Skip to main content
Log in

On the derivation and tuning of phase oscillator models for lamprey central pattern generators

  • Published:
Journal of Computational Neuroscience Aims and scope Submit manuscript

Abstract

Using phase response curves and averaging theory, we derive phase oscillator models for the lamprey central pattern generator from two biophysically-based segmental models. The first one relies on network dynamics within a segment to produce the rhythm, while the second contains bursting cells. We study intersegmental coordination and show that the former class of models shows more robust behavior over the animal’s range of swimming frequencies. The network-based model can also easily produce approximately constant phase lags along the spinal cord, as observed experimentally. Precise control of phase lags in the network-based model is obtained by varying the relative strengths of its six different connection types with distance in a phase model with separate coupling functions for each connection type. The phase model also describes the effect of randomized connections, accurately predicting how quickly random network-based models approach the determinisitic model as the number of connections increases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  • Buchanan, J. T. (1982). Identification of interneurons with contralateral, caudal axons in the lamprey spinal cord: Synaptic interactions and morphology. Journal of Neurophysiology, 47, 961–975.

    PubMed  CAS  Google Scholar 

  • Buchanan, J. T. (1992). Neural network simulations of coupled locomotor oscillators in the lamprey spinal cord. Biological Cybernetics, 66, 367–374.

    Article  PubMed  CAS  Google Scholar 

  • Buchanan, J. T. (1999). Commissural interneurons in rhythm generation and intersegmental coupling in the lamprey spinal cord. Journal of Neurophysiology, 81, 2037–2045.

    PubMed  CAS  Google Scholar 

  • Buchanan, J. T. (2001). Contributions of identifiable neurons and neuron classes to lamprey vertebrate neurobiology. Progress in Neurobiology, 63, 441–466.

    Article  PubMed  CAS  Google Scholar 

  • Buchanan, J. T., & Grillner, S. (1987). Newly identified glutamate interneurons and their role in locomotion in the lamprey spinal cord. Science, 236, 312–314.

    Article  PubMed  CAS  Google Scholar 

  • Cangiano, L., & Grillner, S. (2003). Fast and slow locomotor burst generation in the hemispinal cord of the lamprey. Journal of Neurophysiology, 89, 2931–2942.

    Article  PubMed  CAS  Google Scholar 

  • Cohen, A. H., Ermentrout, G. B., Kiemel, T., Kopell, N., Sigvardt, K. A., & Williams, T. L. (1992). Modelling of intersegmental coordination in the lamprey central pattern generator for locomotion. Trends in Neuroscience, 15, 434–438.

    Article  CAS  Google Scholar 

  • Cohen, A. H., Holmes, P. J., & Rand, R. H. (1982). The nature of the coupling between segmental oscillators of the lamprey spinal generator for locomotion: A mathematical model. Journal of Mathematical Biology, 13, 345–369.

    Article  PubMed  CAS  Google Scholar 

  • Cohen, A. H., Rossignol, S., & Grillner, S. (Eds.) (1988). Neural control of rhythmic movements in vertebrates. New York: Wiley.

    Google Scholar 

  • Cohen, A. H., & Wallén, P. (1980). The neuronal correlate of locomotion in fish. ‘Fictive swimming’ induced in an in vitro preparation of the lamprey. Experimental Brain Research, 41, 11–18.

    Article  CAS  Google Scholar 

  • Ekeberg, O. (1993). A combined neuronal and mechanical model of fish swimming. Biological Cybernetics, 69, 363–374.

    Google Scholar 

  • Ermentrout, G. B. (1996). Type I membranes, phase resetting curves, and synchrony. Neural Computation, 8, 979–1001.

    Article  PubMed  CAS  Google Scholar 

  • Ermentrout, G. B., & Kopell, N. (1984). Frequency plateaus in a chain of coupled oscillators. SIAM Journal on Mathematical Analysis, 15, 215–237.

    Article  Google Scholar 

  • Ermentrout, G. B., & Kopell, N. (1991). Multiple pulse interactions and averaging in systems of coupled neural oscillators. Journal of Mathematical Biology, 29, 195–217.

    Article  Google Scholar 

  • Ermentrout, G. B., & Kopell, N. (1994a). Inhibition-produced patterning in chains of coupled nonlinear oscillators. SIAM Journal on Applied Mathematics, 54, 478–507.

    Article  Google Scholar 

  • Ermentrout, G. B., & Kopell, N. (1994b). Learning of phase lags in coupled neural oscillators. Neural Computation, 6, 225–241.

    Article  Google Scholar 

  • Getting, P. A. (1988). Comparative analysis of invertebrate central pattern generators. In A. H. Cohen, S. Rossignol, & S. Grillner (Eds.), Neural control of rhythmic movements in vertebrates (chapter 4, pp. 101–128). New York, NY: John Wiley.

    Google Scholar 

  • Ghigliazza, R. M., & Holmes, P. (2004a). A minimal model of a central pattern generator and motoneurons for insect locomotion. SIAM Journal on Applied Dynamical Systems, 3(4), 671–700.

    Article  Google Scholar 

  • Ghigliazza, R. M., & Holmes, P. (2004b). Minimal models of bursting neurons: How multiple currents, conductances and timescales affect bifurcation diagrams. SIAM Journal on Applied Dynamical Systems, 3(4), 636–670.

    Article  Google Scholar 

  • Grillner, S. (2003). The motor infrastructure: From ion channels to neuronal networks. Nature Reviews Neuroscience, 4, 573–586.

    Article  PubMed  CAS  Google Scholar 

  • Grillner, S., Buchanan, J. T., & Lansner, A. (1988). Simulation of the segmental burst generating network for locomotion in lamprey. Neuroscience Letters, 89, 31–35.

    Article  PubMed  CAS  Google Scholar 

  • Guckenheimer, J., & Holmes, P. J. (1983). Nonlinear oscillations, dynamical systems and bifurcations of vector fields. New York: Springer.

    Google Scholar 

  • Hagevik, A., & McClellan, A. D. (1994). Coupling of spinal locomotor networks in larval lamprey revealed by receptor blockers for inhibitory amino acids: Neurophysiology and computer modeling. Journal of Neurophysiology, 72, 1810–1829.

    PubMed  CAS  Google Scholar 

  • Harris-Warrick, R. M., & Cohen, A. H. (1985). Serotonin modulates the central pattern generator for locomotion in the isolated lamprey spinal-cord. Journal of Experimental Biology, 116, 27–46.

    PubMed  CAS  Google Scholar 

  • Hellgren, J., Grillner, S., & Lansner, A. (1992). Computer simulation of the segmental neural network generating locomotion in lamprey by using populations of network interneurons. Biological Cybernetics, 68, 1–13.

    Article  PubMed  CAS  Google Scholar 

  • Hoppensteadt, F. C., & Izhikevich, E. M. (1997). Weakly connected neural networks. New York: Springer.

    Google Scholar 

  • Izhikevich, E. M. (2000). Phase equations for relaxation oscillators. SIAM Journal on Applied Mathematics, 60, 1789–1804.

    Article  Google Scholar 

  • Kiehn, O. (2006). Locomotor circuits in the mammalian spinal cord. Annual Review of Neuroscience, 29, 279–306.

    Article  PubMed  CAS  Google Scholar 

  • Kiemel, T., Gormley, K. M., Guan, L., Williams, T. L., & Cohen, A. H. (2003). Estimating the strength and direction of functional coupling in the lamprey spinal cord. Journal of Computational Neuroscience, 15, 233–245.

    Article  PubMed  Google Scholar 

  • Kopell, N., & Ermentrout, G. B. (1988). Coupled oscillators and the design of central pattern generators. Mathematical Biosciences, 90, 87–109.

    Article  Google Scholar 

  • Kopell, N., Ermentrout, G. B., & Williams T. L. (1991). On chains of oscillators forced at one end. SIAM Journal on Applied Mathematics, 51, 1397–1417.

    Article  Google Scholar 

  • Kopell, N., Zhang, W., & Ermentrout, G. B. (1990). Multiple coupling in chains of oscillators. SIAM Journal on Mathematical Analysis, 21, 935–953.

    Article  Google Scholar 

  • Kotaleski, J. H., Grillner, S., & Lansner, A. (1999a). Neural mechanisms potentially contributing to the intersegmental phase lag in lamprey I. Segmental oscillations dependent on reciprocal inhibition. Biological Cybernetics, 81, 317–330.

    Article  CAS  Google Scholar 

  • Kotaleski, J. H., Lansner, A., & Grillner, S. (1999b). Neural mechanisms potentially contributing to the intersegmental phase lag in lamprey II. Hemisegmental oscillations produced by mutually coupled excitatory neurons. Biological Cybernetics, 81, 299–315.

    Article  CAS  Google Scholar 

  • Kristan, W. B., Calabrese, R. L., & Friesen, W. O (2005). Neuronal control of leech behavior. Progress in Neurobiology, 76, 279–327.

    Article  PubMed  Google Scholar 

  • Kuramoto, Y. (1984). Chemical oscillations, waves, and turbulence. Berlin: Springer.

    Google Scholar 

  • Lansner, A., Ekeberg, O., & Grillner, S. (1997). Realistic modeling of burst generation and swimming in the lamprey. In P. S. G. Stein, S. Grillner, A. I. Selverston, & D. G. Stuart (Eds.), Neurons, networks and motor behavior. Cambridge, MA: MIT Press.

    Google Scholar 

  • Malkin, I. G. (1949). Methods of Poincaré and Linstedt in the theory of nonlinear oscillations. Moscow: Gostexisdat (in Russian).

    Google Scholar 

  • Malkin, I. G. (1956). Some problems in nonlinear oscillation theory. Gostexisdat: Moscow (in Russian).

    Google Scholar 

  • Matsushima, T., & Grillner, S. (1992). Neural mechanisms of intersegmental coordination in lamprey: Local excitability changes modify the phase coupling along the spinal cord. Journal of Neurophysiology, 67, 373–388.

    PubMed  CAS  Google Scholar 

  • McClellan, A. D., & Hagevik, A. (1999). Coordination of spinal locomotor activity in the lamprey: Long-distance coupling of spinal oscillators. Experimental Brain Research, 126, 93–108.

    Article  CAS  Google Scholar 

  • Mellen, N., Kiemel, T., & Cohen, A. H. (1995). Correlational analysis of fictive swimming in the lamprey reveals strong functional intersegmental coupling. Journal of Neurophysiology, 73(3), 1020–1030.

    PubMed  CAS  Google Scholar 

  • Miller, W. L., & Sigvardt, K. A. (2000). Extent and role of multisegmental coupling in the lamprey spinal locomotor pattern generator. Journal of Neurophysiology, 83, 465–476.

    PubMed  CAS  Google Scholar 

  • Parker, D. (2006). Complexities and uncertainties of neural network function. Philosophical Transactions of the Royal Society of London B, 361, 81–99.

    Article  Google Scholar 

  • Pearson, K. G. (2000). Motor systems. Current Opinion in Neurobiology, 10, 649–654.

    Article  PubMed  CAS  Google Scholar 

  • Rovainen, C. M. (1974). Synaptic interactions of identified nerve cells in the spinal cord of the sea lamprey. Journal of Comparative Neurology, 154, 189–206.

    Article  PubMed  CAS  Google Scholar 

  • Rovainen, C. M. (1985). Effects of groups of propriospinal interneurons on fictive swimming in the isolated spinal cord of the lamprey. Journal of Neurophysiology, 54, 959–977.

    PubMed  CAS  Google Scholar 

  • Schotland, J. L., & Grillner, S. (1993). Effects of serotonin on fictive locomotion coordinated by a neural network deprived of NMDA receptor-mediated cellular properties. Experimental Brain Research, 93, 391–398.

    Article  CAS  Google Scholar 

  • Somers, D., & Kopell, N. (1993). Rapid synchronization through fast threshold modulation. Biological Cybernetics, 68, 393–407.

    Article  PubMed  CAS  Google Scholar 

  • Somers, D., & Kopell, N. (1995). Waves and synchrony in networks of oscillators of relaxation and non-relaxation type. Physica D, 89, 169–183.

    Article  Google Scholar 

  • Wadden, T., Hellgren, J., Lansner, A., & Grillner, S. (1997). Intersegmental coordination in the lamprey: Simulations using a network model without segmental boundaries. Biological Cybernetics, 76, 1–9.

    Article  Google Scholar 

  • Wallen, P., Ekeberg, O., Lansner, A., Brodin, L., Traven, H., & Grillner, S. (1992). A computer-based model for realistic simulations of neural networks. II. The segmental network generating locomotor rhythmicity in the lamprey. Journal of Neurophysiology, 68, 1939–1950.

    PubMed  CAS  Google Scholar 

  • Williams, T. L. (1992). Phase coupling by synaptic spread in chains of coupled neuronal oscillators. Science, 258, 662–665.

    Article  PubMed  CAS  Google Scholar 

  • Williams, T. L., & Bowtell, G. (1997). The calculation of frequency-shift functions for chains of coupled oscillators, with application to a network model of the lamprey locomotor pattern generator. Journal of Computational Neuroscience, 4, 47–55.

    Article  PubMed  CAS  Google Scholar 

  • Williams, T. L., & Sigvardt, K. A. (1994). Intersegmental phase lags in the lamprey spinal cord: Experimental confirmation of the existence of a boundary region. Journal of Computational Neuroscience, 1, 61–67.

    Article  PubMed  CAS  Google Scholar 

  • Williams, T. L., Sigvardt, K. A., Kopell, N., Ermentrout, G. B., & Remler, M. P. (1990). Forcing of coupled nonlinear oscillators: Studies of intersegmental coordination in the lamprey locomotor central pattern generator. Journal of Neurophysiology, 64, 862–871.

    PubMed  CAS  Google Scholar 

  • Williams, T. L., & Wallén, P., (1984). Fictive locomotion in the lamprey spinal cord in vitro compared with swimming in the intact and spinal animal. Journal of Physiology, 347, 225–239.

    PubMed  Google Scholar 

  • Wilson, H. (1999). Spikes, decisions and actions: The dynamical foundations of neuroscience. Oxford: Oxford University Press.

    Google Scholar 

Download references

Acknowledgements

This work was supported by NSF EF-0425878 and NIH NS054271. PV was supported by Imre Korányi and Zoltán Magyary fellowships as well as by OTKA-72368, and hosted by the Program in Applied and Computational Mathematics of Princeton University. KH was supported by NSF DMS-0624024, and hosted by the Department of Biology, University of Maryland College Park. KH also gratefully acknowledges the computing resources of the Department of Mathematics and Statistics at University of Maryland Baltimore County.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Péter L. Várkonyi.

Additional information

Action Editor: Karen Sigvardt

Rights and permissions

Reprints and permissions

About this article

Cite this article

Várkonyi, P.L., Kiemel, T., Hoffman, K. et al. On the derivation and tuning of phase oscillator models for lamprey central pattern generators. J Comput Neurosci 25, 245–261 (2008). https://doi.org/10.1007/s10827-008-0076-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10827-008-0076-8

Keywords

Navigation