Skip to main content
Log in

Modeling the role of lateral membrane diffusion in AMPA receptor trafficking along a spiny dendrite

  • Published:
Journal of Computational Neuroscience Aims and scope Submit manuscript

Abstract

AMPA receptor trafficking in dendritic spines is emerging as a major postsynaptic mechanism for the expression of plasticity at glutamatergic synapses. AMPA receptors within a spine are in a continuous state of flux, being exchanged with local intracellular pools via exo/endocytosis and with the surrounding dendrite via lateral membrane diffusion. This suggests that one cannot treat a single spine in isolation. Here we present a model of AMPA receptor trafficking between multiple dendritic spines distributed along the surface of a dendrite. Receptors undergo lateral diffusion within the dendritic membrane, with each spine acting as a spatially localized trap where receptors can bind to scaffolding proteins or be internalized through endocytosis. Exocytosis of receptors occurs either at the soma or at sites local to dendritic spines via constitutive recycling from intracellular pools. We derive a reaction–diffusion equation for receptor trafficking that takes into account these various processes. Solutions of this equation allow us to calculate the distribution of synaptic receptor numbers across the population of spines, and hence determine how lateral diffusion contributes to the strength of a synapse. A number of specific results follow from our modeling and analysis. (1) Lateral membrane diffusion alone is insufficient as a mechanism for delivering AMPA receptors from the soma to distal dendrites. (2) A source of surface receptors at the soma tends to generate an exponential-like distribution of receptors along the dendrite, which has implications for synaptic democracy. (3) Diffusion mediates a heterosynaptic interaction between spines so that local changes in the constitutive recycling of AMPA receptors induce nonlocal changes in synaptic strength. On the other hand, structural changes in a spine following long term potentiation or depression have a purely local effect on synaptic strength. (4) A global change in the rates of AMPA receptor exo/endocytosis is unlikely to be the sole mechanism for homeostatic synaptic scaling. (5) The dynamics of AMPA receptor trafficking occurs on multiple timescales and varies according to spatial location along the dendrite. Understanding such dynamics is important when interpreting data from inactivation experiments that are used to infer the rate of relaxation to steady-state.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Adesnik, H., Nicoll, R. A., & England, P. M. (2005). Photoinactivation of native AMPA receptors reveals their real-time trafficking. Neuron, 48, 977–985.

    Article  PubMed  CAS  Google Scholar 

  • Andrasfalvy, B. K., & Magee, J. C. (2001). Distance-dependent increase in AMPA receptor number in the dendrites of adult hippocampal CA1 pyramidal neurons. Journal of Neuroscience, 21, 9151–9159.

    PubMed  CAS  Google Scholar 

  • Archibald, K., Perry, M. J., Molnar, E., & Henley, J. M. (1998). Surface expression and metabolic half-life of AMPA receptors in cultured rat cerebellar granule cells. Journal of Neuropharmacology, 37, 1345–1353.

    Article  CAS  Google Scholar 

  • Ashby, M. C., Maier, S. R., Nishimune, A., & Henley, J. M. (2006). Lateral diffusion drives constitutive exchange of AMPA receptors at dendritic spines and is regulated by spine morphology. Journal of Neuroscience, 26, 7046–7055.

    Article  PubMed  CAS  Google Scholar 

  • Bi, G-Q., & Poo, M-M. (2001). Synaptic modification by correlated activity: Hebb’s postulate revisited. Annual Reviews of Neuroscience, 24, 139–166.

    Article  CAS  Google Scholar 

  • Blanpied, T. A., Scott, D. B., & Ehlers, M. D. (2002). Dynamics and regulation of clathrin coats at specialized endocytic zones of dendrites and spines. Neuron, 36, 435–449.

    Article  PubMed  CAS  Google Scholar 

  • Bliss, T. V. P., & Lomo, T. (1973). Long-lasting potentiation of synaptic transmission in the dentate area of the anaesthetized rabbit following stimulation of the perforant path. Journal of Physiology, 232, 331–356.

    PubMed  CAS  Google Scholar 

  • Borgdorff, A., & Choquet, D. (2002). Regulation of AMPA receptor lateral movement. Nature, 417, 649–653.

    Article  PubMed  CAS  Google Scholar 

  • Bredt, D. S., & Nicoll, R. A. (2003). AMPA receptor trafficking at excitatory synapses. Neuron, 40, 361–379.

    Article  PubMed  CAS  Google Scholar 

  • Bressloff, P. C., & Earnshaw, B. A. (2007). Diffusion-trapping model of protein trafficking in dendrites. Physical Review E, 75, 041916.

    Article  Google Scholar 

  • Bressloff, P. C., Earnshaw, B. A., & Ward, M. J. (2007). Diffusion of protein receptors on a cylindrical dendritic membrane with partially absorbing traps. SIAM Journal on Applied Mathematics, (in press).

  • Castellani, G. C., Quinlan, E. M., Cooper, L. N., & Shouval, H. Z. (2001). A biophysical model of bidirectional plasticity: dependence on AMPA and NMDA receptors. Proceedings of the National Academy of Sciences of the United States of America, 98, 12772–12777.

    Article  PubMed  CAS  Google Scholar 

  • Chen, L., Tracy, T., & Nam, C. I. (2007). Dynamics of postsynaptic glutamate receptor targeting. Current Opinion in Neurobiology, 17, 53–58.

    Article  PubMed  CAS  Google Scholar 

  • Choquet, D., & Trillier, A. (2003). The role of receptor diffusion in the organization of the postsynaptic membrane. Nature Reviews, Neuroscience, 4, 251–265.

    Article  CAS  Google Scholar 

  • Collingridge, G. L., Isaac, J. T. R., & Wang, Y. T. (2004). Receptor trafficking and synaptic plasticity. Nature Reviews, Neuroscience, 5, 952–962.

    Article  CAS  Google Scholar 

  • Cooney, J. R., Hurlburt, J. L., Selig, D. K., Harris, K. M., & Fiala, J. C. (2002). Endosomal compartments serve multiple hippocampal dendritic spines from a widespread rather than a local store of recycling membrane. Journal on Neuroscience, 22, 2215–2224.

    CAS  Google Scholar 

  • Cottrell, J. R., Dube, G. R., Egles, C., & Liu, G. (2000). Distribution, density, and clustering of functional glutamate receptors before and after synaptogenesis in hippocampal neurons. Journal on Neurophysiology, 84, 1573–1587.

    CAS  Google Scholar 

  • Davis, G. (2006). Homeostatic control of neural activity: From phenomenology to molecular design. Annual Review of Neuroscience, 29, 307–323.

    Article  PubMed  CAS  Google Scholar 

  • Derkach, V. A., Oh, M. C., Guire, E. S., & Soderling, T. R. (2007). Regulatory mechanism of AMPA receptors in synaptic plasticity. Nature Reviews. Neuroscience, 8, 101–113.

    Article  PubMed  CAS  Google Scholar 

  • Dudek, S. M., & Bear, M. F. (1992). Homosynaptic long-term depression in area CA1 of hippocampus and effects of N-methyl-d-aspartate receptor blockade. Proceedings of the National Academy of Sciences of the United States of America, 89, 4363–4367.

    Article  PubMed  CAS  Google Scholar 

  • Dudek, S. M., & Bear, M. F. (1993). Bidirectional long-term modification of synaptic effectiveness in the adult and immature hippocampus. Journal on Neuroscience, 13, 2910–2918.

    CAS  Google Scholar 

  • Earnshaw, B. A., & Bressloff, P. C. (2006). A biophysical model of AMPA receptor trafficking and its regulation during LTP/LTD. Journal on Neuroscience, 26, 12362–12367.

    Article  CAS  Google Scholar 

  • Ehlers, M. D. (2000). Reinsertion or degradation of AMPA receptors determined by activity-dependent endocytic sorting. Neuron, 28, 511–525.

    Article  PubMed  CAS  Google Scholar 

  • Ehlers, M. D. (2003). Activity level controls postsynaptic composition and signaling via the ubiquitin-proteasome system. Nature Neuroscience, 6, 231–242.

    Article  PubMed  CAS  Google Scholar 

  • Groc, L., Heine, M., Cognet, L., Brickley, K., Stephenson, F. A., Lounis, B., et al. (2004). Differential activity-dependent regulation of the lateral mobilities of AMPA and NMDA receptors. Nature Neuroscience, 7, 695–696.

    Article  PubMed  CAS  Google Scholar 

  • Hausser, M. (2001). Synaptic function: Dendritic democracy. Current Biology, 11, R10–R12.

    Article  PubMed  CAS  Google Scholar 

  • Hayer, A., & Bhalla, U. S. (2005). Molecular switches at the synapse emerge from receptor and kinase traffic. PLoS Computers in Biology, 1, 137–154.

    CAS  Google Scholar 

  • Holcman, D., & Schuss, Z. (2004). Escape through a small opening: receptor trafficking in a synaptic membrane. Journal of Statistical Physics, 117, 976–1014.

    Article  Google Scholar 

  • Holcman, D., & Triller, A. (2006). Modeling synaptic dynamics driven by receptor lateral diffusion. Biophysical Journal, 91, 2405–2415.

    Article  PubMed  CAS  Google Scholar 

  • Holmes, W. R., & Grover, L. M. (2006). Quantifying the magnitude of changes in synaptic levels parameters with long-term potentiation. Journal on Neurophysiology, 96, 1478–1491.

    Article  Google Scholar 

  • Ju, W., Morishita, W., Tsui, J., Gaietta, G., Deerinck, T. J., Adams, S. R., et al. (2004). Activity-dependent regulation of dendritic synthesis and trafficking of AMPA receptors. Nature Neuroscience, 7, 244–253.

    Article  PubMed  CAS  Google Scholar 

  • Kelleher, R. J., Govindarajan, A., & Tonegawa, S. (2004). Translational regulatory mechanisms in persistent forms of synaptic plasticity. Neuron, 44, 59–73.

    Article  PubMed  CAS  Google Scholar 

  • Kennedy, M. J., & Ehlers, M. (2006). Organelles and trafficking machinery for postsynaptic plasticity. Annual Review Neuroscience, 29, 325–362.

    Article  CAS  Google Scholar 

  • Kim, C. H., & Lisman, J. E. (2001). A labile component of AMPA receptor-mediated synaptic transmission is dependent on microtubule motors, actin, and N-ethylmaleimide-sensitive factor. Journal on Neuroscience, 21, 4188–4194.

    CAS  Google Scholar 

  • Koch, C. (1999). Biophysics of computation. Oxford University Press.

  • Konur, S., Rabinowitz, D., Fenstermaker, V. L., & Yuste, R. (2003). Regulation of spine sizes and densities in pyramidal neurons. Journal on Neurobiology, 56, 95–112.

    Article  Google Scholar 

  • Lamprecht, R., & LeDoux, J. (2004). Structural plasticity and memory. Nature Reviews. Neuroscience, 5, 45–54.

    Article  PubMed  CAS  Google Scholar 

  • Lauffenberger, D. A., & Linderman, J. J. (1993). Receptors: Models for binding, trafficking and signaling. New York: Oxford University Press.

    Google Scholar 

  • Lin, J. W., Ju, W., Foster, K., Lee, S. H., Ahmadian, G., Wyszynski, M., et al. (2000). Distinct molecular mechanisms and divergent endocytotic pathways of AMPA receptor internalization. Nature Neuroscience, 3, 1282–1290.

    Article  PubMed  CAS  Google Scholar 

  • Luscher, C., Xia, H., Beattie, E. C., Carroll, R. C., von Zastrow, M., Malenka, R. C., et al. (1999). Role of AMPA receptor cycling in synaptic transmission and plasticity. Neuron, 24, 649–658.

    Article  PubMed  CAS  Google Scholar 

  • Magee, J. C., & Cook, E. P. (2000). Somatic EPSP amplitude is independent of synapse location in hippocampal pyramidal neurons. Nature Neuroscience, 3, 895–903.

    Article  PubMed  CAS  Google Scholar 

  • Malenka, R. C., & Bear, M. F. (2004). LTP and LTD: An embarrassment of riches. Neuron, 44, 5–21.

    Article  PubMed  CAS  Google Scholar 

  • Malinow, R., & Malenka, R. C. (2002). AMPA receptor trafficking and synaptic plasticity. Annual Review of Neuroscience, 25, 103–126.

    Article  PubMed  CAS  Google Scholar 

  • Matsuzaki, M., Honkura, N., Ellis-Davies, G. C. R., & Kasai, H. (2004). Structural basis of long-term potentiation in single dendritic spines. Nature, 429, 761–766.

    Article  PubMed  CAS  Google Scholar 

  • McCormack, S. G., Stornetta, R. L., & Zhu, J. J. (2006). Synaptic AMPA receptor exchange maintains bidirectional plasticity. Neuron, 50, 75–88.

    Article  PubMed  CAS  Google Scholar 

  • Nimchinsky, E. A., Sabatini, B. L., & Svoboda, K. (2002). Structure and function of dendritic spines. Annual Review Physiology, 64, 313–353.

    Article  CAS  Google Scholar 

  • Nusser, Z., Lujan, R., Laube, L., Roberts, J. D. B., Molnar, E., & Somogyi, P. (1998). Cell type and pathway dependence of synaptic AMPA receptor number and variability in the hippocampus. Neuron, 21, 545–549.

    Article  PubMed  CAS  Google Scholar 

  • O’Brien, R. J., Kamboj, S., Ehlers, M. D., Rosen, K. R., Fischbach, G. D., & Huganir, R. L. (1998). Activity-dependent modulation of synaptic AMPA receptor accumulation. Neuron, 21, 1067–1078.

    Article  PubMed  CAS  Google Scholar 

  • Palmer, C. L., Cotton, L., & Henley, J. M. (2005). The molecular pharmacology and cell biology of alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptors. Pharmacological Reviews, 57, 253–277.

    Article  PubMed  CAS  Google Scholar 

  • Passafaro, M., Piech, V., & Sheng, M. (2001). Subunit-specific temporal and spatial patterns of AMPA receptor exocytosis in hippocampal neurons. Nature Neuroscience, 4, 917–926.

    Article  PubMed  CAS  Google Scholar 

  • Piccini, A., & Malinow, P. (2002). Critical postsynaptic density 95/disc large/zonula occludens-1 interactions by glutamate receptor 1 (GluR1) and GluR2 required at different subcellular sites. Journal of Neuroscience, 22, 5387–5392.

    PubMed  CAS  Google Scholar 

  • Pierce, J. P., van Leyen, K., & McCarthy, J. B. (2000). Translocation machinery for synthesis of integral membrane and secretory proteins in dendritic spines. Nature Neuroscience, 3, 311–313.

    Article  PubMed  CAS  Google Scholar 

  • Rall, W. (1962). Theory of Physiological properties of dendrites. Annals of the New York Academy of Sciences, 96, 1071–1092.

    Article  PubMed  CAS  Google Scholar 

  • Rumsey, C. C., & Abbott, L. F. (2006). Synaptic democracy in active dendrites. Journal of Neurophysilogy, 96, 2307–2318.

    Article  Google Scholar 

  • Schuman, E. M., & Madison, D. V. (1994). Locally distributed synaptic potentiation in the hippocampus. Science, 263, 532–536.

    Article  PubMed  CAS  Google Scholar 

  • Sekine-Aizawa, Y., & Huganir, R. L. (2004). Imaging of receptor trafficking by using α-bungarotoxin-binding-site-tagged receptors. Proceedings of the National Academy of Sciences, 101, 17114–17119.

    Article  CAS  Google Scholar 

  • Setou, M., Seog, D. H., Tanaka, Y., Kanai, Y., Takei, Y., et al. (2002). Glutamate-receptor-interacting protein GRIP1 directly steers kinesin to dendrites. Nature, 417, 83–87.

    Article  PubMed  CAS  Google Scholar 

  • Shen, L., Liang, F., Walensky, L. D., & Huganir, R. L. (2000). Regulation of AMPA receptor GluR1 subunit surface expression by a 4.1N-linked actin cytoskeletal association. Journal on Neuroscience, 20, 7932–7940.

    CAS  Google Scholar 

  • Sheng, M., & Kim, M. J. (2002). Postsynaptic signaling and plasticity mechanisms. Science, 298, 776–780.

    Article  PubMed  CAS  Google Scholar 

  • Shi, S., Hayashi, Y., Esteban, J. A., & Malinow, R. (2001). Subunit-specific rules governing AMPA receptor trafficking to synapses in hippocampal pyramidal neurons. Cell, 105, 331–343.

    Article  PubMed  CAS  Google Scholar 

  • Shouval, H. Z., Bear, M. F., & Cooper, L. N. (2002a). A unified model of NMDA receptordependent bidirectional synaptic plasticity. Proceedings of the National Academy of Sciences of the United States of America, 99, 10831–10836.

    Article  PubMed  CAS  Google Scholar 

  • Shouval, H. Z., Castellani, G. C., Blais, B. S., Yeung, L. C., & Cooper, L. N. (2002b). Converging evidence for a simplified biophysical model of synaptic plasticity. Biological Cybernetics, 87, 383–391.

    Article  PubMed  Google Scholar 

  • Shouval, H. Z. (2005). Clusters of interacting receptors can stabilize synaptic efficacies. Proceedings of the National Academy of Sciences of the United States of America, 102, 14440–14445.

    Article  PubMed  CAS  Google Scholar 

  • Sorra, K. E., & Harris, K. M. (2000). Overview on the structure, composition, function, development, and plasticity of hippocampal dendritic spines. Hippocampus, 10, 501–511.

    Article  PubMed  CAS  Google Scholar 

  • Song, I., & Huganir, R. L. (2002). Regulation of AMPA receptors during synaptic plasticity. Trends in Neurosciences, 25, 578–588.

    Article  PubMed  CAS  Google Scholar 

  • Sutton, M. A., & Schuman, E. M. (2005). Local translational control in dendrites and its role in long-term synaptic plasticity. Journal on Neurobiology, 64, 116–131.

    Article  CAS  Google Scholar 

  • Tanaka, J.-I., Matsuzaki, M., Tarusawa, E., Momiyama, A., Molnar, E., Kasai, H., et al. (2005). Number and density of AMPA receptors in single synapses in immature cerebellum. Journal on Neuroscience, 25, 799–807.

    Article  CAS  Google Scholar 

  • Tardin, C., Cognet, L., Bats, C., Lounis, B., & Choquet, D. (2003). Direct imaging of lateral movements of AMPA receptors inside synapses. EMBO Journal, 22, 4656–4665.

    Article  PubMed  CAS  Google Scholar 

  • Triller, A., & Choquet, D. (2003). Synaptic structure and diffusion dynamics of synaptic receptors. Biology of the Cell, 95, 465–476.

    Article  PubMed  CAS  Google Scholar 

  • Triller, A., & Choquet, D. (2005). Surface trafficking of receptors between synaptic and extrasynaptic membranes. Trends in Neurosciences, 28, 133–139.

    Article  PubMed  CAS  Google Scholar 

  • Tuckwell, H. C. (1988). Introduction to theoretical neurobiology. New York: Cambridge University Press.

    Google Scholar 

  • Turrigiano, G. G., Leslie, K. R., Desai, N. S., Rutherford, L. C., & Nelson, S. B. (1998). Activity-dependent scaling of quantal amplitude in neocortical neurons. Nature, 391, 892–895.

    Article  PubMed  CAS  Google Scholar 

  • Turrigiano, G. G., & Nelson, S. B. (2004). Homeostatic plasticity in the developing nervous system. Nature Reviews. Neuroscience, 5, 97–107.

    Article  CAS  Google Scholar 

  • Van Kampen, N. G. (1992). Stochastic processes in physics and chemistry. North-Holland, Amsterdam.

    Google Scholar 

  • Zhabotinsky, A. M., Camp, R. N., Epstein, I. R., & Lisman, J. E. (2006). Role of neurogranin concentrated in spines in the induction of long-term potentiation. Journal on Neuroscience, 26, 7337–7347.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Science Foundation (DMS 0515725 and RTG 0354259).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. C. Bressloff.

Additional information

Action Editor: John Rinzel

Appendices

Appendix 1

The diffusion model given by Eq. (1) can be viewed as a continuum approximation of a previous model of protein receptor trafficking along a dendrite, in which lateral diffusion is coupled to a discrete population of spines (Bressloff and Earnshaw 2007). The latter is obtained by taking the spine density to have the explicit form

$$ \label{rho} \rho(x)=\frac{1}{l}\sum_{j=1}^N \delta\left(x-x_j\right), $$
(28)

where δ(x) is the Dirac delta function and x j is the distance of the jth spine from the soma. Substitution into Eq. (1) gives

$$ \frac{\partial U}{\partial t} = D\frac{\partial ^2 U}{\partial x^2} -\sum_{j=1}^N \frac{\Omega_j}{l}\left[U_j(t)-R_j(t)\right]\delta\left(x-x_j\right), \label{eq:U2} $$
(29)

where Ω j  = Ω(x j ), U j (t) = U(x j ,t) and R j  = R(x j ,t). Note that this discrete spine model ignores the spatial extent of each spine so that the domain over which free diffusion occurs is the whole cylindrical surface of the dendrite. This is motivated by the observation that the spine neck, which forms the junction between a synapse and its parent dendrite, varies in radius from ~0.02 − \(0.2~\upmu\)m, which is typically an order of magnitude smaller than the spacing between spines (~0.1–1 \(\upmu\)m) and the circumference of the dendritic cable (~1 \(\upmu\)m), see Sorra and Harris (2000). In other words, the disc-like region or hole forming the junction between a spine and the dendritic cable is relatively small, and can therefore be neglected in a one-dimensional cable model. As noted in the discussion, In the case of a full two-dimensional model of diffusion along the cylindrical surface of a dendritic cable, one can no longer ignore the effects of these holes due to the fact that the Green’s function associated with two-dimensional diffusion has a logarithmic singularity (Bressloff et al. 2007).

For the given spine density (28), the steady-state diffusion equation (11) reduces to

$$ \label{eq:Udis} 0 = D\frac{d^2 U}{d x^2} -\sum_{j=1}^N \widehat{\Omega}_j\left[U_j -r_j\right]\delta\left(x-x_j\right) , $$
(30)

where r j  = r(x j ) etc. Integrating Eq. (30) over the interval 0 ≤ x ≤ L leads to the conservation condition

$$ l J_{\rm soma} = \sum_{j=1}^N \widehat{\Omega}_j\left[U_j -r_j\right]\ $$
(31)

Equation (30) can be solved in terms of the generalized one-dimensional Green’s function H(x,x ), defined according to the solution of the equation

$$ \label{eq:H} \frac{d ^2 H\left(x,x^\prime\right)}{d x^2} =-\delta\left(x-x^\prime\right) +L^{-1}, $$
(32)

with reflecting boundary conditions at the ends x = 0, L. A standard calculation shows that

$$ H(x,x') = \frac{L}{12} \left [g\left(\left[x+x'\right]/L\right)+ g\left(|x-x'|/L\right) \right],\quad $$
(33)

where g(x) = 3x 2 − 6|x| + 2. Given the Green’s function H, the dendritic surface receptor concentration has an implicit solution of the form

$$ \label{eq:Uchi} U(x)= \chi -\sum_{j=1}^N \frac{\widehat{\Omega}_j\left[U_j -r_j\right]}{lD}H\left(x,x_j\right)+\frac{J_{\rm soma}}{D}H(x,0), $$
(34)

where the constant χ is determined from the conservation condition (31).

We can now generate a matrix equation for the concentration of dendritic receptors U i at the i th spine, i = 1,...,N, by setting x = x i in Eq. (34):

$$ \label{eq:Ui} U_i = \chi -\sum_{j=1}^N {\mathcal H}_{ij}\left[U_j-r_j\right]+ J_i, $$
(35)

where

$$ \label{eq:cBcC} {\mathcal H}_{ij}=\frac{\widehat{\Omega}_j}{lD} H\left(x_i,x_j\right),\quad J_i = \frac{J_{\rm soma}}{D}H(x_i,0). $$
(36)

If the matrix \({\mathcal H}=({\mathcal H}_{ij})\) does not have − 1 as an eigenvalue (which is the generic case), then the matrix \(\ {\mathcal I}+{\mathcal H}\), where \({\mathcal I}\) is the N ×N identity matrix, is invertible and we can solve the system (35). That is, setting \({\mathcal M}= ({\mathcal I}+{\mathcal H})^{-1}\), we have

$$ U_i -r_i= \sum_j {\mathcal M}_{ij}\left[\chi+{J}_j-r_j\right]. $$
(37)

The conservation condition (31) then determines χ according to

$$\chi = {\left[ {\frac{{lJ_{{soma}} - {\sum\nolimits_{k,l} {\widehat{\Omega }} }_{k} {\mathcal M}_{{kl}} {\left[ {J_{l} - r_{l} } \right]}}}{{{\sum\nolimits_{k,l} {\widehat{\Omega }} }_{k} {\mathcal M}_{{kl}} }}} \right]}.$$
(38)

Equations (37) and (38) determine the dendritic receptor concentration U j at the discrete site x j of the jth dendritic spine. Substituting this solution into Eq. (34) then generates the full receptor concentration profile U(x). For a large number of spines distributed along a dendrite, the resulting solution matches that obtained from the continuum model of Section 2. Treating the spines as a continuous population makes the analysis more transparent than the matrix solution of the discrete model. For example, it generates a simple expression for the effective space constant of receptor diffusion.

Appendix 2

Here we provide a rough estimate for the hopping rate Ω0 based on diffusion through the spine neck. For purposes of illustration, let us assume that the spine neck is a uniform cylinder of length L n and radius r n . Consider the steady state diffusion equation along the surface of the cylinder:

$$ D_n \frac{d^2 U_n}{d s^2}=0, \quad s \in (0,L_n). $$
(39)

with boundary conditions

$$ U_n(0)= U, \quad U_n(L_n)=R, $$

where U is the dendritic receptor concentration at the junction between the spine neck and cable and R is the receptor concentration within the ESM. Denoting the constant flux through the spine neck by J n , we can solve Eq. (39) to obtain

$$ U-R = \frac{J_nL_n}{ D_n}. $$
(40)

Given that the total number of receptors per unit time flowing across either end of the spine neck is 2πr n J n , we deduce that

$$ \Omega_0 = \frac{2 \pi r_n D_n}{L_n}. $$
(41)

Using \(L_n = 0.45~\upmu\)m and \(r_n = 0.075~\upmu\)m (Sorra and Harris 2000) and \(D_n = 6.7\times 10^{-3}~\upmu\)m2s − 1 (Ashby et al. 2006), we find that \(\Omega \approx 7 \times 10^{-3}~\upmu\)m2s − 1, which is consistent with the baseline value shown in Table 1.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Earnshaw, B.A., Bressloff, P.C. Modeling the role of lateral membrane diffusion in AMPA receptor trafficking along a spiny dendrite. J Comput Neurosci 25, 366–389 (2008). https://doi.org/10.1007/s10827-008-0084-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10827-008-0084-8

Keywords

Navigation