Skip to main content
Log in

Retinal and cortical nonlinearities combine to produce masking in V1 responses to plaids

  • Published:
Journal of Computational Neuroscience Aims and scope Submit manuscript

Abstract

The visual response of a cell in the primary visual cortex (V1) to a drifting grating stimulus at the cell’s preferred orientation decreases when a second, perpendicular, grating is superimposed. This effect is called masking. To understand the nonlinear masking effect, we model the response of Macaque V1 simple cells in layer 4Cα to input from magnocellular Lateral Geniculate Nucleus (LGN) cells. The cortical model network is a coarse-grained reduction of an integrate-and-fire network with excitation from LGN input and inhibition from other cortical neurons. The input is modeled as a sum of LGN cell responses. Each LGN cell is modeled as the convolution of a spatio-temporal filter with the visual stimulus, normalized by a retinal contrast gain control, and followed by rectification representing the LGN spike threshold. In our model, the experimentally observed masking arises at the level of LGN input to the cortex. The cortical network effectively induces a dynamic threshold that forces the test grating to have high contrast before it can overcome the masking provided by the perpendicular grating. The subcortical nonlinearities and the cortical network together account for the masking effect.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  • Anderson, J. S., Carandini, M., & Ferster, D. (2000). Orientation tuning of input conductance, excitation, and inhibition in cat primary visual cortex. Journal of Neurophysiology, 84, 909–926.

    PubMed  CAS  Google Scholar 

  • Benardete, E., & Kaplan, E. (1999). The dynamics of primate [m] retinal ganglion cells. Visual Neuroscience, 16, 355–368.

    Article  PubMed  CAS  Google Scholar 

  • Bonds, A. B. (1989). Role of inhibition in the specification of orientation selectivity of cells in the cat striate cortex. Visual Neuroscience, 2, 41–55.

    Article  PubMed  CAS  Google Scholar 

  • Boudreau, C. E., & Ferster, D. (2005). Short-term depression in thalamocortical synapses of cat primary visual cortex. Journal of Neuroscience, 25, 7179–7190.

    Article  PubMed  CAS  Google Scholar 

  • Carandini, M., Heeger, D. J., & Movshon, J. A. (1997). Linearity and normalization in simple cells of the macaque primary visual cortex. Journal of Neuroscience, 17(21), 8621–8644.

    PubMed  CAS  Google Scholar 

  • Carandini, M., Heeger, D. J., Senn, W. (2002). A synaptic explanation of suppression in visual cortex. Journal of Neuroscience, 22, 10053–10065

    PubMed  CAS  Google Scholar 

  • Freeman, T. C. B., Durand, S., Kiper, D. C., & Carandini, M. (2002). Suppression without inhibition in visual cortex. Neuron, 35, 759–771.

    Article  PubMed  CAS  Google Scholar 

  • Grossberg, S. (1975). On the development of feature detectors in the visual cortex with applications to learning and reaction-diffusion systems. Biological Cybernetics, 21, 145–159.

    Article  Google Scholar 

  • Heeger, D. (1992). Normalization of cell responses in cat striate cortex. Visual Neuroscience, 9, 181–97.

    PubMed  CAS  Google Scholar 

  • Hicks, T. P., Lee, B. B., & Vidyasagar, T. R. (1983). The responses of cells in macaque lateral geniculate nucleus to sinusoidal gratings. Journal of Physiology, 337, 183–200.

    PubMed  CAS  Google Scholar 

  • Kaplan, E., Purpura, K., & Shapley, R. (1987). Contrast affects the transmission of visual information through the mammalian lateral geniculate nucleas. Journal of Physiology, 391, 267–288.

    PubMed  CAS  Google Scholar 

  • Kaplan, E., & Shapley, R. (1982). X and Y cells in he laterial geniculate nucleus of macaque monkeys. Journal of Physiology, 330, 125–143.

    PubMed  CAS  Google Scholar 

  • Kaplan, E., & Shapley, R. (1986). The primate retina contains two types of ganglion cells, with hight and low contrast sensitivity. Proceedings of the National Academy of Sciences, 83, 2755–2757.

    Article  CAS  Google Scholar 

  • Koch, C. (1999). Biophysics of computation. Oxford: Oxford University Press.

    Google Scholar 

  • Lauritzen, T. Z., Krukowski, A. E., & Miller, K. D. (2001). Local correlation-based circuitry can account for responses to multi-grating stimuli in a model of cat v1. Journal of Neurophysiology, 86, 1803–1815.

    PubMed  CAS  Google Scholar 

  • McLaughlin, D., Shapley, R., Shelley, M., & Wielaard, D. J. (2000). A neuronal network model of macaque primary visual cortex (v1): Orientation tuning and dynamics in the input layer 4calpha. Proceedings of the National Academy of Sciences, 97, 8087–8092.

    Article  CAS  Google Scholar 

  • Monier, C., Chavane, F., Baudot, P., Graham, L. J., & Fregnac, Y. (2003). Orientation and direction selectivity of synaptic inputs in visual cortical neurons: A diversity of combinations produces spike tuning. Neuron, 37, 663–680.

    Article  PubMed  CAS  Google Scholar 

  • Priebe, N. J., Ferster, D. (2006). Mechanisms underlying cross-orientation suppression in cat visual cortex. Nature Neuroscience, 9, 552–561 (2006)

    Article  PubMed  CAS  Google Scholar 

  • Reid, R. C., & Shapley, R. M. (2002). Space and time maps of cone photoreceptor signals in macaque lateral geniculate nucleus. Journal of Neuroscience, 22, 6158–6175.

    PubMed  CAS  Google Scholar 

  • Ringach, D. L., Hawken, M. J., & Shapley, R. (1997). Dynamics of orientation tuning in macaque primary visual cortex. Nature, 387, 281–284.

    Article  PubMed  CAS  Google Scholar 

  • Sato, H., Katsuyama, N., Tamura, H., Hata, Y., & Tsumoto, T. (1996). Mechanisms underlying orientation selectivity of neurons in the primary visual cortex of the macaque. Journal of Physiology, 494, 757–771.

    PubMed  CAS  Google Scholar 

  • Shapley, R. (1994). Linearity and non-linearity in cortical receptive fields. In: Higher order processing in the visual system, Ciba Symposium 184. Chichester: Wiley.

    Google Scholar 

  • Shapley, R. M., & Victor, J. D. (1981). How the contrast gain control modifies the frequency responses of cat retinal ganglion cells. Journal of Physiology, 318, 161–179.

    PubMed  CAS  Google Scholar 

  • Shelley, M., & McLaughlin, D. (2003). Coarse grained reduction and analysis of a network model of cortical response I: Drifting grating stimuli. Journal of Comparative Neuroscience, 13, 97–122.

    Google Scholar 

  • Shelley, M., McLaughlin, D., Shapley, R., & Wielaard, J. (2002). States of high conductance in a large-scale model of the visual cortex. Journal of Comparative Neuroscience, 13, 93–109.

    Article  Google Scholar 

  • Sompolinsky, H., & Shapley, R. (1997). New perspectives on the mechanisms for orientation selectivity. Current Opinion in Neurobiology, 7, 514–522.

    Article  CAS  Google Scholar 

  • Troyer, T., Krukowski, A., Priebe, N., & Miller, K. (1998). Contrast invariant orientation tuning in cat visual cortex with feedforward tuning and correlation based intracortical connectivity. Journal of Neuroscience, 18, 5908–5927.

    PubMed  CAS  Google Scholar 

  • Xing, D., Shapley, R. M., Hawken, M. J., & Ringach, D. L. (2005). Effect of stimulus size on the dynamics of orientation selectivity in macaque v1. Journal of Neurophysiology, 94, 799–812.

    Article  PubMed  Google Scholar 

  • Wielaard, D. J., Shelley, M., McLaughlin, D., & Shapley, R. (2001). How simple cells are made in a nonlinear network model of the visual cortex. Journal of Neuroscience, 21(14), 5203–5311.

    PubMed  CAS  Google Scholar 

Download references

Acknowledgements

M.K. gratefully acknowledges support from NEI Computational Training Grant T32 EY 7158, and R.S. acknowledges support from the Sloan and Swartz Foundations for the NYU Theoretical Neuroscience Program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Melinda Koelling.

Additional information

Action Editor: Jonathan D. Victor

Melinda Koelling is formerly from Center for Neural Science and Courant Institute, New York University.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Koelling, M., Shapley, R. & Shelley, M. Retinal and cortical nonlinearities combine to produce masking in V1 responses to plaids. J Comput Neurosci 25, 390–400 (2008). https://doi.org/10.1007/s10827-008-0086-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10827-008-0086-6

Keywords

Navigation