Skip to main content

Advertisement

Log in

Computer simulations of neuron-glia interactions mediated by ion flux

  • Published:
Journal of Computational Neuroscience Aims and scope Submit manuscript

Abstract

Extracellular potassium concentration, [K+]o, and intracellular calcium, [Ca2+]i, rise during neuron excitation, seizures and spreading depression. Astrocytes probably restrain the rise of K+ in a way that is only partly understood. To examine the effect of glial K+ uptake, we used a model neuron equipped with Na+, K+, Ca2+ and Cl conductances, ion pumps and ion exchangers, surrounded by interstitial space and glia. The glial membrane was either “passive”, incorporating only leak channels and an ion exchange pump, or it had rectifying K+ channels. We computed ion fluxes, concentration changes and osmotic volume changes. Increase of [K+]o stimulated the glial uptake by the glial 3Na/2K ion pump. The [K+]o flux through glial leak and rectifier channels was outward as long as the driving potential was outwardly directed, but it turned inward when rising [K+]o/[K+]i ratio reversed the driving potential. Adjustments of glial membrane parameters influenced the neuronal firing patterns, the length of paroxysmal afterdischarge and the ignition point of spreading depression. We conclude that voltage gated K+ currents can boost the effectiveness of the glial “potassium buffer” and that this buffer function is important even at moderate or low levels of excitation, but especially so in pathological states.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  • Amzica, F., Massimini, M., & Manfridi, A. (2002). Spatial buffering during slow and paroxysmal sleep oscillations in cortical networks of glial cells in vivo. Journal of Neuroscience, 22, 1042–1053.

    PubMed  CAS  Google Scholar 

  • Anderson, W. W., Lewis, D. V., Swartzwelder, H. S., & Wilson, W. A. (1986). Magnesium-free medium activates seizure-like eventsin the rat hippocampal slice. Brain Research, 398, 215–219.

    Article  PubMed  CAS  Google Scholar 

  • Ballanyi, K., Grafe, P., & Ten Bruggencate, G. (1987). Ion activities and potassium uptake mechanisms of glial cells in guinea-pig olfactory cortex slices. Journal of Physiology, 382, 159–174.

    PubMed  CAS  Google Scholar 

  • Barres, B. A., Chun, L. Y., & Corey, D. P. (1990). Ion channels in vertebrate glia. Annual Review of Neuroscience, 13, 441–474.

    Article  PubMed  CAS  Google Scholar 

  • Binder, D. K., & Steinhäuser, C. (2006). Functional changes in astroglial cells in epilepsy. Glia, 54, 358–368.

    Article  PubMed  Google Scholar 

  • Bordey, A., & Sontheimer, H. (1997). Postnatal development of ionic currents in rat hippocampal astrocytes in situ. Journal of Neurophysiology, 78, 461–477.

    PubMed  CAS  Google Scholar 

  • Boyle, P. J., & Conway, E. J. (1941). Potassium accumulation in muscle and associated changes. Journal of Physiology, 100, 1–63.

    PubMed  CAS  Google Scholar 

  • Brockhaus, J., Ballanyi, K., Smith, J. C., & Richter, D. W. (1993). Microenvironment of respiratory neurons in the in vitro brainstem—spinal cord of neonatal rats. Journal of Physiology, 462, 421–445.

    PubMed  CAS  Google Scholar 

  • Calvin, W. H., & Sypert, G. W. (1976). Fast and slow pyramidal tract neurons: an analysis of their contrasting repetitive firing properties in the cat. Journal of Neurophysiology, 39, 420–434.

    PubMed  CAS  Google Scholar 

  • Connors, B., Dray, A., Fox, P., Hilmy, M., & Somjen, G. (1979). LSD’s effect on neuron populations in visual cortex gauged by transient responses of extracellular potassium evoked by optical stimuli. Neuroscience Letters, 13, 147–150.

    Article  PubMed  CAS  Google Scholar 

  • Connors, B. W., & Gutnick, M. J. (1990). Intrinsic firing patterns of diverse neocortical neurons. Trends in Neurosciences, 13, 99–104.

    Article  PubMed  CAS  Google Scholar 

  • Cordingley, G. E., & Somjen, G. G. (1978). The clearing of excess potassium from extracellular space in spinal cord and cerebral cortex. Brain Research, 151, 291–306.

    Article  PubMed  CAS  Google Scholar 

  • D’Ambrosio, R., Wenzel, J., Schwartzkroin, P. A., McKhann, G. M., & Janigro, D. (1998). Functional specialization and topographic segregation of hippocampal astrocytes. Journal of Neuroscience, 18, 4425–4438.

    PubMed  CAS  Google Scholar 

  • Dietzel, I., & Heinemann, U. (1986). Dynamic variations of the brain cell microenvironment in relation to neuronal hyperactivity. Annals of the New York Academy of Sciences, 481, 72–85.

    Article  PubMed  CAS  Google Scholar 

  • Dietzel, I., Heinemann, U., Hofmeier, G., & Lux, H.-D. (1980). Transient changes in the size of extracellular space in the sensorimotor cortex of cats in relation to stimulus-induced changes in potassium concentration. Experimental Brain Research, 40, 432–439.

    Article  CAS  Google Scholar 

  • Dietzel, I., Heinemann, U., & Lux, H. D. (1989). Relations between slow extracellular potential changes, glial potassium buffering and electrolyte and cellular volume changes during neuronal hyperactivity in cat brain. Glia, 2, 25–44.

    Article  PubMed  CAS  Google Scholar 

  • Duffy, S., Fraser, D. D., & MacVicar, B. A. (1995). Potassium channels. In H. Kettenmann, & B. R. Ransom (Eds.) Neuroglia (pp. 185–201). New York: Oxford University Press.

    Google Scholar 

  • Fernandez, F. R., Engbers, J. D. T., & Turner, R. W. (2007). Firing Dynamics of Cerebellar Purkinje Cells. Journal of Neurophysiology, 98, 278–294.

    Article  PubMed  Google Scholar 

  • Fertziger, A. P., & Ranck, J. B. (1970). Potassium accumulation in interstitial space during epileptiform seizures. Experimental Neurology, 26, 571–585.

    Article  PubMed  CAS  Google Scholar 

  • Frankenhäuser, B., & Hodgkin, A. L. (1956). The after-effect of impulses in the giant nerve fibers of Loligo. Journal of Physiology, 131, 341–376.

    Google Scholar 

  • Gardner-Medwin, A. R. (1983). Analysis of potassium dynamics in mammalian brain tissue. Journal of Physiology, 335, 393–426.

    PubMed  CAS  Google Scholar 

  • Gnatenco, C., Han, J., Snyder, A. K., & Kim, D. (2002). Functional expression of TRRE K -2 K+ channel in cultured rat brain astrocytes. Brain Research, 931, 56–67.

    Article  PubMed  CAS  Google Scholar 

  • Green, J. D. (1964). The hippocampus. Physiological Reviews, 44, 561–608.

    PubMed  CAS  Google Scholar 

  • Green, J. D., & Petsche, H. (1961). Hippocampal electrical activity. IV. Abnormal electrical activity. Electroencephalography and Clinical Neurophysiology, 13, 868–879.

    Article  Google Scholar 

  • Hansen, A. J., & Olsen, C. E. (1980). Brain extracellular space during spreading depression and ischemia. Acta Physiologica Scandinavica, 108, 355–365.

    PubMed  CAS  Google Scholar 

  • Heinemann, U., & Lux, H. D. (1975). Undershoots following stimulus-induced rises of extracellular potassium concentration in cerebral cortex of cat. Brain Research, 93, 63–76.

    Article  PubMed  CAS  Google Scholar 

  • Heinemann, U., & Lux, H. D. (1977). “Ceiling” of stimulus induced rises in extracellular potassium concentration in cerebral cortex of cats. Brain Research, 120, 231–250.

    Article  PubMed  CAS  Google Scholar 

  • Henn, F. A., Haljamäe, H., & Hamberger, A. (1972). Glial cell function: Active control of extracellular K+ concentration. Brain Research, 43, 437–443.

    Article  PubMed  CAS  Google Scholar 

  • Herreras, O., & Somjen, G. G. (1993). Effects of prolonged elevation of potassium in hippocampus of anesthetized rats. Brain Research, 617, 194–203.

    Article  PubMed  CAS  Google Scholar 

  • Hertz, L. (1973). Ion Effects on Metabolism in the Adult Mammalian Brain in vitro. Evidence of a Potassium-induced Stimulation of Active Uptake of KCl into Neuroglial Cells, dissertation. Københaven: FADLs Forlag.

    Google Scholar 

  • Hertz, L. (1978). An intense potassium uptake into astrocytes, its further enhancement by high concentrations of potassium, and its possible involvement in potassium homeostasis at the cellular level. Brain Research, 145, 202–208.

    Article  PubMed  CAS  Google Scholar 

  • Izhikevich, E. M. (2007). Dynamical Systems in Neuroscience: The geometry of excitable bursting. Cambridge, Massachusetts: MIT.

    Google Scholar 

  • Jefferys, J. G. R., & Haas, H. L. (1982). Synchronized bursting of CA1 hippocampal pyramidal cells in the absence of synaptic transmission. Nature, 300, 448–450.

    Article  PubMed  CAS  Google Scholar 

  • Jensen, M. S., Azouz, R., & Yaari, Y. (1994). Variant firing patterns in rat hippocampal pyramidal cells modulated by extracellular potassium. Journal of Neurophysiology, 71, 831–839.

    PubMed  CAS  Google Scholar 

  • Jing, J., Aitken, P. G., & Somjen, G. G. (1991). Lasting neuron depression induced by high potassium and its prevention by low calcium and NMDA receptor blockade. Brain Research, 557, 177–183.

    Article  PubMed  CAS  Google Scholar 

  • Jing, J., Aitken, P. G., & Somjen, G. G. (1994). Interstitial volume changes during spreading depression (SD) and SD-like hypoxic depolarization in hippocampal tissue slices. Journal of Neurophysiology, 71, 2548–2551.

    PubMed  CAS  Google Scholar 

  • Kager, H., Wadman, W. J., & Somjen, G. G. (2000). Simulated seizures and spreading depression in a neuron model incorporating interstitial space and ion concentrations. Journal of Neurophysiology, 84, 495–512.

    PubMed  CAS  Google Scholar 

  • Kager, H., Wadman, W. J., & Somjen, G. G. (2002). Conditions for the triggering of spreading depression studied with computer simulation. Journal of Neurophysiology, 88, 2700–2712.

    Article  PubMed  CAS  Google Scholar 

  • Kager, H., Wadman, W. J., & Somjen, G. G. (2007). Seizure-like after discharges simulated in a neuron model. Journal of Computational Neuroscience, 22, 105–128.

    Article  PubMed  CAS  Google Scholar 

  • Kandel, E. R., & Spencer, W. A. (1961). Electrophysiological properties of an archicortical neuron. Annals of the New York Academy of Sciences, 94, 570–603.

    Article  PubMed  CAS  Google Scholar 

  • Kawasaki, K., Czéh, G., & Somjen, G. G. (1988). Prolonged exposure to high potassium concentration results in irreversible loss of synaptic transmission in hippocampal tissue slices. Brain Research, 457, 322–329.

    Article  PubMed  CAS  Google Scholar 

  • Kimelberg, H. K. (2004). The problem of astrocyte identity. Neurochemistry International, 45, 191–202.

    Article  PubMed  CAS  Google Scholar 

  • Kivi, A., Lehmann, T. N., Kovács, R., Eilers, A., Jauch, R., Meeneke, H.-J., et al. (2000). Effects of barium on stimulus-induced rises of [K+]o in human epileptic non-sclerotic and sclerotic hippocampal area CA1. European Journal of Neuroscience, 12, 2039–2048.

    Article  PubMed  CAS  Google Scholar 

  • Kofuji, P., & Newman, E. A. (2004). Potassium buffering in the central nervous system. Neuroscience, 129, 1045–1056.

    Article  PubMed  CAS  Google Scholar 

  • Konnerth, A., Heinemann, U., & Yaari, Y. (1986). Nonsynaptic epileptogenesis in the mammalian hippocampus in vitro. I. Development of seizurelike activity in low extracellular calcium. Journal of Neurophysiology, 56, 409–423.

    PubMed  CAS  Google Scholar 

  • Krnjević, K., Morris, M. E., & Reiffenstein, R. J. (1982). Stimulation-evoked changes in extracellular K+ and Ca2+ in pyramidal layers of the rat hippocampus. Canadian Journal of Physiology and Pharmacology, 60, 1643–1657.

    PubMed  Google Scholar 

  • Krnjević, K., & Schwartz, S. (1967). Some properties of unresponsive cells in cerebral cortex. Experimental Brain Research, 3, 306–319.

    Article  Google Scholar 

  • Kuffler, S. W., & Nicholls, J. G. (1966). The physiology of neuroglial cells. Ergebnisse der Physiologie, Biologischen Chemie und Experimentellen Pharmakologie, 57, 1–90.

    Article  PubMed  CAS  Google Scholar 

  • Lothman, E., LaManna, J., Cordingley, G., Rosenthal, M., & Somjen, G. (1975). Responses of electrical potential, potassium levels and oxidative metabolism in cat cerebral cortex. Brain Research, 88, 15–36.

    Article  PubMed  CAS  Google Scholar 

  • Lux, H. D. (1973). Kaliumaktivität im Hirngewebe. Untersuchungen zum Krampfproblem. Mitteilungen Max Planck Gesellsch, 1, 34–52.

    Google Scholar 

  • Matthias, K., Kirchhoff, F., Seifert, G., Hüttmann, K., Matyash, M., Kettenmann, H., et al. (2003). Segregated expression of AMPA-type glutamate receptors and glutamate transporters defines distinct astrocyte populations in the mouse hippocampus. Journal of Neuroscience, 23, 1750–1758.

    PubMed  CAS  Google Scholar 

  • Moody, W. J., Futamachi, K. J., & Prince, D. A. (1974). Extracellular potassium activity during epileptogenesis. Experimental Neurology, 42, 248–263.

    Article  PubMed  CAS  Google Scholar 

  • Neusch, C., Papadopoulos, N., Müller, M., Maletzki, I., Winter, S. M., Hirrlinger, J., et al. (2006). Lack of the Kir4.1 channel subunit abolishes K+ buffering properties of astrocytes in the vantral respiratory group: Impact on extracellular K+ regulation. Journal of Neurophysiology, 95, 1843–1852.

    Article  PubMed  CAS  Google Scholar 

  • Newman, E. A. (1984). Regional specialization of retinal glial cell membrane. Nature, 309, 155–157.

    Article  PubMed  CAS  Google Scholar 

  • Newman, E. A. (1995). Glial cell regulation of extracellular potassium. In H. Kettenmann, & B. R. Ransom (Eds.) Neuroglia (pp. 717–731). New York: Oxford University Press.

    Google Scholar 

  • Nicholson, C., & Rice, M. E. (1988). Use of ion selective microelectrodes and voltammetric microsensors to study brain cell microenvironment. In A. A. Boulton, G. B. Baker, & W. Walz (Eds.) Neuromethods, Vol. 9 (pp. 247–361). Clifton, NJ: Humana.

    Google Scholar 

  • Orkand, R. K., Nicholls, J. G., & Kuffler, S. W. (1966). Effect of nerve impulses on the membrane potential of glial cells in the central nervous system of amphibia. Journal of Neurophysiology, 29, 788–806.

    PubMed  CAS  Google Scholar 

  • Paulson, O. B., & Newman, E. A. (1987). Does the release of potassium from astrocyte end feet regulate cerebral blood flow. Science, 237, 896–898.

    Article  PubMed  CAS  Google Scholar 

  • Picker, S., Pieper, C. F., & Goldring, S. (1981). Glial membrane potentials and their relationship to [K+]o in man and guinea pig. Journal of Neurosurgery, 55, 347–363.

    Article  PubMed  CAS  Google Scholar 

  • Rutecki, P. A., Lebeda, F. J., & Johnston, D. (1985). Epileptiform activity induced by changes in extracellular potassium in hippocampus. Journal of Neurophysiology, 54, 1363–1374.

    PubMed  CAS  Google Scholar 

  • Rybak, I. A., Shevtsova, N. A., St-John, W. M., Paton, J. F. R., & Pierrifiche, O. (2003). Endogenous rhythm generation in the pre-Bötzinger complex and ionic currents: modeling and in vitro studies. European Journal of Neuroscience, 18, 239–257.

    Article  PubMed  Google Scholar 

  • Siegenbeek van Heukelom, J. (1994). The role of potassium inward rectifier in defining cell membrane potentials in low potassium media, analyzed by computer simulation. Biophysical Chemistry, 50, 345–360.

    Article  CAS  Google Scholar 

  • Sik, A., Smith, R. L., & Freund, T. F. (2000). Distribution of chloride channel-2-immunoreactive neuronal and astrocytic processes in the hippocampus. Neuroscience, 101, 51–65.

    Article  PubMed  CAS  Google Scholar 

  • Singer, W., & Lux, H. D. (1975). Extracellular potassium gradients and visual receptive fields in the cat striate cortex. Brain Research, 96, 378–383.

    Article  PubMed  CAS  Google Scholar 

  • Somjen, G. G. (1975). Electrophysiology of neuroglia. Annual Review of Physiology, 37, 163–190.

    Article  PubMed  CAS  Google Scholar 

  • Somjen, G. G. (2004). Ions in the Brain. Normal function, Seizures and Stroke. New York: Oxford University Press,.

    Google Scholar 

  • Somjen, G. G., Kager, H., & Wadman, W. J. (2004). Potassium regulation and simulated seizures in a neuron—glia model. Society of Neuroscience Abstracts Program no. 228.11.

  • Somjen, G. G., Kager, H., & Wadman, W. J. (2008). Calcium-sensitive non-selective cation current promotes seizure-like discharge and spreading depression in a model neuron (in press).

  • Sypert, G. W., & Ward, A. A. (1974). Changes in extracellular potassium activity during neocortical propagated seizures. Experimental Neurology, 45, 19–41.

    Article  PubMed  CAS  Google Scholar 

  • Trachtenberg, M. C., & Pollen, D. A. (1970). Neuroglia: biophysical properties and physiological function. Science, 167, 1248–1252.

    Article  PubMed  CAS  Google Scholar 

  • Traynelis, S. F., & Dingledine, R. (1988). Potassium-induced spontaneous electrographic seizures in the rat hippocampal slice. Journal of Neurophysiology, 59, 259–276.

    PubMed  CAS  Google Scholar 

  • Walz, W. (2000). Role of astrocytes in the clearance of excess potassium. Neurochemistry International, 36, 291–300.

    Article  PubMed  CAS  Google Scholar 

  • Walz, W. (2002). Chloride/anion channels in glial cell membranes. Glia, 40, 1–10.

    Article  PubMed  Google Scholar 

  • Walz, W., & Juurlink, B. H. J. (2002). Homeostatic properties of astrocytes. In W. Walz (Ed.) The Neuronal Environment. Brain Homeostasis in Health and Disease (pp. 159–185). Totowa: Humana.

    Google Scholar 

  • Xiong, Z.-Q., & Stringer, J. L. (2000). Sodium pump activity, not glial spatial buffering, clears potassium after epileptiform activity induced in the dentate gyrus. Journal of Neurophysiology, 83, 1443–1451.

    PubMed  CAS  Google Scholar 

  • Yan, Y., Dempsey, R. J., & Sun, D. (2001). Expression of Na+ -K+ -Cl- cotransporter in rat brain during development and its localization in mature astrocytes. Brain Research, 911, 43–55.

    Article  PubMed  CAS  Google Scholar 

  • Zhou, M., & Kimelberg, H. K. (2000). Freshly isolated astrocytes from rat hippocampus show two distinct current patterns and different [K+]o uptake capabilities. Journal of Neurophysiology, 84, 2746–2757.

    PubMed  CAS  Google Scholar 

  • Zuckermann, E. C., & Glaser, G. H. (1970). Activation of experimental epileptogenic foci. Action of increased K+ in extracellular spaces of brain. Archives of Neurology, 23, 358–364.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. G. Somjen.

Additional information

Action Editor: Alain Destexhe

Rights and permissions

Reprints and permissions

About this article

Cite this article

Somjen, G.G., Kager, H. & Wadman, W.J. Computer simulations of neuron-glia interactions mediated by ion flux. J Comput Neurosci 25, 349–365 (2008). https://doi.org/10.1007/s10827-008-0083-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10827-008-0083-9

Keywords

Navigation