal of Neuroscience, 19, 1088–105.

    PubMed  CAS  Google Scholar 

  • Uhlhaas, P. J., & Singer, W. (2006). Neural synchrony in brain disorders: Relevance for cognitive dysfunctions and pathophysiology. Neuron, 52, 155–168.

    PubMed  CAS  Google Scholar 

  • Van Petegem, F., Clark, K. A., Chatelain, F. C., & Minor, D. L. J. (2004). Structure of a complex between a voltage-gated calcium channel beta-subunit and an alpha-subunit domain. Nature, 429(6992), 671–675.

    PubMed  Google Scholar 

  • Venturoli, M., Smit, B., & Sperotto, M. (2005). Simulation studies of protein-induced bilayer deformations, and lipid-induced protein tilting, on a mesoscopic model for lipid bilayers with embedded proteins. Biophysical Journal, 88, 1778–1798.

    PubMed  CAS  Google Scholar 

  • Volkow, N. D., Wang, G. J., Fowler, J. S., & Ding, Y. S. (2005). Imaging the effects of methylphenidate on brain dopamine: New model on its therapeutic actions for attention-deficit/hyperactivity disorder. Biological Psychiatry, 57(11), 1410–1415.

    PubMed  CAS  Google Scholar 

  • Wedemeyer, C., Goutman, J. D., Avale, M. E., Franchini, L. F., Rubinstein, M., & Calvo, D. J. (2007). Functional activation by central monoamines of human dopamine D4 receptor polymorphic variants coupled to GIRK channels in Xenopus oocytes. European Journal of Pharmaca, 562, 165–173.

    CAS  Google Scholar 

  • Wedzony, K., Chocyk, A., Mackowiak, M., Fijal, K., & Czyrak, A. (2000). Cortical localization of dopamine D4 receptors in the rat brain-immunocytochemical study. Journal of Physiology and Pharmacology, 51, 205–221.

    PubMed  CAS  Google Scholar 

  • Werner, P., Hussy, N., Buell, G., Jones, K. A., & North, R. A. (1996). D2, D3, and D4 dopamine receptors couple to G protein-regulated potassium channels in Xenopus oocytes. Molecular Pharmacology, 49, 656–661.

    PubMed  CAS  Google Scholar 

  • Wheless, J. W., Simos, P. G., & Butler, I. J. (2002). Language dysfunction in epileptic conditions. Seminars in Pediatric Neurology, 9, 218–228.

    PubMed  Google Scholar 

  • Wilson, H. R. (1999). Simplified dynamics of human and mammalian neocortical neurons. Journal of Theoretical Biology, 200, 375–388.

    PubMed  CAS  Google Scholar 

  • Wilson, T. W., Rojas, D. C., Reite, M. L., Teale, P. D., & Rogers, S. J. (2007). Children and adolescents with autism exhibit reduced MEG steady-state gamma responses. Biological Psychiatry, 62(3), 192–197.

    PubMed  Google Scholar 

  • Womelsdorf, T., & Fries, P. (2007). The role of neuronal synchronization in selective attention. Current Opinion in Neurobiology, 17(2), 154–160.

    PubMed  CAS  Google Scholar 

  • Yang, C. R., & Seamans, J. K. (1996). Dopamine D1 receptor actions in layers V–VI rat prefrontal cortex neurons in vitro: Modulation of dendritic-somatic signal integration. Journal of Neuroscience, 16, 1922–1935.

    PubMed  CAS  Google Scholar 

  • Yordanova, J., Banaschewski, T., Kolev, V., Woerner, W., & Rothenberger, A. (2001). Abnormal early stages of task stimulus processing in children with attention-deficit hyperactivity disorder-evidence from event-related gamma oscillations. Clinical Neurophysiology, 112, 1096–1108.

    PubMed  CAS  Google Scholar 

  • Zhao, R., Chen, Y., Tan, W., Waly, M., Sharma, A., Stover, P., et al. (2001). Relationship between dopamine-stimulated phospholipid methylation and the single-carbon folate pathway. Journal of Neurochemistry, 78, 788–796.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Richard C. Deth.

Additional information

Action Editor: Upinder Bhalla

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kuznetsova, A.Y., Deth, R.C. A model for modulation of neuronal synchronization by D4 dopamine receptor-mediated phospholipid methylation. J Comput Neurosci 24, 314–329 (2008). https://doi.org/10.1007/s10827-007-0057-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10827-007-0057-3

Keywords

Navigation