Skip to main content
Log in

Learning by structural remodeling in a class of single cell models

  • Published:
Journal of Computational Neuroscience Aims and scope Submit manuscript

Abstract

Changes in neural connectivity are thought to underlie the most permanent forms of memory in the brain. We consider two models, derived from the clusteron (Mel, Adv Neural Inf Process Syst 4:35–42, 1992), to study this method of learning. The models show a direct relationship between the speed of memory acquisition and the probability of forming appropriate synaptic connections. Moreover, the strength of learned associations grows with the number of fibers that have taken part in the learning process. We provide simple and intuitive explanations of these two results by analyzing the distribution of synaptic activations. The obtained insights are then used to extend the model to perform novel tasks: feature detection, and learning spatio-temporal patterns. We also provide an analytically tractable approximation to the model to put these observations on a firm basis. The behavior of both the numerical and analytical models correlate well with experimental results of learning tasks which are thought to require a reorganization of neuronal networks.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Notes

  1. The basic implementations of our unbranched and branched models, as well as the mathematical model, are available online at http://www.math.uh.edu/~josic/research/papers/clusteron/.

References

  • Anderson, J. R., Fincham, J. M., & Douglass, S. (1999). Practice and retention: A unifying analysis. Journal of Experimental Psychology, Learning, Memory, and Cognition, 25(5), 1120–1136.

    Article  CAS  Google Scholar 

  • Baddeley, A. D. (1999). Essentials of human memory. UK: Psychology Press.

    Google Scholar 

  • Bienenstock, E. L., Cooper, L. N., & Munro, P. W. (1982). Theory for the development of neuron selectivity: Orientation specificity and binocular interaction in visual cortex. Journal of Neuroscience, 2(1), 32–48.

    PubMed  CAS  Google Scholar 

  • Chklovskii, D. B., Mel, B. W., & Svoboda, K. (2004). Cortical rewiring and information storage. Nature, 431(7010), 782–788.

    Article  PubMed  CAS  Google Scholar 

  • Cline, H. T. (2001). Dendritic arbor development and synaptogenesis. Current Opinion in Neurobiology, 11(1), 118–126.

    Article  PubMed  CAS  Google Scholar 

  • Conner, J. M., Culberson, A., Packowski, C., Chiba, A. A., & Tuszynski, M. H. (2003). Lesions of the Basal forebrain cholinergic system impair task acquisition and abolish cortical plasticity associated with motor skill learning. Neuron, 38(5), 819–829.

    Article  PubMed  CAS  Google Scholar 

  • Constantine-Paton, M., & Cline, H. T. (1998). LTP and activity-dependent synaptogenesis: The more alike they are, the more different they become. Current Opinion in Neurobiology, 8(1), 139–148.

    Article  PubMed  CAS  Google Scholar 

  • Dailey, M. E., Buchanan, J., Bergles, D. E., & Smith, S. J. (1994). Mossy fiber growth and synaptogenesis in rat hippocampal slices in vitro. Journal of Neuroscience, 14(3 Pt 1), 1060–1078.

    PubMed  CAS  Google Scholar 

  • De Zeeuw, C. I., & Yeo, C. H. (2005). Time and tide in cerebellar memory formation. Current Opinion in Neurobiology, 15(6), 667–674.

    Article  PubMed  CAS  Google Scholar 

  • Desmond, N. L., & Levy, W. B. (1986). Changes in the numerical density of synaptic contacts with long-term potentiation in the hippocampal dentate gyrus. Journal of Comparative Neurology, 253(4), 466–475.

    Article  PubMed  CAS  Google Scholar 

  • Engert, F., & Bonhoeffer, T. (1999). Dendritic spine changes associated with hippocampal long-term synaptic plasticity. Nature, 399(6731), 66–70.

    Article  PubMed  CAS  Google Scholar 

  • Euler, T., & Denk, W. (2001). Dendritic processing. Current Opinion in Neurobiology, 11(4), 415–422.

    Article  PubMed  CAS  Google Scholar 

  • Euler, T., Detwiler, P. B., & Denk, W. (2002). Directionally selective calcium signals in dendrites of starburst amacrine cells. Nature, 418(6900), 845–852.

    Article  PubMed  CAS  Google Scholar 

  • Gabbiani, F., Krapp, H. G., Koch, C., & Laurent, G. (2002). Multiplicative computation in a visual neuron sensitive to looming. Nature, 420(6913), 320–324.

    Article  PubMed  CAS  Google Scholar 

  • Golding, N. L., & Spruston, N. (1998). Dendritic sodium spikes are variable triggers of axonal action potentials in hippocampal CA1 pyramidal neurons. Neuron, 21(5), 1189–1200.

    Article  PubMed  CAS  Google Scholar 

  • Govindarajan, A., Kelleher, R. J., & Tonegawa, S. (2006). A clustered plasticity model of long-term memory engrams. Nature Reviews Neuroscience, 7(7), 575–583.

    Article  PubMed  CAS  Google Scholar 

  • Greenough, W. T., Larson, J. R., & Withers, G. S. (1985). Effects of unilateral and bilateral training in a reaching task on dendritic branching of neurons in the rat motor-sensory forelimb cortex. Behavioral and Neural Biology, 44(2), 301–314.

    Article  PubMed  CAS  Google Scholar 

  • Häusser, M., & Mel, B. (2003). Dendrites: Bug or feature? Current Opinion in Neurobiology, 13(3), 372–383.

    Article  PubMed  CAS  Google Scholar 

  • Hoffman, D. A., Magee, J. C., Colbert, C. M., & Johnston, D. (1997). K+ channel regulation of signal propagation in dendrites of hippocampal pyramidal neurons. Nature, 387(6636), 869–875.

    Article  PubMed  CAS  Google Scholar 

  • Hosokawa, T., Rusakov, D. A., Bliss, T. V., & Fine, A. (1995). Repeated confocal imaging of individual dendritic spines in the living hippocampal slice: Evidence for changes in length and orientation associated with chemically induced LTP. Journal of Neuroscience, 15(8), 5560–5573.

    Google Scholar 

  • Hubel, D. H., Wiesel, T. N., & LeVay, S. (1977). Plasticity of ocular dominance columns in monkey striate cortex. Philosophical Transactions of the Royal Society of London, Series B, 278(961), 377–409.

    Article  CAS  Google Scholar 

  • Huguenard, J. R., Hamill, O. P., & Prince, D. A. (1989). Sodium channels in dendrites of rat cortical pyramidal neurons. Proceedings of the National Academy of Sciences of the United States of America, 86(7), 2473–2477.

    Article  PubMed  CAS  Google Scholar 

  • Johnston, D., Magee, J. C., Colbert, C. M., & Cristie, B. R. (1996). Active properties of neuronal dendrites. Annual Review of Neuroscience, 19, 165–186.

    Article  PubMed  CAS  Google Scholar 

  • Kleim, J. A., Hogg, T. M., VandenBerg, P. M., Cooper, N. R., Bruneau, R., & Remple, M. (2004). Cortical synaptogenesis and motor map reorganization occur during late, but not early, phase of motor skill learning. Journal of Neuroscience, 24(3), 628–633.

    Article  PubMed  CAS  Google Scholar 

  • Kleim, J. A., Lussnig, E., Schwarz, E. R., Comery, T. A., & Greenough, W. T. (1996). Synaptogenesis and Fos expression in the motor cortex of the adult rat after motor skill learning. Journal of Neuroscience, 16(14), 4529–4535.

    PubMed  CAS  Google Scholar 

  • Kleim, J. A., Swain, R. A., Armstrong, K. A., Napper, R. M., Jones, T. A., & Greenough, W. T. (1998). Selective synaptic plasticity within the cerebellar cortex following complex motor skill learning. Neurobiology of Learning and Memory, 69(3), 274–289.

    Article  PubMed  CAS  Google Scholar 

  • Krapp, H. G., Hengstenberg, B., & Hengstenberg, R. (1998). Dendritic structure and receptive-field organization of optic flow processing interneurons in the fly. Journal of Neurophysiology, 79(4), 1902–1917.

    PubMed  CAS  Google Scholar 

  • Larkum, M. E., Kaiser, K. M., & Sakmann, B. (1999). Calcium electrogenesis in distal apical dendrites of layer 5 pyramidal cells at a critical frequency of back-propagating action potentials. Proceedings of the National Academy of Sciences of the United States of America, 96(25), 14600–14604.

    Article  PubMed  CAS  Google Scholar 

  • Levy, W. B., & Colbert, C. M. (1991). Adaptive synaptogenesis can complement associative potentiation/depression. Neural Network Models of Conditioning: Quantitative Analyses of Behavior, 13, 53–68.

    Google Scholar 

  • Levy, W. B., & Desmond, N. L. (1985). The rules of elemental synaptic plasticity. Synaptic Modification, Neuron Selectivity, and Nervous System Organization, 105–121.

  • London, M., & Häusser, M. (2005). Dendritic computation. Annual Review of Neuroscience, 28, 503–532.

    Article  PubMed  CAS  Google Scholar 

  • Losonczy, A., & Magee, J. C. (2006). Integrative properties of radial oblique dendrites in hippocampal CA1 pyramidal neurons. Neuron, 50(2), 291–307.

    Article  PubMed  CAS  Google Scholar 

  • Magee, J. C. (1999). Dendritic lh normalizes temporal summation in hippocampal CA1 neurons. Nature Neuroscience, 2(6), 508–514.

    Article  PubMed  CAS  Google Scholar 

  • Maletic-Savatic, M., Malinow, R., & Svoboda, K. (1999). Rapid dendritic morphogenesis in CA1 hippocampal dendrites induced by synaptic activity. Science, 283(5409), 1923–1927.

    Article  PubMed  CAS  Google Scholar 

  • Matsuzaki, M., Honkura, N., Ellis-Davies, G. C. R., & Kasai, H. (2004). Structural basis of long-term potentiation in single dendritic spines. Nature, 429(6993), 761–766.

    Article  PubMed  CAS  Google Scholar 

  • Mel, B. W. (1992). The clusteron: Toward a simple abstraction for a complex neuron. Advances in Neural Information Processing Systems, 4, 35–42.

    Google Scholar 

  • Poirazi, P., Brannon, T., & Mel, B. W. (2003). Pyramidal neuron as two-layer neural network. Neuron, 37(6), 989–999.

    Article  PubMed  CAS  Google Scholar 

  • Poirazi, P., & Mel, B. W. (2001). Impact of active dendrites and structural plasticity on the memory capacity of neural tissue. Neuron, 29(3), 779–796.

    Article  PubMed  CAS  Google Scholar 

  • Polsky, A., Mel, B. W., & Schiller, J. (2004). Computational subunits in thin dendrites of pyramidal cells. Nature Neuroscience, 7(6), 621–627.

    Article  PubMed  CAS  Google Scholar 

  • Rall, W. (1977). Core conductor theory and cable properties of neurons. Handbook of Physiology, 1(part 1), 39–98.

    Google Scholar 

  • Reigeluth, C. M. (1979). In search of a better way to organize instruction: The elaboration theory. Journal of Instructional Development, 2(3), 8–15.

    Article  Google Scholar 

  • Shigemoto, R. (2006). Memory traces in short- and long-term cerebellar motor learning. Annual Meeting for the Society for Neuroscience: Symposium.

  • Single, S., & Borst, A. (1998). Dendritic integration and its role in computing image velocity. Science, 281(5384), 1848–1850.

    Article  PubMed  CAS  Google Scholar 

  • Smith, R. E. (1993). Psychology. St. Paul, MN: West Publishing Company.

    Google Scholar 

  • Stepanyants, A., Hof, P. R., & Chklovskii, D. B. (2002). Geometry and structural plasticity of synaptic connectivity. Neuron, 34(2), 275–288.

    Article  PubMed  CAS  Google Scholar 

  • Stuart, G. J., & Hausser, M. (2001). Dendritic coincidence detection of EPSPs and action potentials. Nature Neuroscience, 4(1), 63–71.

    Article  PubMed  CAS  Google Scholar 

  • Toni, N., Buchs, P. A., Nikonenko, I., Bron, C. R., & Muller, D. (1999). LTP promotes formation of multiple spine synapses between a single axon terminal and a dendrite. Nature, 402(6760), 421–425.

    Article  PubMed  CAS  Google Scholar 

  • Trachtenberg, J. T., Chen, B. E., Knott, G. W., Feng, G., Sanes, J. R., Welker, E., & Svoboda, K. (2002). Long-term in vivo imaging of experience-dependent synaptic plasticity in adult cortex. Nature, 420(6917), 788–794.

    Article  PubMed  CAS  Google Scholar 

  • Ungerleider, L. G., Doyon, J., & Karni, A. (2002). Imaging brain plasticity during motor skill learning. Neurobiology of Learning and Memory, 78(3), 553–564.

    Article  PubMed  Google Scholar 

  • van Merriënboer, J. J. G., Clark, R. E., & de Croock, M. B. M. (2002). Blueprints for complex learning: The 4C/ID-model. Educational Technology Research and Development, 50(2), 39–61.

    Article  Google Scholar 

  • Wei, D. S., Mei, Y. A., Bagal, A., Kao, J. P., Thompson, S. M., & Tang, C. M. (2001). Compartmentalized and binary behavior of terminal dendrites in hippocampal pyramidal neurons. Science, 293(5538), 2272–2275.

    Article  PubMed  CAS  Google Scholar 

  • Westenbroek, R. E., Hell, J. W., Warner, C., Dubel, S. J., Snutch, T. P., & Catterall, W. A. (1992). Biochemical properties and subcellular distribution of an N-type calcium channel alpha 1 subunit. Neuron, 9(6), 1099–1115.

    Article  PubMed  CAS  Google Scholar 

  • Withers, G. S., & Greenough, W. T. (1989). Reach training selectively alters dendritic branching in subpopulations of layer II–III pyramids in rat motor-somatosensory forelimb cortex. Neuropsychologia, 27(1), 61–69.

    Article  PubMed  CAS  Google Scholar 

  • Yasuda, R., Sabatini, B. L., & Svoboda, K. (2003). Plasticity of calcium channels in dendritic spines. Nature Neuroscience, 6(9), 948–955.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

KK and CC was supported by grants NIH AG 027577 and NIH NS 038310. KJ was supported by grant NSF-0604429. we thank Steven Coombes for his comments and suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. J. Kelleher.

Additional information

Action Editor: Xiao-Jing Wang

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kelleher, K.J., Hajdik, V., Colbert, C.M. et al. Learning by structural remodeling in a class of single cell models. J Comput Neurosci 25, 282–295 (2008). https://doi.org/10.1007/s10827-008-0078-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10827-008-0078-6

Keywords

Navigation