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Sachin S. Talathi∗

Department of Physics and Institute for Nonlinear Science
University of California, San Diego, La Jolla, CA 92093-0402, USA

(Dated: October 29, 2018)

Recently spike timing dependent plasticity was observed in inhibitory synapse in the layer II of
entorhinal cortex. The rule provides an interesting zero in the region of ∆t = tpost − tpre = 0
and in addition the dynamic range of the rule lie in gamma frequency band. We propose a robust
mechanism based on this observed synaptic plasticity rule for inhibitory synapses for two mutually
coupled interneurons to phase lock in synchrony in the presence of intrisic heterogeneity in firing.
We study the stability of the phase locked solution by defining a map for spike times dependent
on the phase response curve for the coupled neurons. Finally we present results on robustness of
synchronization in the presence of noise.

PACS numbers: Valid PACS appear here

It is generally accepted that inhibitory interneurons
are important for synchrony in neocortex. Several stud-
ies have reported the role for inhibitory interneurons
in generating stable synchronous rhythms in neocortex
[1, 2, 3, 4, 5]. Cortical oscillations in the gamma fre-
quency band (20-80 Hz), are thought to be involved in
binding of object properties, a process of great signif-
icance for the functioning of the brain. These experi-
mental findings have led to numerous theoretical studies
of synchrony among inhibitory interneurons [6, 7, 8, 9].
The principle result of these studies showed that depend-
ing on the decay time of the inhibitory synaptic coupling,
the mutually coupled inhibitory neurons oscillate in syn-
chrony ( in phase locking) or in antisynchrony (out of
phase locking). However much of the above investiga-
tions did not explore the effects of heterogeneity in the
intrinsic firing rates nor did they take into account noise,
which is invariably present in neuronal systems.

In another set of theoretical investigations, [13] ex-
plored the implications of small heterogeneity for the
degradation of synchrony of fast spiking inhibitory neu-
rons and the mechanism by which the degradation occur.
They found that introduction of even small amounts of
heterogeneity in the external drive, resulted in significant
reduction in coherence of neuronal spiking. It is impor-
tant then to understand what mediates observed in vivo
synchrony of neuronal networks under biological realis-
tic conditions of noise induced unreliability and intrinsic
heterogeneity in spiking rates of the neuronal ensemble.

In this letter we propose a robust mechanism based on
spike timing dependent synaptic plasticity of inhibitory
synapses [15] by which two coupled interneurons can
phase lock in synchrony even under conditions of mild
heterogeneity in the firing rates of the coupled neurons
and in the presence of noise. Earlier work [16] has ex-
plored the function of synaptic plasticity in the excitatory
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synapse in improving synchronization in unidirectionally
coupled neuronal network. We consider a network of
two coupled interneurons with self inhibition as shown
in Figure 1b. The self-inhibition is introduced because
biological neural networks often have local inhibitory in-
terneurons which deliver feedback inhibition to the cells
activating those interneurons [17]. The importance of
self inhibition that simulates the network effect, is ex-
plored in details in [19].
Each neuron in the coupled network is modelled as

dVi(t)

dt
= IiIn + gNam

3(t)h(t)(ENa − Vi(t))

+ gKn
4(t)(EK − Vi(t)) + gL(EL − Vi(t))

+ IijM (t) + IiS(t) + ηζi(t)

(1)

where Vi(t) (i=A,B) is the membrane potential , ζi(t)
is the gaussian synaptic noise of amplitude η satisfy-

ing 〈ζ(t)〉 = 0 and
〈

ζi(t)ζj(t
′

)
〉

= δ(t − t
′

)δij . IiIn, is

the external drive, IiS(t) = gsS(t, Vi(t))(EI − Vi(t)), is

the synaptic current due to self inhibition and IijM (t) =
gj→iS(t, Vj(t))(EI − Vi(t)) is the synaptic current from
mutual inhibition. gj→i = gmG(t) is the dynamic
synapse, whose strength is determined by the inhibitory
synaptic plasticity rule, and gs is the synaptic strength
of self inhibition. Er (r=Na, K, L) are reversal po-
tentials of the sodium and potassium ion channels and
the leak channel respectively. EI is the reversal poten-
tial of the inhibitory synapse. S(t, V (t)) give the frac-
tion of bound receptors and satisfy the first order ki-

netic equation, Ṡ(t) =
S0(Vpre(t))−S(t)
τ̂(SI−S0(Vpre))

where Vpre(t) is

the presynaptic voltage. It involves two time constants,
τr = τ̂(SI−1), the docking time for the neurotransmitter
and τd = τ̂SI , the undocking time constant for the neu-
rotransmitter binding. S0(V ) is the sigmoidal function
given by, S0(V ) = 0.5(1+ tanh(120(V − 0.1))). The gat-
ing variables X(t),(X=m,h,n), satisfy first order kinetic

equations, Ẋ(t) = αX(V )(1 − X(t)) − βX(V )X(t). We
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have used standard functions αX(V ) and βX(V ) and pa-
rameters for the model [18], such that the dynamics of
the neurons to spiking is through saddle node bifurcation
and the model represents a type I neuron [20]. The model
parameters are within physiological range and give high
spike rates typical of interneurons.

We consider two regimes of operation of the network
shown in Figure 1b. The two regimes called the pha-
sic regime and the tonic regime [13] are determined from
the firing characteristics of a single self inhibited neu-
ron (Figure 1a). In the phasic regime the network pe-
riod depends on the synaptic decay constant [13] and
in the tonic regime the synaptic dynamics weakly affect
the network period. These two regimes of operation are
clearly illustrated in the plot of τd/T , which is the ratio of
synaptic decay constant to the firing frequency of the self
inhibited neuron versus τd in Figure 1b for various values
of IIn and gs. These two regimes of network oscillations
were observed earlier [13], with the synaptic model for
the inhibitory synapse, obeying the first order kinetic
equation, Ṡ(t) = F (V )(1 − S(t)) − S(t)/τd. Changing
τd in this situation not only changes the decay time of
the synapse but also the rise time given by τr =

τd
τdF (V )+1

and the saturation level of the synapse Smax = τdF (V )
τdF (V )+1 .

As a result a narrow region of higher harmonic phase
locking was observed between the coupled interneurons
in the phasic regime. We have therefore considered the
synaptic model presented above where we have control
over the decay time for the synapse independent of the
rise time and the saturation level of the synapse. Earlier
work [14] has shown that in presence of mild heterogene-
ity, coherence in neuronal firing is observed much more
for phasic regime than in tonic regime. In the results
presented here we therefore consider the phasic regime
of the network operation and study the effect of STDP
in inhibitory synapses, in maintaining coherence in neu-
ronal firing in presence of heterogeneity and noise. De-
tails on the calculations for the tonic regime will appear
elsewhere [19]

In all the subsequent calculations, we fix the pa-
rameters of the model in the phasic regime, (IIn =
2.5µA/cm2, gs = gm = 0.1mS/cm2, τr = 1.1 ms,
τd = 5.0 ms) and study the effect of the dynamic synapse
in maintaining synchrony in presence of heterogeneity
and intrinsic noise. In figure 1d, we plot the ratio of
mean firing periods <TB>

<TA>
for the two coupled neurons A

and B as function of heterogeneity in the external drive,

defined as H = 100
IAIn−I

B
In

IA
In

in absence of noise i.e., η = 0.

As can be seen from Figure 1d, (top panel), the region of
1:1 locking, as function of heterogeneity is much broader
in the phasic regime of network operation as compared
to the tonic regime, where we set IBIn = 5.0µA/cm2. In
addition, higher order synchronization are also present in
the phasic regime, as a result coherence between the two
neurons is preserved more often in the phasic regime of
the network operation.

A spike timing dependent plasticity (STDP) rule for in-

hibitory synapses has been recently reported in [15] and it
has the form ∆g(∆t) = g0

gnorm
αβ |∆t|∆tβ−1e−α|∆t|, where

∆t = tpost − tpre. tpre is the time of presynaptic spike
stimulation and tpost is the time of a spike generated by
the postsynaptic neuron. g0 is the scaling factor account-
ing for the amount of change in inhibitory conductance
induced by the synaptic plasticity rule and gnorm = βe−β

is the normalizing constant. An empirical fit of the above
function to the data gives, α = 1 and β = 10, giving a
window of ±20 ms over which the efficacy of synaptic
plasticity is non zero. This implies that in the physiolog-
ically important regime of gamma oscillations (25-80 Hz),
STDP rule of inhibitory synapses can play a significant
role in modulating the firing dynamics of the neuronal
network.

We now consider two situations in the phasic regime:
when the strength of mutual inhibition is static: gA→B =
gB→A = gm and when the mutual inhibition strength
is dynamic and governed by observed synaptic plastic-
ity rule, i.e., gA→B = gm(1 + 1

gm
g̃(t)) and gB→A =

gm(1 − 1
gm
g̃(t)). In order to take into account the ef-

fect of multiple spike pairs, we follow [10] and define
g̃(t) =

∑

j

∑

i∆g(∆tij)ǫ
A
i ǫ

B
j , where ∆tij = tBj − tAi is

the difference in spike times of neurons A and B respec-

tively. ǫA,Bk gives the efficacy of spike in A and B and

is defined as ǫKi = e−(tKi −tKi−1
)/τe . We take τe ≈ 55ms,

an average of the efficacy values given in [10] as experi-
mental results on contribution of multiple spike pairing
to inhibitory synaptic plasticity are as yet unknown. In
Figure 2a we plot the ratio < TB > / < TA > as function
of heterogeneity H in the static and dynamic case.

As shown in Figure 2a there is considerable increase
in 1:1, 1:2 and 2:1 synchronization windows mediated
by the dynamic synapse in the phasic regime. This
implies an increased probability of observing coherence
in the firing pattern of the mutually coupled interneu-
rons even in presence of mild heterogeneity as has
been reported in many in vivo experimental data. In
Figure 2b ,we show the evolution of phase difference
ψABi =

(

|tBi − tAi | mod < TA >
)

in the static and dy-
namic case, with heterogeneity of 6 %. We see that in
the static case the phase difference grows linearly modulo
< TA >, representing situation of asynchronous firing.
However in the dynamic case, after the initial transient
is over, the phase difference saturates to a fixed value,
(1.4 in this example), representing stable 1:1 locking be-
tween the two mutually coupled neurons. In Figure 2c
we plot the evolution of the synaptic strength as function
of time. We see that the STDP rule results in modulat-
ing the synaptic strength so as to phase lock the two
mutually coupled neurons.

In order to understand the dynamics of phase locking
under heterogeneity in the presence of dynamic synapse,
we consider the situation initially in the static case. Let
the two coupled neurons fire heterogeneously with intrin-
sic firing period T 0

A and T 0
B when they are uncoupled. In

the case of 6 % heterogeneity, we have IAIn > IBIn so that
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FIG. 1: (a) Schematic diagram of the self inhibited neuron considered to determine the different regimes of operation of network
of mutually coupled interneurons. (b) Schematic of the mutually coupled interneurons. (c) Ratio of the synaptic decay constant
τd to firing period T plotted versus τd. Parameter values for the operation of the neuron in the two regimes, are shown. (d) The
ration of firing period of two coupled neurons in phasic and tonic regimes are plotted as function of heterogeneity in external
drive.

T 0
A < T 0

B. Let φ(ǫ) be the phase response curve of the
neuron model. It is known that for type I neuron mod-
els, the phase response curve is positive [20], and as a
result every time a spike arrives, the phase of subsequent
spike is delayed. In the situation considered, with initial
phase difference between the two neurons set to zero, the
spike times of individual firing neurons can be written
as, tKj = tKj−1 +T 0

K + φK(ǫKj−1), (K=A,B) with ǫKj−1 > 0,

where ǫAj = tBj − tAj and ǫBj = tAj+1 − tBj . t
K
j is the time

of jth spike of neuron K. The map evolving the phase
difference ψAB is then,

ψABj = (T 0
B − T 0

A) + ψABj−1 + φB(tAj − tBj−1)

− φA(tBj−1 − tAj−1)

≈ (T 0
B − T 0

A) + ψABj−1 − ηAB(ψABj−1) (2)

where ηAB(x) = φA(x) − φB(< TA > −x). The fixed
point of the map is then given by

ηAB(ψABj ) = T 0
B − T 0

A

Numerical solution to above equation gives the fixed
points, at ψAB∗s ≈ 3.85 as can be seen in Figure 3,
where we plot η(ψAB) versus ψAB. Stability of the

fixed point would require |1 − dηAB(x)
dx |x=ψAB

∗s
< 1 ⇒

0 < dηAB(x)
dx |x=ψAB

∗s
< 2

For the set of parameters considered however, the nu-

merical value obtained for dηAB(x)
dx |x=ψAB

∗s
= −2.5 for the

fixed point.
Thus we see that when the synapse is static the phase

difference is unstable and the two coupled interneurons
fire asynchronously in the situation of 6% heterogene-
ity. Now consider the situation in the dynamic synapse

case. Again setting the initial phase difference zero, in
the presence of dynamic synapse with STDP, we have

tKj = tKj−1 + T 0
K + φ̂K(ǫKj−1, g̃j−1(t)), where phase shift

given by the phase response curve also depends on the
dynamics of the synaptic coupling strength governed by
the STDP rule. The map function for evolution of the
phase shift ψAB is then obtained as,

ψABj ≈ (T 0
B − T 0

A) + ψABj−1 − η̃AB(ψABj−1) (3)

where η̃AB(x) = φ̂A(x) − φ̂B(< TA > −x). The fixed
point of the map is then given by η̃AB(x) = T 0

B−T 0
A. As

can be seen from Figure 3b, where we plot η̃AB(ψAB),
in the steady state (t → ∞), when gB→A = .146 and
gB→A = 0.054, we obtain, ψAB∗d ≈ 1.4 and ψAB∗d ≈ 3.3.

Stability of the fixed point given by 0 < dη̃AB(x)
dx |x=ψAB

∗

<

2, implies ψAB∗d ≈ 1.4 is stable as can be also seen from
the time evolution of phase in Figure 2b. Thus we see
that STDP of inhibitory synapse, modulates the phase
response curve such that the network locks into syn-
chrony even under mild heterogeneity. In Figure 4 we
present results on synchrony in presence of noise. We
set the noise amplitude η = 0.1 in equation 1. For mild
noise, STDP of inhibitory synapse, is able to maintain
synchrony between the two coupled interneurons under
conditions of mild heterogeneity in the drive.
We have also tested the dynamics of the network in the

tonic regime. STDP of inhibitory synapse, also signifi-
cantly increases the window of synchronous oscillations
by the same mechanism [19].
It has been suggested in [15] that plasticity of in-

hibitory synapses may play an important role in balanc-
ing the effect of excitatory synapse preventing run away
behavior typically observed in epileptogenesis. In this
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FIG. 2: (a) Ratio of firing periods of the two coupled interneurons, in the static case, when the inhibitory synaptic strength
is constant and dynamic case when the inhibitory synaptic strength is modulated by STDP rule, is plotted as function in
heterogeneity H. (b) The evolution of phase difference ψAB is plotted in the static and dynamic case, when the heterogeneity
is set at 6 %. (c) The evolution of the inhibitory synaptic strength between the two coupled interneurons, A and B is plotted
as function of time.
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work we present an important function for STDP in in-
hibitory synapse in maintaining synchrony in networks
of coupled interneurons, under biologically realistic situ-

−12 −8 −4 0 4 8 12 16 20 24 28 32 36 40 44
H

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

2.2

2.4

2.6

2.8

3

<
T

B
/T

A
>

Dynamic Synapse
Static Synapse

FIG. 4: Ratio of firing periods < TB > / < TA > is plotted as
function of heterogeneity H, in presence of synaptic gaussian
noise with amplitude a=0.1

ation of mild heterogeneity and noise.
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