Skip to main content
Log in

Mechanism of gain modulation at single neuron and network levels

  • Published:
Journal of Computational Neuroscience Aims and scope Submit manuscript

Abstract

Gain modulation, in which the sensitivity of a neural response to one input is modified by a second input, is studied at single-neuron and network levels. At the single neuron level, gain modulation can arise if the two inputs are subject to a direct multiplicative interaction. Alternatively, these inputs can be summed in a linear manner by the neuron and gain modulation can arise, instead, from a nonlinear input–output relationship. We derive a mathematical constraint that can distinguish these two mechanisms even though they can look very similar, provided sufficient data of the appropriate type are available. Previously, it has been shown in coordinate transformation studies that artificial neurons with sigmoid transfer functions can acquire a nonlinear additive form of gain modulation through learning-driven adjustment of synaptic weights. We use the constraint derived for single-neuron studies to compare responses in this network with those of another network model based on a biologically inspired transfer function that can support approximately multiplicative interactions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Abbott, L. F., & Chance, F. S. (2005). Drivers and modulators from push–pull and balanced synaptic input. Progress in Brain Research, 49, 147–155.

    Article  Google Scholar 

  • Albrecht, D. G., & Geisler, W. S. (1991). Motion selectivity and the contrast-response function of simple cells in the visual cortex. Visual Neuroscience, 7, 531–546.

    PubMed  CAS  Google Scholar 

  • Andersen, R. A., & Mountcastle, V. B. (1983). The influence of the angle of gaze upon the excitability of the light-sensitive neurons of the posterior parietal cortex. Journal of Neuroscience, 3, 532–548.

    PubMed  CAS  Google Scholar 

  • Andersen, R. A., Essick, G. K., & Siegel, R. M. (1985). The encoding of spatial location by posterior parietal neurons. Science, 230, 456–458.

    Article  PubMed  CAS  Google Scholar 

  • Arsiero, M., Lüscher, H. R., Lundstrom, B. N., & Giugliano, M. (2007). The impact of input fluctuations on the frequency–current relationship of layer 5 pyramidal neurons in the rat medial prefrontal cortex. Journal of Neuroscience, 27, 3274–3284.

    Article  PubMed  CAS  Google Scholar 

  • Bishop, C. M. (1995). Neural networks for pattern recognition.. Oxford, New York: Oxford University Press.

    Google Scholar 

  • Bremmer, F., Ilg, U. J., Thiele, A., Distler, C., & Hoffmann, K. P. (1997). Eye position effects in monkey cortex. I. Visual and pursuit-related activity in extrastriate areas MT and MST. Journal of Neurophysiology, 77, 944–961.

    PubMed  CAS  Google Scholar 

  • Carandini, M., & Ferster, D. (2000). Membrane potential and firing rate in cat primary visual cortex. Journal of Neuroscience, 20, 470–484.

    PubMed  CAS  Google Scholar 

  • Carandini, M., Heeger, D. J., & Movshon, J. A. (1997). Linearity and normalization in simple cells of the macaque primary visual cortex. Journal of Neuroscience, 17, 8621–8644.

    PubMed  CAS  Google Scholar 

  • Chance, F. S., Abbott, L. F., & Reyes, A. D. (2002). Gain modulation from background synaptic input. Neuron, 35, 773–782.

    Article  PubMed  CAS  Google Scholar 

  • Cohen, Y. E., & Andersen, R. A. (2000). Eye position modulates reach activity to sounds. Neuron, 27, 647–652.

    Article  PubMed  CAS  Google Scholar 

  • Doiron, B., Longtin, A., Berman, N., & Maler, L. (2001). Subtractive and divisive inhibition: Effect of voltage-dependent inhibitory conductances and noise. Neural Computation, 13, 227–248.

    Article  PubMed  CAS  Google Scholar 

  • Gabbiani, F., Krapp, H. G., Koch, C., & Laurent, G. (2002). Multiplicative computation in a visual neuron sensitive to looming. Nature, 420, 320–324.

    Article  PubMed  CAS  Google Scholar 

  • Galletti, C., & Battaglini, P. P. (1989). Gaze-dependent visual neurons in area V3A of monkey prestriate cortex. Journal of Neuroscience, 9, 1112–1125.

    PubMed  CAS  Google Scholar 

  • Gardner, J. L., Anzai, A., Ohzawa, I., & Freeman, R. D. (1999). Linear and nonlinear contributions to orientation tuning of simple cells in the cat’s striate cortex. Visual Neuroscience, 16, 1115–1121.

    Article  PubMed  CAS  Google Scholar 

  • Groh, J. M., Trause, A. S., Underhill, A. M., Clark, K. R., & Inati, S. (2001). Eye position influences auditory responses in primate inferior colliculus. Neuron, 29, 509–518.

    Article  PubMed  CAS  Google Scholar 

  • Grunewald, A., Linden, J. F., & Andersen, R. A. (1999). Responses to auditory stimuli in macaque lateral intraparietal area. I. Effects of training. Journal of Neurophysiology, 82, 330–342.

    PubMed  CAS  Google Scholar 

  • Heeger, D. J. (1992). Normalization of cell responses in cat striate cortex. Visual Neuroscience, 9(2): 181–197.

    PubMed  CAS  Google Scholar 

  • Higgs, M. H., Slee, S. J., & Spain, W. J. (2006). Diversity of gain modulation by noise in neocortical neurons: Regulation by the slow afterhyperpolarization conductance. Journal of Neuroscience, 26, 8787–8799.

    Article  PubMed  CAS  Google Scholar 

  • McAdams, C. J., & Maunsell, J. H. R. (2000). Attention to both space and feature modulates neuronal responses in macaque area V4. Journal of Neurophysiology, 83, 1751–1755.

    PubMed  CAS  Google Scholar 

  • Mel, B. W. (1993). Synaptic integration in an excitable dendritic tree. Journal of Neurophysiology, 70, 1086–1101.

    PubMed  CAS  Google Scholar 

  • Mitchell, S., & Silver, R. (2003). Shunting inhibition modulates neuronal gain during synaptic excitation. Neuron, 38, 433–445.

    Article  PubMed  CAS  Google Scholar 

  • Murphy, B. K., & Miller, K. D. (2003). Multiplicative gain changes are induced by excitation or inhibition alone. Journal of Neuroscience, 23, 10040–10051.

    PubMed  CAS  Google Scholar 

  • Murthy, A., Humphrey, A. L., Saul, A. B., & Feidler, J. C. (1988). Laminar differences in the spatiotemporal structure of simple cell receptive fields in cat area 17. Visual Neuroscience, 15, 239–256.

    Google Scholar 

  • Pouget, A., & Sejnowski, T. J. (1995). Spatial representations in the parietal cortex may use basis functions. In A. Tesauro, D. Touretzky, & T. Leen (Eds.) Advances in neural information processing systems (pp. 157–164). Cambridge: MIT Press.

    Google Scholar 

  • Prescott, S. A., & De Konick, Y. (2003). Gain control of firing rate by shunting inhibition: Roles of synaptic noise and dendritic saturation. Proceedings of the National Academy of Sciences, 100, 2076–2081.

    Article  CAS  Google Scholar 

  • Rumelhart, D. E., Hinton, G. E., & Williams, R. J. (1986). Learning internal representations by error propagation. In J. L. McClelland, & D. E. Rumelhart (Eds.) Parallel distributed processing: Explorations in the microstructure of cognition (pp. 318–362). Cambridge: MIT Press.

    Google Scholar 

  • Salinas, E., & Abbott, L. F. (1996). A model of multiplicative neural responses in parietal cortex. Proceedings of the National Academy of Sciences of the United States of America, 93, 11956–11961.

    Article  PubMed  CAS  Google Scholar 

  • Salinas, E., & Abbott, L. F. (1997). Invariant visual responses from attentional gain fields. Journal of Neurophysiology, 77, 3267–3272.

    PubMed  CAS  Google Scholar 

  • Salinas, E., & Their, P. (2000). Gain modulation: a major computational principle of the central nervous system. Neuron, 27, 15–21.

    Article  PubMed  CAS  Google Scholar 

  • Salinas, E., & Sejnowski, T. J. (2001). Gain modulation in the central nervous system: Where behavior, neurophysiology and computation meet. The Neuroscientist, 7, 430–440.

    PubMed  CAS  Google Scholar 

  • Smith, M., & Crawford, J. (2005). Distributed population mechanism for the 3-D oculomotor reference frame transformation. Journal of Neurophysiology, 93, 1742–1761.

    Article  PubMed  Google Scholar 

  • Schwartz, O., & Simoncelli, E. P. (2001). Natural signal statistics and sensory gain control. Nature Neuroscience, 4(8): 819–825.

    Article  Google Scholar 

  • Treue, S., & Martinez-Trujillo, J. C. (1999). Feature-based attention influences motion processing gain in macaque visual cortex. Nature, 399, 575–579.

    Article  PubMed  CAS  Google Scholar 

  • Tuckwell, H. C. (1988). Introduction to theoretical neurobiology. Cambridge: Cambridge University Press.

    Google Scholar 

  • Xing, J., & Andersen, R. A. (2000). Models of the posterior parietal cortex which perform multimodal integration and represent space in several coordinate frames. Journal of Cognitive Neuroscience, 12, 601–614.

    Article  PubMed  CAS  Google Scholar 

  • Zipser, D., & Andersen, R. A. (1988). A back-propagation programmed network that simulates response properties of a subset of posterior parietal neurons. Nature, 331, 679–684.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank Gary Gibbons for helpful suggestions and T. Yao and V. Shcherbatyuk for the administrative and technical support. This work was supported by the James G. Boswell Foundation, the National Eye Institute, the Swartz Centers for Theoretical Neurobiology, NSF grant IBN-0235463 and an NIH Director’s Pioneer Award, part of the NIH Roadmap for Medical Research, through grant number 5-DP1-OD114-02.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Brozović.

Additional information

Action Editor: Nicolas Brunel

Rights and permissions

Reprints and permissions

About this article

Cite this article

Brozović, M., Abbott, L.F. & Andersen, R.A. Mechanism of gain modulation at single neuron and network levels. J Comput Neurosci 25, 158–168 (2008). https://doi.org/10.1007/s10827-007-0070-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10827-007-0070-6

Keywords

Navigation