Skip to main content
Log in

Solving the brain synchrony eigenvalue problem: conservation of temporal dynamics (fMRI) over subjects doing the same task

  • Published:
Journal of Computational Neuroscience Aims and scope Submit manuscript

Abstract

Brain measures often show highly structured temporal dynamics that synchronize when observers are doing the same task. The standard method for analysis of brain imaging signals (e.g. fMRI) uses the GLM for each voxel indexed against a specified experimental design but does not explicitly involve temporal dynamics. Consequently, the design variables that determine the functional brain areas are those correlated with the design variation rather than the common or conserved brain areas across subjects with the same temporal dynamics given the same stimulus conditions. This raises an important theoretical question: Are temporal dynamics conserved across individuals experiencing the same stimulus task? This general question can be framed in a dynamical systems context and further be posed as an eigenvalue problem about the conservation of synchrony across all brains simultaneously. We show that solving the problem results in a non-arbitrary measure of temporal dynamics across brains that scales over any number of subjects, stabilizes with increasing sample size, and varies systematically across tasks and stimulus conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Notes

  1. Note that if one averages Pair-estimates before thresholding, the synchrony estimate is limited by the N = 2 sample size, any weak or non-significant correlation values can not be re-estimated up or down by post averaging N = 2 cases. Fundamentally, the power of the sample must derive from the size of the synchrony estimate that is dependent on both the size of the time series and the number of brains.

References

  • Bartels, A., & Zeki, S. (2005). The chronoarchitecture of the cerebral cortex. Philosophical Transactions of the Royal Society B, 360, 733–750. doi:10.1098/rstb.2005.1627.

    Article  Google Scholar 

  • Beckmann, C. F., & Smith, S. M. (2005). Tensorial extensions of independent component analysis for multisubject FMRI analysis. NeuroImage, 25, 294–311.

    Article  PubMed  CAS  Google Scholar 

  • Bullmore, E. T., Long, C., Suckling, J., et al. (2001). Colored noise and computational inference in neurophysiological (fMRI) time series analysis: resampling methods in time and wavelet domains. Human Brain Mapping, 12, 61–78.

    Article  PubMed  CAS  Google Scholar 

  • Buzsaki, G. (2006). Rhythms of the brain. New York: Oxford.

    Book  Google Scholar 

  • Chen, C.-C., Tyler, C. W., & Baseler, H. A. (2003). Statistical properties of BOLD magnetic resonance activity in the human brain. NeuroImage, 20, 1096–1109.

    Article  PubMed  Google Scholar 

  • Friston, K. J., Harrison, L., & Penny, W. (2003). Dynamic causal modeling. NeuroImage, 19(4), 1273–1302.

    Article  PubMed  CAS  Google Scholar 

  • Glover, G. H. (1999). Deconvolution of impulse response in event-related BOLD fMRI. NeuroImage, 9(4), 416–429.

    Article  PubMed  CAS  Google Scholar 

  • Gusnard, D. A., & Raichle, M. E. (2001). Searching for a baseline: functional imaging and the resting human brain. Nature Reviews. Neuroscience, 2(10), 685–694. doi:10.1038/35094500.

    Article  PubMed  CAS  Google Scholar 

  • Hanson, S. J., & Bly, B. M. (2001). The distribution of BOLD susceptibility effects in the brain is non-Gaussian. Neuroreport, 12, 1971–1977.

    Article  PubMed  CAS  Google Scholar 

  • Hanson, C., & Hanson, S. J. (1996). Development of schemata during event parsing: Neisser’s perceptual cycle as a recurrent connectionist network. Journal of Cognitive Neuroscience, 8, 119–134.

    Article  Google Scholar 

  • Hanson, C., & Hirst, W. (1989). On the representation of events: A study of orientation, recall, and recognition. Journal of Experimental Psychology. General, 118(2), 136–147. doi:10.1037/0096-3445.118.2.136.

    Article  PubMed  CAS  Google Scholar 

  • Hanson, S. J., & Timberlake, W. (1983). Regulation during challenge: A general model of learned performance under environmental constraint. Psychological Review, 90(3), 261–282.

    Article  Google Scholar 

  • Hanson, S. J., Hanson, C., Halchenko, Y., Matsuka, T., & Zaimi, A. (2007). Bottom–up and top–down brain functional connectivity underlying comprehension of everyday visual action. Brain Structure and Function, 212(3–4), 231–244.

    Article  PubMed  CAS  Google Scholar 

  • Hasson, U., Nir, Y., Levy, I., Fuhrmann, G., & Malach, R. (2004). Intersubject synchronization of cortical activity during natural vision. Science, 303(5664), 1634–1640.

    Article  PubMed  CAS  Google Scholar 

  • Heider, F., & Simmel, M. (1944). An experimental study of apparent behaviour. The American Journal of Psychology, 57(2), 243–259.

    Article  Google Scholar 

  • Hejnar, M. R., Kiehl, K. A., & Calhoun, V. D. (2007). Interparticipant correlations: a model free FMRl analysis technique. Human Brain Mapping, 28(9), 860–867.

    Article  PubMed  Google Scholar 

  • Kelso, J. A. (1995). Dynamic patterns: The Self-organization of brain and behavior. Boston: MIT Press.

    Google Scholar 

  • Menon, R. S., Luknowsky, D. C., & Gati, J. S. (1998). Mental chronometry using latency-resolved functional MRI. Proceedings of the National Academy of Sciences of the United States of America, 95, 10902–10907.

    Article  PubMed  CAS  Google Scholar 

  • Pillai, K. C. S. (1965). On the distribution of the largest characteristic root of a matrix in multivariate analysis. Biometrika, 52(3/4), 405–414.

    Article  Google Scholar 

  • Shimizu, Y., Bart, M., Windischberger, C., Moser, E., & Thurner, S. (2004). Wavelet-based multifractal analysis of fMRI time series. NeuroImage, 22(3), 1195–1202.

    Article  PubMed  Google Scholar 

  • Zacks, J. M., & Tversky, B. (2001). Event structure in perception and conception. Psychological Bulletin, 127(1), 3–21.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. J. Hanson.

Additional information

Action Editor: Peter Dayan

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hanson, S.J., Gagliardi, A.D. & Hanson, C. Solving the brain synchrony eigenvalue problem: conservation of temporal dynamics (fMRI) over subjects doing the same task. J Comput Neurosci 27, 103–114 (2009). https://doi.org/10.1007/s10827-008-0129-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10827-008-0129-z

Keywords

Navigation