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Abstract Many developing neural systems exhibit
spontaneous activity (O’Donovan, Curr Opin
Neurobiol 9:94–104, 1999; Feller, Neuron 22:653–656,
1999) characterized by episodes of discharge (active
phases) when many cells are firing, separated by silent
phases during which few cells fire. Various models
exhibit features of episodic behavior by means of
recurrent excitation for supporting an episode and slow
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activity-dependent depression for terminating one. The
basic mechanism has been analyzed using mean-field,
firing-rate models. Firing-rate models are typically
formulated ad hoc, not derived from a spiking network
description, and the effects of substantial heterogeneity
amongst the units are not usually considered. Here
we develop an excitatory network of spiking neurons
(N-cell model) with slow synaptic depression to model
episodic rhythmogenesis. This N-cell model displays
episodic behavior over a range of heterogeneity in
bias currents. Important features of the episodic be-
havior include orderly recruitment of individual cells
during silent phases and existence of a dynamical
process whereby a small critical subpopulation of
intermediate excitability conveys synaptic drive from
active to silent cells. We also derive a general self-
consistency equation for synaptic drive that includes
cell heterogeneity explicitly. We use this mean-field
description to expose the dynamical bistability that
underlies episodic behavior in the heterogeneous net-
work. In a systematic numerical study we find that
the robustness of the episodic behavior improves with
increasing heterogeneity. Furthermore, the hetero-
geneity of depression variables (imparted by the
heterogeneity in cellular firing thresholds) plays an
important role in this improvement: it renders the
network episodic behavior more robust to variations in
excitability than if depression is uniformized. We also
investigate the effects of noise vs. heterogeneity on the
robustness of episodic behavior, especially important
for the developing nervous system. We demonstrate
that noise-induced episodes are very fragile, whereas
heterogeneity-produced episodic rhythm is robust.

http://dx.doi.org/10.1007/s10827-007-0064-4
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1 Introduction

Many developing neural systems (retina, hippocampus,
spinal cord) exhibit spontaneous activity (O’Donovan
1999; Feller 1999) that is characterized by episodes of
discharge (active phases) when many cells are firing,
separated by silent phases during which few cells fire
(cf. Fig. 1 for the developing spinal cord). This sponta-
neous activity is thought to affect the development of
neuronal circuits (Katz and Shatz 1996; Ben-Ari 2001;
Stellwagen and Shatz 2002; Borodinsky et al. 2004;
Hanson and Landmesser 2004). Spontaneous activity
in the form of slow oscillations between upstates and
downstates (Timofeev et al. 2000) or random brief
events (Beggs and Plenz 2003) has also been studied in
vitro, beyond the context of development.

Several models have shown that episodic activity
could be generated through a regenerative mecha-
nism whereby fast recurrent excitation recruits the
network and activity-dependent depression terminates
the episodes. This depression can be synaptic (Tabak
et al. 2000; Tsodyks et al. 2000; Loebel and Tsodyks
2002; Wiedemann and Luthi 2003) or cellular, such
as spike-frequency adaptation (Latham et al. 2000;

Timofeev et al. 2000; Wiedemann and Luthi 2003).
It can accumulate rapidly during spiking so active
phases are brief and pulsatile (Tsodyks et al. 2000;
Loebel and Tsodyks 2002; Wiedemann and Luthi 2003)
or accumulate slowly to give broader active phases
(Latham et al. 2000; Tabak et al. 2000; Timofeev et al.
2000), as we will consider here. Formulations have
involved networks of many spiking units or mean-
field (spatiotemporally averaged) firing rate descrip-
tions; the latter are not typically derived explicitly from
spiking-based details.

For our case study, we consider the developing
chick spinal cord. As in many developing circuits,
GABAergic and glycinergic neurotransmission is func-
tionally excitatory since the synapses are depolar-
izing (Cherubini et al. 1991; Sernagor et al. 1995;
Chub and O’Donovan 1998). In the spinal cord, an
activity-dependent depression of network excitability
(Fedirchuk et al. 1999; Tabak et al. 2001) appears to
underlie the episodic activity. The interepisode inter-
val (silent phase) is then a period of recovery from
this depression. Previously, using an ad hoc mean-
field model, we have accounted for various aspects
of episodic rhythmogenesis (Tabak et al. 2000). That
excitatory network model was bistable on a fast time
scale and showed abrupt switching between active and
silent phases; slow synaptic depression mediated the
episodic rhythm. The behavior was robust to changes in
connectivity, but not in cell excitability. Heterogeneity

active phase

episode

100 sec

10 sec

silent phase
+

-

Fig. 1 Spontaneous episodes of synaptic drive (population-
averaged, low pass-filtered membrane potential) recorded from
the ventral roots of chick embryo spinal cord in vitro at em-
bryonic day 7.5. Note the high degree of population synchrony

during the active phase: many cells in the network are strongly
depolarized. Spike-to-spike, however, the network is asynchro-
nous on the membrane time scale. Silent phases can be several
minutes in duration. Modified from Tabak et al. (2000)
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in the spiking network of the current paper remedies
this sensitivity.

Here, we introduce an excitatory network model
of spiking (leaky integrate-and-fire) neurons with slow
synaptic depression (we call it the N-cell model) and
investigate its episodic rhythmogenic properties as fol-
lows. First, we show with numerical simulations that
the noise-free N-cell model generates episodic activ-
ity for various parameter settings and heterogeneous
I-distributions with only a fraction (possibly small) of
intrinsically spiking cells. A consequence of hetero-
geneity that was first described by Tsodyks et al. (2000)
and confirmed by Wiedemann and Luthi (2003) is the
existence of a subpopulation of intermediate excitabil-
ity that is especially important for episodic behavior.
We extend those findings by studying how the degree
of heterogeneity affects this and other subpopulations
critical to episodic rhythmogenesis.

Second, we derive directly from the N-cell spiking
model a new mean-field description that includes het-
erogeneity explicitly. It accounts for the pseudosteady
state firing during the active and silent phases, given
a distribution of depression variables. Using this de-
scription we demonstrate that the mean field with
uniform synaptic depression does not fully capture
the observed behavior; for instance, the network can
be rhythmic when the mean-field description is not
bistable. Third, using our mean-field formulation with
simulation-produced synaptic depression variables at
each moment of the rhythmic cycle, we demonstrate
that the heterogeneous distribution of slow depression
variables renders the network dynamically bistable and
underlies episodic behavior.

We then obtain a central result of this paper in a
systematic numerical study: we define robustness (dy-
namic range) as a region in the parameter space sup-
porting rhythmicity and find that robustness improves
with increasing heterogeneity. Furthermore, the het-
erogeneity of depression variables (imparted by the
heterogeneity in cellular firing thresholds) plays an
important role in this improvement: it renders the net-
work episodic behavior more robust to variations in
excitability than if depression is uniformized.

Finally, another way to randomize neuronal spik-
ing and promote episodic behavior may be to add
noisy inputs. We thus examine whether episodic behav-
ior would benefit from the addition of stochasticity—
instead of heterogeneity. We find that the resulting
episodic behavior is extremely sensitive to variations
in cellular excitability. Therefore, our results suggest
that heterogeneity is a determinant factor for excitatory
networks to generate robust episodic activity. This may

be relevant to immature networks for which normal
development is thought to require a robust pattern of
spontaneous activity.

2 Methods

2.1 Equations of the ad hoc model

Based on the experimental findings described in In-
troduction, Tabak et al. (2000) introduced an ad hoc
firing-rate model (1–3) meant to describe the (spa-
tiotemporal) average activity a in the network and
possessing the following essential features. Recurrent
excitatory connectivity (n measures its strength) pro-
vided positive feedback modeled by the increasing sig-
moidal function a∞. As is typical in such firing-rate
models (Wilson and Cowan 1972), one assumed that
a∞(0) > 0, i.e., that some (small) fraction of cells were
intrinsically spiking (or, that there was a nonzero prob-
ability of neurotransmitter release). This assumption
led to network bistability (low and high steady states
of the activity variable a). A slow activity-dependent
(s∞ was a decreasing sigmoidal function of a) synap-
tic depression variable s was used to induce transi-
tions between the high and low activity states, hence
the episodic behavior. The variable d corresponded to
faster depression, responsible for cycling within each
episode, which we do not model here.

τaȧ = a∞(n · s · d · a) − a (1)

τdḋ = d∞(a) − d (2)

τsṡ = s∞(a) − s (3)

2.2 N-cell model formulation

We introduce a cell-based, spiking network model with
the following salient properties:

1. N leaky integrate-and-fire neurons.
2. The network is heterogeneous: cells have ef-

fectively different firing thresholds due to the
heterogeneity of bias currents Ii. We use uniform
distributions here. A fraction of the cells are as-
sumed to be intrinsically spiking (fire tonically
when isolated).

3. Fast, purely excitatory synapses (GABA and
glycine are functionally excitatory: Cherubini et al.
1991; Sernagor et al 1995).

4. Slow synaptic depression modulates fast synap-
tic activation. We do not necessarily distinguish
between presynaptic and postsynaptic depression
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sites, but the depression is due to presynaptic ac-
tivity (Fedirchuk et al. 1999).

The model equations are:

τ V̇i = −Vi + Ii − (Vi − Vsyn)gsyn, i = 1 . . . N (4)

gsyn = gsyn N−1
N∑

j=1

q js j (5)

Vi(t f ) = 1 =⇒ Vi(t) = 0 for t f < t ≤ t f + τref

q̇i = αq(t)(1 − qi) − βqqi (6)

ṡi = αs(1 − si) − βs(t)si (7)

Here Vi is the membrane potential of neuron i, and
gsyn is the total (macroscopic) synaptic field (drive) pro-
duced by the combined recurrent activity of all cells in
the network and normalized by N. This limits the max-
imum value of gsyn to gsyn, the maximum synaptic con-
ductance, independent of the network size. qi is the fast
synaptic conductance activation of neuron i, or, more
precisely, fraction of synaptic connections (relative
to the maximum) made available due to neuron i firing
on the presynaptic side. In the absence of depression, qi

is the fraction of open postsynaptic channels in neurons
for which neuron i is presynaptic. si is the slow depres-
sion, i.e., the fraction of nondepressed efferent synapses
of cell i. si modulates synaptic activation qi and can
represent the availability of resources or effectiveness
of transmission. For example, a synaptic connection can
become depressed (not available for transmission) via
activity-dependent depletion of the neurotransmitter
on the presynaptic side, or via receptor desensitization
on the postsynaptic side. Yet alternatively, it can rep-
resent a mechanism similar to retrograde inhibition,
which acts on the presynaptic side, but under the in-
fluence of a chemical substance released from the post-
synaptic side in response to presynaptic activity. We do
not specifically distinguish among all these possibilities
in order to keep our approach general.

We assume that the synaptic current to each neuron
flows through such ionic channels that can be com-
bined into one equivalent channel with a linear I–V
relationship.

This model is dimensionless with respect to all quan-
tities other than time. Specifically, if Gsyn and gL are
the actual maximum synaptic and leakage conduc-
tances, respectively, then gsyn = Gsyn/gL is the maxi-
mum synaptic conductance relative to leakage. Now, let
v be the actual membrane potential and vrest, vth, and
vsyn the actual rest, threshold, and synaptic reversal po-
tentials, respectively. Then V = (v − vrest)/(vth − vrest),

which makes the membrane potential normalized so
that the rest potential is equal to 0, and the firing
threshold is equal to 1. Similarly, Vsyn =(vsyn−vrest)/

(vth − vrest), and if iapp is the actual bias current, then
I = iapp/ (gL(vth − vrest)). Finally, τ = C/gL, where C is
the actual neuronal membrane capacitance.

In this work, we use uniform bias current distribu-
tions of varying degree of heterogeneity, with γ de-
noting the fraction of intrinsically spiking cells in the
network, Imin denoting the minimum, and 〈I〉, the aver-
age bias current of the distribution. However, both the
N-cell model and the mean-field description derived
later in this paper are valid for an arbitrary distribu-
tion. I = 1 represents the normalized firing threshold
in terms of the bias current, i.e., cells with I < 1 are
excitable (do not fire when isolated), and cells with I >1
are intrinsically spiking (fire tonically when isolated).
We define large heterogeneity to denote distributions
with the spread of bias currents (width of the distribu-
tion) equal to 1, and reduced heterogeneity to indicate
that the spread is 0.4.

The equation for the fraction of open channels qi is
derived from a standard first-order argument with αq(t)
and βq being the transition probabilities from the closed
to the open state and from the open to the closed state
of a gated channel, respectively. The function αq(t) is
set equal to a constant αq during the time period of
short duration εq after each spike. Slow depression si

represents a slow-acting negative feedback mechanism
that affects the effectiveness of synaptic transmission.
In our model, slow negative feedback is governed by a
law similar to that for qi, but with the rate of depression
βs(t) set equal to a constant βs during the time period of
short duration εs after each spike.

Parameter values or their ranges used in this work
are given in Table 1. Specific values within the ranges
are stated in the text as appropriate. Here we empha-
size that both the individual membrane potentials and
synaptic activations are fast compared to slow depres-
sion variables. For Vsyn, a value significantly above 1
is qualitatively comparable to values observed during
earlier stages of development.

2.3 N-cell model implementation and numerical
solution

The N-cell model was implemented in a software
package developed in C++ by Boris Vladimirski. The
numerical integration of the system was performed via
a two-step, second-order Runge-Kutta method, also
known as modified Euler’s method (Burden and Faires
2001, pp. 272–277). However, since the right-hand sides
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Table 1 Parameter values
for the N-cell model Parameter Description Typical value

τ Membrane time constant 20 ms
τref Refractory period 5 ms
Ii Bias current applied to neuron i 0–2
gsyn Maximum synaptic conductance 0–10
Vsyn Synaptic reversal potential 5
N Number of neurons in the network 1000
αq Rate of synaptic activation 0.5 ms−1

βq Rate of synaptic decay 0.05 ms−1

εq Synaptic activation duration 2 ms
αs Rate of slow depression recovery 5 · 10−5 ms−1

βs Rate of slow depression 0.005 ms−1

εs Depression decay duration 2 ms
σ σ/

√
3 is the standard deviation of noise/unit time 0.1

of (6) and (7) are discontinuous at each spike, we must
use spike-time interpolation (Hansel et al. 1998; Shelley
and Tao 2001) to retain the second-order accuracy (cf.
Vladimirski 2005, for details).

The time step used was typically 0.001τ = 0.01/αq to
guarantee that no significant features could be missed
while integrating over a longer time period. For Figs. 5
and 9 the time step was equal to 0.01τ .

Data produced by the numerical simulation software
package were processed and the results visualized in
Matlab as 2D- and 3D-graphs and animations.

3 Results

3.1 Numerical study of episodic behavior
in the heterogeneous N-cell model

We begin by exploring the features of episodic behav-
ior exhibited by the N-cell model (4–7). To describe
the network dynamics we show the time courses of
gsyn and of the representative samples of depression
variables si from simulations of the full network (3N
dynamic variables). The synaptic drive gsyn is produced
by the recurrent excitatory coupling (all-to-all) and is
delivered to all cells. It thus provides a measure of the
macroscopic network activity and mirrors the instanta-
neous population mean firing rate. Network activity is
organized into active phases, or episodes, during which
all cells are spiking, and silent phases, during which only
a fraction of cells are spiking. We illustrate the general
features of episodic behavior and effects of hetero-
geneity and excitability by using four specific uniform
distributions of bias currents: “large” and “reduced”
heterogeneity with bias currents that span an interval
of width 1 or 0.4, respectively. These distributions are

centered so that just a few cells (10%) or 50% of the
cells are intrinsically spiking; γ denotes the fraction
of intrinsically spiking cells. The threshold current for
spontaneous firing is I = 1 in our formulation.

3.1.1 Basic features of episodic rhythm

With a broad distribution of Ii (large heterogeneity)
and just a few intrinsically spiking cells, the silent
phases are long compared to the active phases, as
typical of experimental data [cf. Figs. 1 and 2(a)].
The overall behavior can be seen via the time courses
of gsyn (black) and the population mean of si, 〈s〉
(green). During the active phase gsyn decreases slowly,
as the synapses depress (〈s〉 decreasing). Eventually,
gsyn reaches a critical level and the network can no
longer sustain the high activity state; gsyn drops precipi-
tously, ending the active phase. During the silent phase
gsyn is small and relatively flat with modest increase as
the synapses recover from depression (〈s〉 increasing).
Eventually the slowly growing gsyn becomes sufficiently
large and the synapses of the silent cells recover enough
for the regenerative effect of mutual excitation to lead
to the final stage of rapid recruitment of all cells into
a next episode. (This final stage can be prompted by
fluctuations in gsyn caused by finite-size effects.) There-
after, the sequence of active and silent phases continues
periodically.

A closer look at the dynamics of the system
[Fig. 2(b)] shows the wide spread in the si-values across
the population. The 11 colored solid curves correspond
to cells whose I-values are equispaced across the dis-
tribution; thick red indicates that the cell is firing,
and thin blue, silent. The si-values maintain an or-
dering throughout silent and active phases: cells with
higher Ii-values fire more and have lower si-values since
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Fig. 2 Episodic behavior for large I-heterogeneity. The time
courses of synaptic drive gsyn (black) and average slow depression
〈s〉 (green) are shown on the left. Enlargement of the dashed
region and a sample of 11 individual slow depressions si (solid
colored curves) uniformly spaced over the distribution of I (di-
rection of I-increase is indicated by the arrow) are shown on the
right. Thick red portions of depression time courses indicate that
the corresponding cell is firing; thin blue lines indicate quiescence.
Above each row of panels, the I-distribution is shown schemat-
ically as a rectangular diagram. I increases from left to right
along the diagram, and the scale is the same for both diagrams.

The blue (middle) rectangle represents the excitable cells (Imin ≤
I <1) and the red (rightmost) rectangle represents the intrinsically
spiking ones (I >1). The white (leftmost) rectangle is shown to
align (for convenience) the left boundaries of all the I-diagrams
and represents the interval 0< I <Imin which is not part of
the distribution. The height of the diagram is arbitrary. For
panels (a) and (b), Ii are uniformly distributed on (0.1; 1.1)

with the fraction of intrinsically spiking cells γ =0.1. For pan-
els (c) and (d), Ii are uniformly distributed on (0.5;1.5) with
γ =0.5. gsyn =2.0

their synapses suffer greater depression. The spread of
si-values is smallest when the silent phase begins and
all the cells are strongly depressed after the previ-
ous active phase. The only cells that are firing at this
moment are the intrinsically spiking ones and the frac-
tion of cells that are pushed above the threshold by
the intrinsically spiking cells at all times [Fig. 3(a)].
The individual depression variables of the non-firing
cells begin to recover at the slow rate αs toward the

non-depressed value of 1 [blue lines in Fig. 2(b)].
The si-values for currently firing cells are also recov-
ering [red lines in Fig. 2(b)], but to a smaller value
and at a slower rate (since their firing, albeit slower
than in the active phase, still causes some depres-
sion). Hence, the spread of si-values steadily increases
during the silent phase and the si-values can be classi-
fied into three groups: higher values for those cells that
fire during the active phase only, much lower values
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Fig. 3 Episodic behavior for large I-heterogeneity: raster plots.
Cells’ bias currents are shown along the y-axis. Black dots in-
dicate that the corresponding cells are firing; white dots indi-
cate quiescence. Top and bottom panels correspond to top and
bottom panels, respectively, of Fig. 2. (a) and (d) show several
episodes. Note orderly slow recruitment during the silent phase
proceeding from the more to less excitable neurons. (b) and (e)
are enlargements that demonstrate the fast orderly recruitment at
the transition from the silent phase to the active phase. (c) and (f)

are enlargements that demonstrate the fast orderly derecruitment
at the transition from the active phase to the silent phase. Much
larger fraction of cells is active at the beginning of the silent phase
in the bottom panels because the network is more excitable.
However, the fraction of the cells recruited during the silent
phase, which form the intermediary subpopulation (shown by the
dashed orange lines), is approximately the same in both panels
(5–10%)

for those few cells that fire throughout both phases
(cells that are intrinsically spiking and the excitable
cells that are sufficiently close to the threshold to be
recruited by the intrinsically spiking cells at all times),
and intermediate ones for cells that are recruited to
fire during the silent phase. These latter cells [indicated
by the dashed lines representing non-monotone depres-
sion time courses in Fig. 2(b) and dashed orange lines
in Figs. 3(a–b)] comprise what we call the intermediary

excitable subpopulation. They relay the synaptic drive
from the active to the silent cells.

The recruitment of the intermediary subpopulation
is due to the recovery of firing cells from depres-
sion resulting in the gradual growth of the synap-
tic drive. Both this recruitment [Fig. 3(a)] and the
following sudden recruitment of the remaining silent
cells [2401 ≤ t/τ ≤ 2406 in Fig. 3(b)] are orderly, as
more excitable cells are closer to the firing threshold
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and are recruited sooner than less excitable ones. Dur-
ing the active phase, all cells fire rapidly and their
depression variables decay. Note that, since the decay
rate βs of si is larger than the growth rate αs, the
slow exponential-like decrease of si (and corresponding
decrease in gsyn) is steeper than the recovery time
course of non-firing cells in the silent phase. When gsyn

decreases enough, neurons stop firing abruptly, doing
so, again, in an orderly sequence, beginning with the
least excitable cell [2469 ≤ t/τ ≤ 2475 in Fig. 3(c)].

3.1.2 Characteristic effects of heterogeneity and
excitability

To explore the range of possible episodic behaviors
and demonstrate that episodic activity is robust with
respect to cellular excitability, we simulated the net-
work after translating the I-distribution, centering it
at I = 1. Now, with 50% of cells intrinsically spik-
ing, the network becomes more excitable [Fig. 2(c–d);
note the difference in time- and gsyn-scales between
(a–b) and (c–d)]: there are more thick red curves in
Fig. 2(d) as more cells are firing during the silent phase
[cf. Fig. 3(d)]. The overall level of firing, compared
with the preceding case (10% of cells intrinsically spik-
ing), leads to synapses that are more depressed [lower
si-values in Fig. 2(d)]. The overall patterns of orderly
recruitment during the silent phase [Fig. 3(e)] and dere-
cruitment [Fig. 3(f)] at the end of the active phase are
similar to those described in the previous paragraph.
In particular, despite much higher network excitability,
the percentage of cells recruited during the silent phase
(the intermediary subpopulation) remains the same as
above at about 5–10% [Fig. 3(d)].

The silent phase is much shorter (the active phase
duration is slightly reduced, too) and the amplitude of
the gsyn-variations is smaller in Fig. 2(c–d) compared
to Fig. 2(a–b). To explain these observations, we first
note that the silent phase ends when the intermediary
subpopulation has been recruited. Since the fraction
of cells comprising this subpopulation is approximately
the same between panels (a–b) and (c–d), gsyn has to
increase by approximately the same amount during the
silent phase. To achieve this increase, the synapses of
the active cells in panels (c–d) have to recover much less
compared to panels (a–b) because many more cells fire
and hence contribute to the synaptic drive. As a result,
the range of variation of the si-values of the active cells
is significantly decreased and so is the time spent in the
silent phase in panels (c–d).

In the active phase, the range of variation of the
si-values of all cells is the same as it is in the silent

phase since the episodic behavior is periodic. The dif-
ference with the silent phase is that excitable cells
contribute strongly to the synaptic drive and hence to
the duration of the active phase. In particular, the active
phase terminates when the least excitable cell stops
firing [Fig. 3(c and f)], and thus the gsyn-level at which
the active phase ends is much lower and the range of
si-variation is both reduced and shifted downward for
the more excitable network. The former effect tends to
shorten the active phase, whereas the latter one makes
it longer: the depression rate is slower during the active
phase because all the cells are already more strongly
depressed at the end of the silent phase than their
counterparts in the less excitable network. As a result,
the duration of the active phase is similar between
panels (a–b) and (c–d).

To summarize, the observed changes in the du-
ration of both phases as the network excitability is
increased are due to the range of si-values being shifted
downward and reduced. These two effects combine
to shorten the silent phase, but oppose each other
during the active phase. Interestingly, even though the
ad hoc model (Tabak et al. 2000) cannot account for the
aspects of episodic rhythmogenesis in the N-cell model
considered later, it also predicts (Tabak et al. 2006)
that increasing network excitability shortens the silent
phase without significantly affecting the active phase
for a similar reason (downward shift and contraction of
the range of variation of the depression variable).

We now ask how reduced heterogeneity com-
bined with changes in overall cellular excitability af-
fects episodic behavior. For the results in Fig. 4,
the spread of the I-distribution is reduced from 1.0
(Fig. 2) to 0.4. With 10% intrinsically spiking cells [Fig.
4(a–b)], the network is still rhythmic but the si-values
are more homogeneously distributed [compared with
Fig. 2(a–b)].

Although the fraction γ of intrinsically active cells
is the same as in Fig. 2(a–b), the silent phase is much
shorter and the active phase much longer. This is be-
cause the distribution of I is more compact, hence to
achieve the same γ the average cell excitability has
to be increased. This leads to a short silent phase,
similarly to the case of Fig. 2(c–d). The least excitable
cell is now much more excitable, and it becomes signif-
icantly more difficult to terminate an episode since the
si-variables have to depress even more. If the minimum
I-value is increased further [by translating the reduced
heterogeneity distribution upward in I: Fig. 4(c)], the
network never leaves the active phase. If, however,
we were to reduce gsyn (e.g., to gsyn = 0.75), episodes
would occur, similar to those in Fig. 2(c–d) (results
not shown).
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Fig. 4 Episodic behavior for reduced I-heterogeneity. Vari-
ables analogous to those in Fig. 2 are plotted using the same
colors/linestyles. For panels (a) and (b), I-values are uniformly
distributed on (0.64; 1.04) with γ = 0.1. For panel (c), I-values
are uniformly distributed on (0.8; 1.2) with γ = 0.5. Other

parameters are the same as in Fig. 2. The value of γ in panel
(a–b) is the same as that in Fig. 2(a–b), but the si-values are more
homogeneously distributed. In panel (c), the network excitability
is too high, and all cells fire at all times

To summarize, we have shown here that adequate
heterogeneity allows episodic behavior in our N-cell
network model of spiking cells. Increasing heterogene-
ity promotes episodic behavior by providing intrin-
sically active cells—which are necessary to start an
episode—without excessively raising the overall ex-
citability of the network, which would prevent episode
termination. We pursue this property of episodic be-
havior robustness in a later subsection with systematic
and extensive variations in the parameters: 〈I〉 and gsyn.

3.1.3 Critical and intermediary subpopulations

At this point in the paper, the dynamics of the system
might appear to be describable by a mean-field model
with one depression variable, e.g., average depression
〈s〉 as in Figs. 2(a and c), and 4(a). However, the more
detailed presentation of individual depression variables
si, particularly in the case of large heterogeneity in
Fig. 2(b) and (d), demonstrates the heterogeneity of
the si-distribution as it separates into three distinct
groups. One important role of this heterogeneity in

episodic rhythmogenesis was demonstrated by Tsodyks
et al. (2000) and Wiedemann and Luthi (2003): a small
group of cells (we call this group the intermediary sub-
population) with intermediate excitability was always
recruited before the next population burst occurred.
Furthermore, this intermediary subpopulation could
not be removed without disrupting population bursts.
Here we systematically study the properties of the in-
termediary subpopulation and critical subpopulations
(the latter are contiguous groups of cells such that their
removal jeopardizes the episodic rhythm) for various
levels of heterogeneity in the I-distribution.

The consecutive orderly recruitment of cells during
the silent phase is analogous to the propagation of
an excitation wave, except here the neighbors are in
the I-dimension, not spatial dimension. When a cell
starts firing, it contributes to the total gsyn which then
stimulates the other cells, in particular, beckons the
cell that is next nearest to its effective firing threshold.
The process is not linear: the contributions are not the
same by successive recruitees since they enter the active
group with different degrees of depression in their
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efferent synapses. Our raster plots (Fig. 3) illustrate
the evolution of the recruitment wave. We observe that
there is an intermediary subpopulation of cells (5–10%
of the whole network whose Ii-values are just below
those of the excitable cells recruited by the intrinsically
spiking cells at all times; indicated by the dashed or-
ange lines in Fig. 5) that, once recruited and provided
that the silent cells have sufficiently recovered, quickly
triggers all the remaining silent cells and the next
active phase proceeds. Consider the I-distribution in
Fig. 2(c–d). If we remove those 10% of cells just be-
low I = 1 (with 0.9 < I < 1.0) and redistribute them
uniformly into the subpopulation with I < 0.9, episodes
persist, and their quantitative properties stay essentially
the same. This finding is consistent with Tsodyks et
al. (2000). However, here we also try a new manipu-
lation: if instead we remove the 10% of cells with 0.7 <

I < 0.8, which include all the cells recruited during the
silent phase, and redistribute these uniformly into the
subpopulation with I > 0.8, episodes disappear. Sur-
prisingly, even though the network is biased to have
a larger fraction of more excitable and intrinsically
spiking cells, these cells are unable to recruit the less
excitable cells that are below the gap between 0.8 and
0.7. The safety factor for the recruitment wave has
been reduced too much, recruitment fails and episodic
rhythmicity is jeopardized. This indicates that the inter-

mediary population is indeed critical and highlights the
importance of heterogeneity in the depression variables
to the successful recruitment.

We also ask if there are any other critical subpopula-
tions, perhaps not necessarily part of the intermediary
one. To that end, we systematically vary the position
of a small continuous subpopulation along the entire
range of each distribution and plot a black rectangle
of the same width at the corresponding location in
Fig. 5 if this subpopulation is critical. To expose the
most sensitive areas, we look at the minimum widths
that reliably produce critical subpopulations. For the
top two diagrams, the very small width of 0.01 = 1%
of the network still produces critical subpopulations,
whereas for the distribution in the bottom diagram,
only 0.0432 = 10.85% does, but 0.04 = 10% does not.
If a distribution is more excitable and/or homogeneous,
it is easier for the active cells to bridge a gap of a given
size. For example, compared to the top diagram, the
critical subpopulations lie among the less excitable cells
in the center diagram and the number of such subpop-
ulations is smaller, whereas in the bottom diagram, the
size of each critical subpopulation is much larger.

Comparing the black and orange rectangles in Fig. 5,
we conclude that there can be several critical subpopu-
lations of minimal size for each I-distribution. Further-
more, while the intermediary subpopulation is always

Reduced heterogeneity, small γ 

Large heterogeneity, large γ 

Large heterogeneity, small γ

Fig. 5 Recruitment-critical subpopulations for I-distributions
from Figs. 2(a)–4(b). Each rectangle with a solid black edge
superimposed on a distribution diagram represents a critical
subpopulation (of same width and position) such that if it is
removed, the episodic behavior disappears. The absence of such
a rectangle around a particular position on the diagram indicates
that this position is not recruitment-critical for the given width.

The widths of all the rectangles for each distribution are identical,
chosen to be the minimum values of 0.01, 0.01, and 0.0432 for
the top, center, and bottom diagrams, respectively, that produce
any critical subpopulations (the heights are arbitrary to separate
individual rectangles). Dashed orange rectangles approximately
represent all the cells recruited during the silent phase (5–10% of
the whole network)
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critical (i.e., contains at least one critical subpopulation
of minimum size), there are critical subpopulations that
are not part of the intermediary one.

3.2 Mean-field description

In this section, we derive a reduced analytical mean-
field description (cf. also Ermentrout 1994; Shriki et al.
2003) for gsyn based on the separation of the time scales
between fast membrane potentials and synaptic activa-
tions (we call their time scale fast) and slow synaptic
depression variables (we call their time scale slow). Our
mean-field description consists of N slow depression
variables coupled with one nonlinear equation for gsyn

and is derived by averaging over the cells’ asynchronous
spiking behavior. The separation of the time scales is
taken to an extreme so that at each moment in time the
fast variables are assumed to be at their pseudosteady
states. We talk about pseudosteady states here because
within this mean-field description, at each moment in
slow time the fast variables are allowed to equilibrate to
their steady states (while the slow depression variables
are treated as parameters), but these steady states are
functions of the depression variables which change on
the slow time scale only. This step is a key part of a
full fast-slow dissection of the dynamics and it should
reveal bistability between high activity and low activity
states of the network. Having this pseudosteady state
approximation for the network’s behavior, we then
overlay uniform and heterogeneous slow depression
dynamics to see how they sweep the system back and
forth between the active and silent phases (as done for
our earlier ad hoc model).

The mean-field description derivation is based on the
following assumptions:

1. The synaptic input to each neuron is the same for
all neurons, i.e., we assume that the network is
fully-connected and there is no stochastic release.
The full connectivity requirement can be lifted for a
sparsely connected system in which the probability
of a synaptic connection between any two neurons
in the network follows the same probability distri-
bution. Similarly, if stochastic release follows the
same rule for all neurons, it can be incorporated
into the derivation easily.

2. Each neuron has entered a periodic regime and is
firing at a constant frequency (again, on the fast
time scale), i.e., all the transients have disappeared.

3. The synaptic input to each neuron is constant in
(fast) time. This is reasonable if all neurons are
firing asynchronously, which we expect to be the

case due to the heterogeneity imparted by the bias
currents.

4. The constant synaptic input can be obtained by re-
placing the synaptic conductances by their tempo-
rally averaged (in fast time) values. This is similar
to ergodicity and should follow from asynchrony.

Denoting this constant synaptic input by gsyn, we are
deriving the mean-field description in three steps.

1. We begin by computing the single-cell neuronal
firing rate r(gsyn, I) as a function of gsyn and I.
Let T = T(gsyn, I) = 1/r be the interspike interval
of this neuron. Then solving Eq. (4) analytically
gives

T(gsyn, I)=
{+∞ if �eff (gsyn, I)≤1

τref + τ
1+gsyn

log
(
1+ 1

�eff (gsyn, I)−1

)
if �eff (gsyn, I)>1

(8)

Here

�eff (gsyn, I) = I + gsynVsyn

1 + gsyn
(9)

is the effective normalized excitability incorporat-
ing both gsyn and I, and

�eff (gsyn, I) = 1 (10)

defines the effective firing threshold. The corre-
sponding single-cell firing rate surface is shown in
Fig. 11(a). It can be used to determine firing-rate
profiles of the population for different gsyn-values,
for example, at various moments during active and
silent phases.

2. We now compute the temporally averaged synap-
tic activation q̂(gsyn, I) for each synapse. We first
solve Eq. (6) analytically assuming that synapses
are activated for a short period of time relative to
the interspike interval. We then require that the
synaptic conductance be periodic, consistent with
each neuron firing at a constant rate. Finally, we
take the temporal average (these steps are carried
out in detail in Appendix). In the end, we obtain
the following expression:

q̂(gsyn, I) = r(gsyn, I)
(

c − d
eβq/r(gsyn, I) − w

)
(11)

Here c, d and w are positive constants (see
Appendix), and w < 1.

3. Using Eq. (11), we calculate the synaptic output as

gout(gsyn, t) = gsyn N−1
N∑

i=1

si(t)q̂(gsyn, Ii) (12)
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In the limit of large N, we replace the discrete aver-
age over the population by its limit. Assuming that
the bias current values are independently drawn
from the same probability distribution, we use the
Law of Large Numbers to conclude that this limit
is the expected value of s(t, I)q̂(gsyn, I) with re-
spect to the distribution of bias currents (s(t, I)
is the distribution of slow depression variables).
Hence, we obtain the following formula for the
function gout(gsyn, t) that is the normalized network
output produced by the steady synaptic input gsyn:

gout(gsyn, t) =
∫ ∞

−∞
f (I)s(t, I)q̂(gsyn, I)dI (13)

Here f (I) is the probability distribution of the bias
currents. The quantity gout(gsyn, t) represents a gen-
eral way of looking at the network’s input-output
relationship for various combinations of cellular
and synaptic parameters. However, because of the
recurrent connections in the network leading to the
synaptic output being fed back as synaptic input, to
characterize the steady state(s) of the system, we
require the self-consistency condition, i.e., that the
input to the network be equal to its output:

gsyn = gsyn

∫ ∞

−∞
f (I)s(t, I)q̂(gsyn, I)dI (14)

To conclude, we have derived the mean-field descrip-
tion (14) by employing a double conductance-averaging
process: first, temporal, and then, across the population.
It is important to note that the numerical evaluation of
the integral in (14) requires special consideration whose
details are given in Supplementary Material.

3.3 Bistability in the uniformly depressed
heterogeneous network

The time courses in Figs. 2 and 4 show that synaptic de-
pression decreases synaptic efficacy during an episode,
until the episode stops, and during the interepisode
interval there is a gradual recovery from depression.
The abrupt pattern of switching between the high- and
low-activity phases suggests that the mechanism for
episode generation is based on bistability: the network
could be either in a low or high activity pseudosteady
state, and synaptic depression switches back and forth
between these two states. Additionally, bistability of
steady-state network activity for a range of connectivity
strengths was the foundation of episodic behavior in
the ad hoc model of Tabak et al. (2000) where the
introduction of an activity-dependent slow depression

variable modulating the connectivity strength allowed
for the spontaneous generation of episodes.

Hence, in this section we use the mean-field descrip-
tion developed in the previous section to first look at
the steady-state bistability of gsyn. We set all si = 1, so
that the network is nondepressed, and study bistability
with respect to gsyn in the N-cell model by exploring the
properties of gout(gsyn) from (14).

Let us denote the steady network input by gin. Then,
the self-consistency condition (14) becomes

gin

gsyn
= gout(gin) (15)

We study (15) graphically. The left- and right-hand
sides of (15) are both functions of gin, and the in-
tersections of their graphs are the self-consistent val-
ues of gsyn, i.e., the values of gsyn at steady state.
Figure 6(b) shows a graph of gout(gin) and the straight
lines representing gin/gsyn from (15) for several gsyn-
values. Generally, if gsyn is small [gsyn < 0.77 in
Fig. 6(b)], only a low-activity self-consistent value of
gsyn exists. On the other hand, if gsyn is large [gsyn > 2.2
in Fig. 6(b)], then only a high-activity self-consistent
value exists. For a range of intermediate gsyn-values, it is
possible to have three self-consistent gsyn-values, which
implies that bistability is probable (the stability of the
high- and low-firing steady states was demonstrated by
our simulations). The distributions in Figs. 2–4 produce
the input-output curves gout(gin) shown in Fig. 6(a).
Among these, only those with small γ produce bista-
bility, but it is difficult to visualize. The other distribu-
tions are too excitable and do not lead to steady-state
bistability.

For each value of gsyn, we determine the self-
consistent values of gsyn as described above. By plotting
these values of gsyn vs. gsyn, we obtain a bifurcation
diagram. If γ is not too large, the bifurcation dia-
gram possesses the S-shape, characteristic of systems
with recurrent excitation. Two bifurcation diagrams
corresponding to the distributions of bias currents in
Fig. 2 are shown in Fig. 7. For each value of gsyn,
we also compute and plot the fraction of cells firing
within the population (FF). Additionally, simulation-
produced counterparts of gsyn and the fraction firing
are plotted on the same graph. Generally, both dia-
grams exhibit good correspondence between the sim-
ulation results and analytical predictions, with slight
deviations very close to the turning points (where the
network is very sensitive to small perturbations in gsyn)
caused by finite-size effects.

From this point on, we call the turning points of
the bifurcation diagrams the left and right knees, re-
spectively. Let their coordinates be (gL

syn; gL
syn) and
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Fig. 6 Steady-state input-output relationships of the nonde-
pressed or uniformly depressed networks and graphical represen-
tation of the self-consistency condition (15) on the recurrently
generated synaptic drive. Panel (a) shows nondepressed input-
output relationships for the four I-distributions in Figs. 2–4. For
small synaptic input gin, the curves for the same heterogeneity
are, approximately, translations of each other along the gin-
axis, consistent with (8) and (9). The intersections of the input-
output curves [right-hand side of Eq. (15)] and straight lines
that are the graphs of gin/gsyn [left-hand side of (15)] corre-
spond to the steady state(s) of the network. Panel (b) illustrates
the self-consistency condition (15): three steady states—low,

intermediate, and high (not shown)—exist for gsyn : 0.77 <

gsyn < 2.2, whereas for gsyn < 0.77, only the low steady state
exists, and for gsyn > 2.2, only the high steady state exists. The
black nondepressed network output curve in panel (b) represents
the graph of gout(gin) for I uniformly distributed on the intervals
(0; 0.2) and (1.0; 1.2), with γ = 0.2. The sole reason for using
this specific distribution was to show the intersections clearly.
Among the actual distributions in panel (a), only those with
small γ are not very excitable and produce bistability. Changing
gsyn as a parameter for a nondepressed network is the same as
changing the uniform depression variable s (with gsyn fixed) for
the uniformly depressed network

(gR
syn; gR

syn), respectively. We now look in detail at how
bistability is related to the properties of gout(gin) of the
nondepressed N-cell model. A necessary condition is
for γ to be small enough [as in Fig. 7(a)]. Otherwise,
the network is too excitable, and bistability is impos-
sible [Fig. 7(b)]. If γ is sufficiently small, whether the
network is bistable depends on gsyn. For gsyn < gL

syn

only the lower steady state L exists, with only a frac-
tion of cells firing. The network excitability is low and
hence cannot support anything other than the low-
firing steady state. When gsyn becomes equal to gL

syn
[notice the tangency of the graphs of the left- and right-
hand sides of (15) for gsyn = 0.77 in Fig. 6(b)], a pair
of middle (M) and upper (H) steady states is born,
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Fig. 7 Steady-state bistability in the nondepressed or uniformly
depressed network with large heterogeneity. Plotted are the self-
consistent values of synaptic drive gsyn and fraction of population
firing (FF). N-cell model simulation results are indicated by
thick black and blue lines, mean-field predictions by thin red
and orange lines. I-distributions correspond to those in Fig. 2.
Small γ in panel (a) leads to bistability, with stable high-activity
and low-activity steady states. The middle branches in panel (a)
are absent in simulation results due to their unstable character.
A large γ in panel (b) makes the network so excitable that

bistability is precluded, and only one steady state exists. The
trajectory in magenta shows a simulation-produced gsyn(t) vs.
〈s〉(t)gsyn as the abscissa variable, where 〈s〉(t) is the average of
all si-values in the network at simulation time moment t [cf.
Fig. 2(a)]. The trajectory does not follow the lower branch of the
bifurcation diagram in the silent phase (ends near s(t)gsyn = 1.2
(not shown) and not at the right knee). Therefore, the use of
the average depression cannot explain episodic behavior in the
N-cell model with heterogeneous depression

presumably via a saddle-node bifurcation (Strogatz
2000), with a larger fraction of the network firing in M
than in L, and the whole population firing in H. The left
knee corresponds to the minimum level gL

syn at which
the least excitable cell in the network begins to fire.
The sharp corner, often observed at the left knee, is
a consequence of the transition from some fraction of
the network firing to the whole network firing: no new

cells are recruited as gsyn increases through gL
syn along

the bifurcation diagram (in contrast to the situation for
gsyn < gL

syn), creating the discontinuity in the derivative
of gout(gin).

For gsyn > gL
syn, but close enough, the network is

sufficiently excitable to support three different firing
regimes. As gsyn increases further, M and H move away
from each other, until M coalesces with L at gR

syn in
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another saddle-node bifurcation [notice the tangency
for gsyn = 2.2 in Fig. 6(b)], after which H only exists.
The right knee occurs at the maximum level gR

syn at
which the network can still maintain a low activity
steady state. Some fraction of the network is silent at
the right knee, which accounts for the absence of any
sharp corner there. Above this level of gsyn, due to
strong recurrent excitation, the entire network is always
active, and only the high activity steady state remains.

3.4 Uniformized depression fails to predict key
features of the episodic behavior

To understand how bistability could lead to episodic
behavior, let us use the ad hoc model of Tabak et al.
(2000) as our guide. Consider a single activity-
dependent depression variable s, e.g., the average de-
pression across the network. If s decreases (network
depresses) when gsyn is large, and increases when gsyn is
small (recovery from depression), with proper param-
eter choices for s we can expect to obtain episodes since
varying gsyn for the nondepressed network is the same
as varying s for the uniformly depressed network with
gsyn fixed.

However, in the N-cell model, the si-variables are
not uniform. In Fig. 2, though, 〈s〉 seemed to describe
the episodic behavior well. To determine whether 〈s〉
can be indeed used to understand episodic behavior in
the N-cell model, we run a simulation, compute the
average slow depression 〈s〉(t) [cf. Fig. 2(a)] of all si-
values in the network at each simulation time moment
t and plot gsyn(t) vs. 〈s〉(t)gsyn as the abscissa variable in
magenta in Fig. 7(a). Since the simulation and mean-
field steady-state bifurcation diagrams in Fig. 7 corre-
spond so well, we might expect the trajectory to follow
the lower and upper branches of the bifurcation dia-
gram closely. However, the trajectory does not follow
the lower branch of the bifurcation diagram in the
silent phase at all, and returns to the upper branch
near s(t)gsyn = 1.2 (not shown), very far from the pre-
dicted point, the right knee. Therefore, the average
slow depression cannot be used to analyze the episodic
behavior.

In fact, any single continuous slow depression vari-
able, not only average slow depression, is inadequate
for explaining episodic behavior in the N-cell model.
Consider the situation in which the bifurcation dia-
gram of the nondepressed network is not bistable [e.g.,
Fig. 7(b)]. Since the bifurcation diagram has no knees,
we conclude that episodic behavior is impossible for the
N-cell model with any uniform slow depression s (pro-
vided that it is continuous). However, the same network

with individual si-variables can generate spontaneous
episodic activity as was shown in Fig. 2(b). Importantly,
this indicates that bistability in the nondepressed N-cell
model is not a necessary condition for episodic behavior
in the N-cell model with heterogeneous depression.
This is in stark contrast to the ad hoc model of Tabak
et al. (2000), in which episodes are impossible if the
nondepressed network is not bistable. In fact, we later
show that approximately 50% of episodic behavior
cases occur when the nondepressed network is not
bistable [Fig. 9(a)]. This increase in the robustness of
episodic rhythmogenesis is due to the heterogeneity
of the slow depression variables that results from the
heterogeneity of cellular excitabilities (bias currents).

3.5 Dynamical bistability as the basis of episodic
behavior in the N-cell model with heterogeneous
depression

In the last section, we showed that for the N-cell model
bistability of the nondepressed or uniformly depressed
network is not a prerequisite for episodic behavior.
Then, what could the episodic rhythmogenesis mech-
anism in the N-cell model be? We suspect that the het-
erogeneity of the si-variables may render the network
(dynamically) bistable, i.e., with the si-distribution such
as shown in Fig. 2(d), the network could have 2 (stable)
steady states. The episodic activity would then result
from transitions between the high and low states as
before. In order to investigate this, we use the same
large-heterogeneity distributions as in Figs. 2 and 7
and the interpolated si-distributions obtained from the
simulations in Fig. 2. To compute the steady states of
the network at each instant of time, we use our mean-
field model (14) with those si-distributions.

We then plot (Fig. 8) the time courses of these
steady states (which, technically, should be called
pseudosteady states, since they slowly vary on the de-
pression time scale), together with the time course of
gsyn from Fig. 2. As can be seen, at most moments
in time we find 3 steady states (low, gL, intermediate,
gM, and high, gH) and they vary with time (gL and
gH increase and decrease during the silent and active
phases, respectively; gM varies in the opposite way).
At the end of the silent phase, gM meets with gL.
Presumably, they coalesce in a saddle-node bifurcation,
and the only remaining steady state is gH , so gsyn jumps
to gH , and an episode starts. Similarly, at the end of the
active phase, gH and gM coalesce; gsyn falls back down
to gL, and the cycle repeats. Equally importantly, the
simulation-produced time courses of gsyn correspond
very well to gL during the silent phase and gH during the



54 J Comput Neurosci (2008) 25:39–63

2300 2500 2700 2900 3100 3300
0

0.2

0.4

0.6

0.8

t/τ 

g sy
n g

syn

g
syn

g sy
n

1360 1404 1448 1492 1536 1580
0

0.05

0.1

0.15

0.2

t/τ 

g
H

g
H

g
M

g
M

g
L

g
L

Large heterogeneity, small γ:

Large heterogeneity, large γ:

(a)

(b)

Fig. 8 Dynamical bistability as the basis of episodic behavior in
the N-cell model with heterogeneous depression. Plotted are the
time courses of gsyn (in black) superimposed with pseudosteady
state solutions (colored symbols) given by the mean-field de-
scription (14) with the si-distributions from the simulations in
Fig. 2. All parameters are the same as in Figs. 2 and 7. gL,
gM , and gH denote the low, intermediate, and high activity

pseudosteady states, respectively. The simulation-produced time
courses of gsyn correspond very well to gL during the silent phase
and to gH during the active phase. Independent of whether the
nondepressed or uniformly depressed network is bistable, the
network with heterogeneous depression exhibits pseudosteady
state bistability at each moment in time, with phase transitions
presumably occurring via saddle-node bifurcations

active phase, consistent with the dynamical bistability
description just presented.

Thus, using our general mean-field description (14)
together with simulation-produced individual depres-
sion time courses, we have uncovered a dynamical
bistability in the N-cell model and shown that this
bistability underlies the transitions between the high-
activity and low-activity states. Note especially that
Fig. 8(b) corresponds to the nondepressed network that
is not bistable [Fig. 7(b)]. Hence, it is the heteroge-
neous distribution of slow depression variables (which

results from the heterogeneity of I) that imparts this
new dynamical bistability onto the N-cell model as
the episodic rhythmogenesis mechanism. In the mean-
field model of episodic behavior with a uniform slow
depression variable or in the ad hoc model, positive
feedback from excitatory connections provides bista-
bility, while slow depression provides the phase tran-
sition mechanism. In the case of the N-cell model the
bistability is provided by both recurrent excitation and
heterogeneity of depression and, of course, slow de-
pression provides the switch mechanism, now as orderly
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recruitment and derecruitment (Figs. 2 and 8). This is a
fundamental difference between the ad hoc model and
N-cell model.

Finally, we offer an intuitive explanation of how
the heterogeneity of the si-distribution could induce
the dynamical bistability. In the nondepressed case (all
si = 1), bistability can be absent when the network
is very excitable and its input-output curve lies too
high [Fig. 6(a), large γ ] for three intersections to be
possible [cf. Fig. 6(b)]. A uniform depression would
scale down all parts of the input-output curve by the
same factor and would thus compress the input-output
curve vertically in addition to moving the curve lower.
An important consequence of that would be the cor-
responding decrease in the slope of the middle part
of the curve, resulting in only one steady state and
precluding bistability and episodic behavior. Let us
now consider the effects of having a heterogeneous
distribution of si-variables. During the silent phase, a
heterogeneous si-distribution scales down the part of
the curve for small gsyn (for which only the intrinsically
spiking and the most excitable cells fire) by a greater
factor than the part of the curve for large gsyn (all
cells fire) because the cells firing in the former case
are significantly more depressed than the less excitable
cells firing and contributing significantly to the synaptic
drive in the latter case. The resulting network input-
output curve possesses a stretched intermediate region,
which can induce bistability and episodic rhythm (with
an appropriate si-distribution).

3.6 Dynamic range of episodic behavior: robustness
increases with heterogeneity

In this section, we systematically study the dependence
of robustness, defined as the dynamic range of episodic
behavior, on heterogeneity. We fix the spread of het-
erogeneity and determine the episodic range as a region
in the 〈I〉–gsyn plane where 〈I〉 is the average bias
current (mean excitability) of the distribution.

The results for the same large (1.0) and reduced (0.4)
degrees of heterogeneity as in Figs. 2 and 4 are shown in
Fig. 9(a). The most important feature of these results is
that the dynamic range of episodic behavior increases
with heterogeneity. Furthermore, the episodic range
consists of two subregions [separated by the dashed
red lines in Fig. 9(a)]. Over the left subregion the non-
depressed network is bistable, whereas over the right
one it is not. Both regions increase with heterogeneity.
The increase of the left subregion with heterogeneity
could also be present in the N-cell model with uniform
depression. However, the right subregion is a quali-

tatively new feature that only the N-cell model with
heterogeneous depression possesses.

We now comment on the nature of the episodic
range boundaries. Above the top boundary, for any
given network excitability, the synapses are so strong
that the system does not leave the high-activity steady
state. This is either due to the dynamical bistability
being lost and the only steady state being the high-
activity state, or because the synapses cannot depress
enough to cause the system to switch to the low-activity
steady state. Analogously, below the bottom boundary
the network remains in the low-activity steady state ei-
ther because no other steady states exist or because the
synapses cannot recover sufficiently. The vertical left
boundary corresponds to no intrinsically spiking cells
in the network; hence, episodic behavior is precluded
as the network will remain completely silent (possibly,
after an initial transient).

There are several additional interesting features that
the dynamic ranges in Fig. 9(a) possess. First, only a few
intrinsically spiking cells (less than 1%) are sufficient
for episodic behavior. Additionally, such small percent-
ages display the most flexibility with respect to episodic
behavior in terms of gsyn. On the other hand, smaller
gsyn-values display the most flexibility with respect to
episodic behavior in terms of 〈I〉.

Finally, we verify that the increase in dynamic range
due to heterogeneity includes the regimes that are
relevant to developing networks [typically γ is on the
order of 0.1: (Wenner and O’Donovan 2001; Yvon
et al. 2007)]. We thus compare robustness for the
two networks (large and reduced heterogeneity) for
identical operating points (the same fraction γ = 0.1
of intrinsically spiking cells and the same fraction of
time, either 0.1 or 0.5, that the simulations spend in
the active phase). We ask whether the dynamic range
is increased by heterogeneity, i.e., if the range of 〈I〉-
values is increased, while gsyn is fixed. We have chosen
gsyn (two values) so that our operating points have
the specified fractions of time active, 0.1 or 0.5; these
fractions bracket the range assumed to be physiologi-
cally relevant. The results are shown in Fig. 9(b) and
further demonstrate that larger heterogeneity increases
robustness. The results for γ = 0.5 were similar (not
shown).

3.7 Episodic behavior in the homogeneous network
with slow depression and noise

Mean-field models, e.g., those of Wilson and Cowan
(1972), can be tuned to yield rhythmic network activity.
In these models, the “foot” of the network input-output
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Fig. 9 Dynamic range of episodic behavior: more heterogeneity
leads to better robustness. Panel (a) shows the regions over which
the network is episodic in the 〈I〉–gsyn plane where 〈I〉 is the mean
bias current in the distribution. For each point (〈I〉, gsyn) on the
approximate boundaries shown, the true boundary lies within
10% of the shown gsyn-range at that value of 〈I〉. Indicated by
the arrows, left of the dashed red lines in panel (a) are the regions
of bistability of the nondepressed network. Right of the dashed

red lines are the regions of increased robustness over which the
N-cell model with continuous uniform slow depression cannot
be episodic. Larger filled symbols in panels (a) and (b) indicate
the same operating points, γ = 0.1 and fraction of time spent in
the active phase, either ≈ 0.1 or ≈ 0.5 (see text). Panel (b) shows
the percentage of time the simulations spent in the active phase
for gsyn determined by the choice of the operating points and 〈I〉
varying

relationship providing nonzero response for low firing
rates is said to arise from modest amounts of noise
or heterogeneity. One wonders then in what sense
those sources of fluctuations (stochastic or quenched
disorder) are interchangeable in the generation of
episodic behavior. Furthermore, could we obtain ro-
bust episodes from a homogeneous N-cell model with
noise?

To explore these issues, we consider the homoge-
neous network, a special case of our N-cell model

in which the bias current to all neurons has the same
constant mean I plus an independent white current
noise (described in more detail in Supplementary Mate-
rial). This noise prevents spike-to-spike synchrony and
leads to a smooth “foot”. The homogeneous model
is analyzable and is also close to the ad hoc model of
Tabak et al. (2000). If the slow depression recovery and
decay rates are chosen appropriately, slow depression
should be able to terminate the active phase. Also, as
slow depression recovers in the silent phase, low tonic
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firing rate due to the effects of noise could eventually
recruit the network into an active phase.

In the homogeneous network, all neurons are iden-
tical except for the noise. To explain the dynamical be-
havior of this model, we use our mean-field description
(14). f (I) in (14) becomes a point mass at I and (14)
reduces to

gsyn = gsynsq̂(gsyn, I) (16)

where s is the slow depression variable (mean over the
network).

Let r = r(gsyn, I) be the steady-state mean firing rate
of a cell in the homogeneous network (cf. Supple-
mentary Material). Since the only differences among
the cells are due to noise, which is a fast process with
zero mean and small variance, we obtain the following
equation for s in terms of r only:

ṡ = αs(1 − s) − βsεsr(gsyn, I)s (17)

This is Eq. (7) in which the second term on the right-
hand side has been averaged over one interspike in-

terval. This averaging in (7) is justified provided the
cell is not firing too slowly so that its firing can still be
considered fast relative to the depression time scale. All
the cells always conform to this provision, except for a
short period when they just begin to fire. The second
condition necessary to justify this averaging is that
εs ≤ 1/r(gsyn, I) so that the depression does not de-
cay at all times. This is automatically satisfied because
εs < τref for our choice of parameter values. Equations
(16–17) form the complete mean field-type model for
the dynamical behavior of the homogeneous model.

We can now find the slow depression nullcline s∞(r),
i.e., the curve on which the right-hand side of Eq. (17)
is 0:

s∞(r) = αs

αs + βsεsr

= 1

1 + δsr
(18)
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Fig. 10 Phase-plane analysis (panel a) and episodic time courses
(panel b) for the homogeneous N-cell model with noise. Shown
in panel (a) is the mean network firing rate as a function of
gsyn for I = 0.8, I = 0.85, and I = 0.9. Episodic behavior is only
possible for I = 0.85: the network is not bistable for I = 0.9, and

never recovers from a silent phase for I = 0.8. This indicates
that the network’s bias current must be tuned very precisely to
achieve episodes. Simulation-produced time courses for I = 0.85
are shown in panel (b). gsyn = 2.0, δs = 40



58 J Comput Neurosci (2008) 25:39–63

where δs = βsεs/αs is an aggregate depression strength
parameter. Hence, the slow depression nullcline is a
hyperbola, with 1/δs a stretching factor along the r-axis.

Now, we can apply phase-plane analysis to the bifur-
cation diagram of the nondepressed model with gsyn re-
placed by sgsyn and depression nullcline superimposed
[Fig. 10(a)]. The bifurcation diagram here shows the
self-consistent values of r (equivalently, the instanta-
neous mean firing rate rav = N−1 ∑N

i=1 r(gsyn, Ii) of the
network), and not gsyn as before, so that both the
bifurcation diagram and the depression nullcline are ex-
pressed in the same variables. To obtain the bifurcation
diagram, we compute and plot the firing rate r at each
solution of Eq. (16).

The necessary and sufficient condition for episodic
behavior is for the depression nullcline to intersect only
the middle branch of the bifurcation diagram. If this
condition is satisfied, s depresses during an episode, de-
creasing network excitability and eventually terminat-
ing the active phase [Fig. 10(b)]. The presence of noise
indeed makes it possible for the network to recover
from the silent phase: s recovers the network excitabil-
ity during the silent phase until the entire population
is recruited into an episode. Note the very long silent
phases: if positioned to intersect the middle branch
only, the depression nullcline must pass very close to
the right knee. (The duration of the silent phase could
be decreased with a different, more horizontal and
higher above the right knee, depression nullcline.)

Most importantly, as Fig. 10(a) shows, the bias cur-
rent I must be tuned very precisely to achieve episodes.
For example, for the given level of noise (σ = 0.1,
Table 1), I must not deviate by more than 5% from
0.85. Otherwise, episodes cease to exist. (Strictly speak-
ing, for I ≤0.8 (but not for I ≥0.9) it is always possible
to generate episodic behavior for very large gsyn-
values due to noise. However, that would require non-
physiologically large values of gsyn and δs as well as
extremely careful tuning of δs.) We do not expect
to see such degree of precision in the developing
nervous system, rendering this episodic rhythmogen-
esis possibility biologically unrealistic. Decreasing the
noise level would result in spike-to-spike synchrony.
Such synchrony amongst the leaky integrate-and-fire
units would disallow episodic behavior. Increasing
the noise level could easily preclude bistability by
making the single-cell firing rate a strictly concave
function of gsyn with the mean firing rate of the net-
work becoming a monotone function of gsyn [cf. Figs. 6
and 7(b)]. In any case, changes to σ do not extend the
dynamic range of permissible perturbations to I to any
significant degree.

We conclude that episodic behavior is not robust
for the homogeneous population of noisy integrate-
and-fire neurons. This is a consequence of the presence
of only one bias current and is independent of slow
depression dynamics, i.e., the depression nullcline. An
analytical treatment of the issue of noise vs. hetero-
geneity is deferred to a future paper; here we explain
it more qualitatively. Figs. 2 and 4(a–b) show that in
the heterogeneous case the active phase ends at the
value of gsyn at which the least excitable cell stops firing.
On the other hand, the silent phase ends at a much
smaller gsyn-value once the intermediary subpopulation
has been recruited. In other words, intrinsically spiking
cells are necessary to initiate episodes, whereas less
excitable cells are essential for terminating episodes. In
the homogeneous N-cell model, the dynamic variables
are also distributed (due to noise in this case), but the
distributions are much tighter. Furthermore, the order
of cells within those distributions changes randomly
with time since so does the noise. As a result, while
noise effectively prevents spike-to-spike synchrony, all
cells in the network are equally excitable and the
episodic behavior of the homogeneous population with
noise can be essentially described by that of a single
cell with the same value of I. This single cell cannot
robustly balance the properties of a range of cellular
excitabilities present in the heterogeneous case, which
leads to an extremely small dynamic range of I.

4 Discussion

4.1 Overview of results

In this paper, we have introduced a cell-based model
(4–7) of spontaneous episodic rhythmogenesis in the
developing spinal cord. The model is comprised of
an all-to-all coupled excitatory network of N spiking,
leaky integrate-and-fire neurons with first-order synap-
tic kinetics and slow synaptic depression. We have
shown with numerical simulations that this network
is capable of generating robust episodic behavior for
various levels of heterogeneity in the distributions of
the bias currents (Figs. 2–4). The recruitment of in-
dividual cells into an episode and their derecruitment
at its end are both orderly with respect to the bias
currents (Fig. 3). Furthermore, we have confirmed
(Tsodyks et al. 2000; Wiedemann and Luthi 2003) that
a small subpopulation (5–10%) of neurons with inter-
mediate excitability recruited during the silent phase
plays a critical role in igniting the active phase through
the rapid recruitment of all other less excitable cells
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and discovered that other critical subpopulations exist
as well.

Our treatment includes a systematic derivation from
the N-cell model of a general mean-field description
(14) that includes macroscopic heterogeneity of cellular
thresholds and slow depression variables explicitly. Us-
ing the mean-field description together with simulation-
produced heterogeneous depression time courses, we
have then demonstrated that dynamical bistability is
the mechanism responsible for episodic behavior in
the full N-cell model. We also showed, by example,
that an oversimplified mean-field description (based
on uniformized slow depression) can be misleading,
i.e., by not containing this crucial dynamical bistability
even though the full model has it. Finally, we have
demonstrated that increased heterogeneity enlarges the
dynamic range of episodic behavior (Fig. 9), i.e., pro-
duces better robustness, a necessity for the developing
nervous system in which parameters do change with
time. We have also explored and analyzed episodic be-
havior using our mean-field description in a special case
of the N-cell model, the homogeneous population with
noise. In our model, noise, unlike heterogeneity, does
not lead to robust episodic rhythmogenesis with respect
to perturbations in the distribution of bias currents.

4.2 Comparison of models for episodic behavior and
population spikes

Our N-cell model and results obtained with it share
several aspects with those reported by Tsodyks et al.
(2000), Loebel and Tsodyks (2002), and Wiedemann
and Luthi (2003). Each study demonstrates that
spontaneous episodic activity can be produced by het-
erogeneous integrate-and-fire networks with activity-
dependent synaptic depression responsible for the
initiation and termination of episodes. Each model
is deterministic and in each, recovery from the silent
phase involves orderly recruitment proceeding from
more to less excitable cells or groups of cells via an
important population of intermediate excitability
and requires that some fraction of the population
be intrinsically spiking, i.e., firing tonically without
recurrent synaptic input.

A major difference between our model and the other
three is that their episodes, or, “population spikes”,
were very brief (each neuron only fired once or twice
during a population spike). In those previous studies,
synaptic depression develops very fast, on the time
scale of one to few spikes. Depression develops more
slowly in our model, leading to relatively longer active
phases. This feature fits with experimentally observed

episodes in the spinal cord (Fig. 1), a neuronal system
whose behavior motivates our study. Another differ-
ence is that we use full connectivity for computational
simplicity whereas the other models used sparse con-
nectivity. Fluctuations due to sparseness might have
contributed to the randomness in silent phase duration
seen by Wiedemann and Luthi (2003).

We extend the previous works by conducting a sys-
tematic study of critical and intermediary subpopu-
lations for several representative choices of network
heterogeneity and excitability (Fig. 5). Furthermore,
we demonstrate the importance of the intermediary
subpopulation in a new way: the episodic rhythm often
stops even if the intermediary subpopulation is re-
placed by the same percentage of more excitable cells.
We also find that the intermediary subpopulation and
especially other critical subpopulations can be small,
and become smaller as heterogeneity increases, i.e., as
the spread in I widens. We believe that this kind of
sensitivity is a product of our choice of heterogeneity
(uniform I-distribution) and could be significantly al-
leviated if an appropriate non-uniform, say Gaussian,
I-distribution was used.

Additionally, we use our mean-field description to
newly identify the mechanism of dynamical bistabil-
ity underlying episodic behavior. Dynamical bistability,
in particular, explains in detail when each phase is
initiated and terminated. Most importantly, the empha-
sis in our work is on the effects of heterogeneity and
noise on the robustness of episodic behavior, which
were not addressed in previous studies.

4.3 Synaptic depression, cellular adaptation: different
features of dynamic variables

An alternative to synaptic depression as an activity-
dependent negative feedback mechanism is cellular
adaptation. Networks of slowly adapting integrate-and-
fire (Latham et al. 2000; van Vreeswijk and Hansel
2001; Giugliano et al. 2004) and Hodgkin-Huxley neu-
rons (Compte et al. 2003) have been shown to generate
population bursts. For spontaneous rhythmogenesis,
similarly to our model, they utilize either a heteroge-
neous distribution of bias currents/thresholds so that
some fraction of the cells are intrinsically spiking or
some injected input (possibly, noise), or both. Here
we compare the distributions of the dynamic vari-
ables and the resulting episodic behavior for a network
with cellular adaptation vs. one with slow synaptic
depression.

To develop this comparison, we have run simula-
tions using an N-cell model with I-heterogeneity and
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slow individual cellular adaptation processes instead of
individual synaptic depression processes (unpublished
preliminary results). All cells had the same activity-
dependent adaptation process. We found that episodic
activity, in that case, could be well approximated by
simply using the average adaptation over the whole
population. Due to cellular adaptation, cells that fire
faster adapt more than slower firing cells. Thus, cellular
adaptation tends to homogenize the firing rates, and
at the beginning of an episode all cells increase their
firing rate almost synchronously. Synaptic depression,
on the other hand, does not affect the heterogeneity in
firing rates, but dynamically decreases the efficacy of
synapses as a function of presynaptic firing frequency.
The resulting distributions of firing rates and individ-
ual synaptic depression variables cannot be described
accurately by simply averaging over the whole popu-
lation. We therefore expect that the effects of hetero-
geneity would be reduced if cellular adaptation was
used instead of synaptic depression. In particular, the
increase in the dynamic range to include a region for
which the network without negative feedback is not
bistable [right of the dashed vertical lines in Fig. 9(a)]
is specifically due to the heterogeneity of the slow
depression variables. Such an increase should be much
less pronounced for cellular adaptation.

However, if the parameters of cellular adaptation
were themselves heterogeneously distributed, hetero-
geneous firing rates would remain. It is not clear
whether the effects of heterogeneity described for
synaptic depression would still hold in the case of
heterogeneous adaptation. However, we note that
Wiedemann and Luthi (2003) used heterogeneous
adaptation and found no intermediary subpopulation
during the recruitment process, in contrast to their
findings with synaptic depression. Thus, we speculate
that the features observed in the presence of synap-
tic depression (dynamical bistability, existence of the
intermediary subpopulation) will be absent if cellular
adaptation is used instead.

4.4 Open issues and generalizations

Our mean-field approach based on fast/slow dissection
has worked well to describe the pseudosteady states
within the active and silent phases. In a full treat-
ment we would follow the dynamics of the N slow
variables during these phases and then describe the
rapid transitions between these phases. Temporal av-
eraging yields the approximate N evolution equations
[similar to (17)] for the si-variables within the phases
(Vladimirski 2005) but the orderly dynamics of rapid
jumping of cells into or out of high firing rate phases

has yet to be systematically worked out. Meanwhile, we
have developed some reduced approximate models, say
with only three dynamical variables, that are based on
our mean-field approach and that capture much of the
richness and robustness of episodic behavior in the N-
cell model with heterogeneous depression (Vladimirski
2005).

In the developing spinal cord, fast cycling (period of
500 ms or so) occurs within an episode (Fig. 1). Our
model, at this stage, does not account for this dynamical
structure. The ad hoc model captures this feature with
an additional depression process, d in (1)–(2), whose
time scale is hundreds of milliseconds, not as slow as
that of s. But, in order to achieve cycling in the ad
hoc model the time scale of the faster depression could
not be much slower than the time scale τa [Eq. (1)] of
recurrent excitation (Marchetti et al. 2005). Here in our
N-cell model, the response time of recurrent excitation
(during an episode) should be the fast time scale of
Vi and qi (milliseconds–tens of milliseconds) and this
is about 10 times faster than that of cycling. This mis-
match of time scales suggests that merely introducing a
fast depression (N d-like variables) will be insufficient
to account for cycling. The issue of cycle generation in a
spiking network model remains open and there is little
direct experimental support for candidate mechanisms.

The episodic rhythms that we have modeled are
of the relaxation oscillator type, with rapid transitions
between the phases. Another class of rhythmic patterns
would be slow modulation of firing but without rapid
transitions. In this case underlying dynamical bistability
may not be necessary to account for the rhythmic ac-
tivity. Nevertheless, heterogeneity may still be present
and important (e.g., for robustness, broad dynamic
range). Our mean-field approach would be applicable.
The slow modulation could be from, say, sensory input
that varies slowly in comparison to spiking and synaptic
kinetics, or endogenously generated by opposing slow
processes, some for positive feedback and some for
negative feedback that could be intrinsic or synaptic (or
both) in origin.

Our mean-field framework extends naturally to
other neuronal system contexts and can include more
biophysical detail when desired. One could incorporate
inhibition provided that its time scale is either not much
different from the fast time scale of Vi and qi or is very
much slower. The mean-field derivation can be carried
out for a wide class of single-neuron models (e.g.,
Hodgkin-Huxley), synaptic kinetics, slow depression
dynamics, bias current distributions, and connectivity
patterns. The primary restrictions are: the fast variables
for spike generation must remain fast compared to the
slow processes; the single-neuron firing rate r(gsyn, I)



J Comput Neurosci (2008) 25:39–63 61

is computable for every value of gsyn and I and is
monotone increasing with respect to each of them for a
sufficient range of gsyn-values (if gsyn is large, r(gsyn, I)
could even decrease); and the ergodicity-like assump-
tion in the derivation of the mean-field description is
valid. Sparse connectivity and synaptic failure, at least
in an averaged way, could be included.

Finally, does the particular spiking model affect our
robustness findings in an essential manner? The input-
output function of the integrate-and-fire model is quite
steep near the threshold for tonic firing. Although,
during the episodic pattern we see that cells sample
this sensitive region only very briefly, during transi-
tions. Therefore, the use of a different cellular input-
output relationship could slightly reduce the fragility
of rhythmicity of the noisy homogeneous network.
However, episodic behavior in the heterogeneous N-
cell model is dependent on the distributions of the
individual neurons’ firing rates, synaptic conductance,
and especially depression variables. For a uniform
I-distribution with sufficient heterogeneity, we expect
those distributions to be relatively weakly dependent
on the single-cell input-output relationship. The main
reason is that during the silent phase the cells that
do not fire recover from depression independently of
their input-output relationship, while the active cells
will be much more depressed, similarly to our model
with integrate-and-fire neurons. All of the qualita-
tive features of episodic behavior should remain the
same and hence we speculate that the robustness will
not change significantly. This invariance of robustness
might represent some form of self-organization and
help to explain why episodic activity is so ubiquitous
in the developing nervous system. For the same reason,
we also expect that the newly discovered heterogeneity-
dependent dynamical bistability for a spiking network
contributes in fundamental ways to stability and robust-
ness of episodic behavior for other neuronal systems
and models as well.
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Appendix

Details of the mean-field description derivation

To obtain the expression for q̂(gsyn, I) given in (11), we
perform the following steps.

1. We solve Eq. (6) analytically assuming that syn-
apses are activated for a short period of time rela-

tive to the interspike interval, i.e., εq ≤ T(gsyn, I).
Using the integrating factor method, we obtain

qi(t)=
{

αq
αq+βq

+
(
qi(0)− αq

αq+βq

)
e−(αq+βq)t 0≤ t≤εq

e−βq(t−εq)qi(εq) εq < t≤Ti ≡T(gsyn, Ii)

(19)

Since Ti is the period of neuron i, we must have

qi(Ti) = qi(0)

qi(0) = αq

αq + βq

eβqεq − e−αqεq

eβqTi − e−αqεq

2. Find the temporal average of the analytical
solution:

q̂(gsyn, Ii)

=
{

0, Ti =+∞; otherwise:

1/Ti
∫ Ti

0 qi(t)dt=1/Ti

(∫ εq

0 qi(t)dt+∫ Ti

εq
qi(t)dt

)

For Ti finite,

∫ εq

0
qi(t)dt = αq

αq + βq
εq

+
(

qi(0)− αq

αq + βq

)
1

αq + βq

× (
1−e−(αq+βq)εq

)
(20)

∫ Ti

εq

qi(t)dt =
[

αq

αq + βq

+
(

qi(0) − αq

αq + βq

)
e−(αq+βq)εq

]

× 1

βq

(
1 − e−βq(Ti−εq)

)

= 1

βq

(
αq

αq + βq

(
1 − e−(αq+βq)εq

)

− (
1 − e−(αq+βq)εq

)
qi(0)

)
(21)

Hence, combining the similar terms in (20) and
(21), we obtain:

q̂i = ri

(
c − d

eβq/ri − w

)
(22)
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where

c = αqεq

αq + βq
+ α2

q

(αq + βq)2βq

(
1 − e−(αq+βq)εq

)

d = α2
q

(αq + βq)2βq

(
eβqεq − e−αqεq

) (
1 − e−(αq+βq)εq

)

w = e−αqεq

In general,

q̂(gsyn, I) = r(gsyn, I)
(

c − d
eβq/r(gsyn, I) − w

)
(23)

Both (22) and (23) are valid for any firing rate.
In particular, for low firing rates, we deduce from
(11) that

q̂(gsyn, I) ≈ cr(gsyn, I) (24)

For high firing rates, by using Taylor’s Formula in
powers of βq/r(gsyn, I) and keeping the linear part
only, we obtain:

q̂(gsyn, I) ≈
(

c− d
1−w

)
r(gsyn, I)

+ bβq

(1−c)(1−c+βqτref )
(25)

The βqτref term in the denominator is the minimum
possible value of βq/r(gsyn, I). Thus, the tempo-
rally averaged synaptic activation is approximately
linear in both cases, with the slope being shallower
in the latter. The graph of q̂(gsyn, I) is shown in
Fig. 11(b).

We also provide some additional details here. In this
work, we use uniform distributions of bias currents on
a finite interval (Imin; Imax). Then, (14) simplifies to

gsyn = gsyn
1

Imax − Imin

∫ Imax

Imin

s(t, I)q̂(gsyn, I)dI (26)
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Fig. 11 Panel (a): firing rate of the single leaky integrate-and-fire
neuron without noise. Transition to repetitive firing occurs when
�eff (gsyn, I) = 1, i.e., along the straight line I = 1 + gsyn(1 −
Vsyn). If either gsyn or I is fixed at some level, the firing-rate
as a function of the other variable possesses the characteristic
logarithmic shape. Superimposed are also shown three firing-rate

population profiles, corresponding to the three marked steady-
state values of gsyn on the lower, middle, and upper branches of
the bifurcation diagram in Fig. 7(a). Panel (b): single-cell synaptic
activation averaged over one interspike interval as a function of
the cell’s firing rate. Note the linear parts for low and high firing
rates, consistent with (24) and (25)
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For general description purposes (e.g., this is how
the bifurcation diagrams in Fig. 7 were generated), we
can interpret (14) in terms of gsyn as a function of the
self-consistent value of gsyn. This allows us to avoid the
numerical solution of (14) altogether, but is not applica-
ble if the self-consistent value of gsyn corresponding to
a specific value of gsyn is required. The corresponding
expression is

gsyn = gsyn∫ ∞
−∞ f (I)s(t, I)q̂(gsyn, I)dI

(27)
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