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Abstract
State space methods have proven indispensable in neural data analysis. However, common
methods for performing inference in state-space models with non-Gaussian observations rely on
certain approximations which are not always accurate. Here we review direct optimization
methods that avoid these approximations, but that nonetheless retain the computational efficiency
of the approximate methods. We discuss a variety of examples, applying these direct optimization
techniques to problems in spike train smoothing, stimulus decoding, parameter estimation, and
inference of synaptic properties. Along the way, we point out connections to some related standard
statistical methods, including spline smoothing and isotonic regression. Finally, we note that the
computational methods reviewed here do not in fact depend on the state-space setting at all;
instead, the key property we are exploiting involves the bandedness of certain matrices. We close
by discussing some applications of this more general point of view, including Markov chain
Monte Carlo methods for neural decoding and efficient estimation of spatially-varying firing rates.

1 Introduction; forward-backward methods for inference in state-space
models

A wide variety of neuroscientific data analysis problems may be attacked fruitfully within
the framework of hidden Markov (“state-space”) models. The basic idea is that the
underlying system may be described as a stochastic dynamical process: a (possibly
multidimensional) state variable qt evolves through time according to some Markovian
dynamics p(qt|qt−1, θ), as specified by a few model parameters θ. Now in many situations
we do not observe the state variable qt directly (this Markovian variable is “hidden”);
instead, our observations yt are a noisy, subsampled version of qt, summarized by an
observation distribution p(yt|qt).

Methods for performing optimal inference and estimation in these hidden Markov models
are very well-developed in the statistics and engineering literature [80, 24, 23]. For example,
to compute the conditional distribution p(qt|Y1:T) of the state variable qt given all the
observed data on the time interval (0, T], we need only apply two straightforward
recursions: a forward recursion that computes the conditional distribution of qt given only
the observed data up to time t,

(1)

and then a backward recursion that computes the desired distribution p(qt|Y1:T),
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(2)

Each of these recursions may be derived easily from the Markov structure of the state-space
model. In the classical settings, where the state variable q is discrete [80, 32, 35, 40, 47, 36,
27], or the dynamics p(qt|qt−1) and observations p(yt|qt) are linear and Gaussian, these
recursions may be computed exactly and efficiently: note that a full forward-backward
sweep requires computation time which scales just linearly in the data length T, and is
therefore quite tractable even for large T. In the linear-Gaussian case, this forward-backward
recursion is known as the Kalman filter-smoother [85, 24, 75, 94].

Unfortunately, the integrals in equations (1) and (2) are not analytically tractable in general;
in particular, for neural applications we are interested in cases where the observations yt are
point processes (e.g., spike trains, or behavioral event times), and in this case the recursions
must be solved approximately. One straightforward idea is to approximate the conditional
distributions appearing in (1) and (2) as Gaussian; since we can compute Gaussian integrals
analytically (as in the Kalman filter), this simple approximation provides a computationally
tractable, natural extension of the Kalman filter to non-Gaussian observations. Many
versions of this recursive Gaussian approximation idea (with varying degrees of accuracy
versus computational expediency) have been introduced in the statistics and neuroscience
literature [28, 29, 5, 49, 111, 41, 9, 96, 115, 25, 119].

These methods have proven extremely useful in a wide variety of neural applications.
Recursive estimation methods are especially critical in online applications, where estimates
must be updated in real time as new information is observed. For example, state-space
techniques achieve state-of-the-art performance decoding multineuronal spike train data
from motor cortex [112, 102, 113] and parietal cortex [119, 47], and these methods therefore
hold great promise for the design of motor neuroprosthetic devices [22]. In this setting, the
hidden variable qt corresponds to the desired position of the subject’s hand, or a cursor on a
computer screen, at time t; yt is the vector of observed spikes at time t, binned at some
predetermined temporal resolution; the conditional probability p(yt|qt) is given by an
“encoding” model that describes how the position information qt is represented in the spike
trains yt; and p(qt|Y1:t+s) is the desired fixed-lag decoding distribution, summarizing our
knowledge about the current position qt given all of the observed spike train data Y from
time 1 up to t + s, where s is a short allowed time lag (on the order of 100 ms or so in motor
prosthetic applications). In this setting, the conditional expectation E(qt|Y1:t+s) is typically
used as the optimal (minimum mean-square) estimator for qt, while the posterior covariance
Cov(qt|Y1:t+s) quantifies our uncertainty about the position qt, given the observed data; both
of these quantities are computed most efficiently using the forward-backward recursions (1–
2). These forward-backward methods can also easily incorporate target or endpoint goal
information in these online decoding tasks [100, 118, 53, 113].

State-space models have also been applied successfully to track nonstationary neuron tuning
properties [11, 30, 25, 17, 81]. In this case, the hidden state variable qt represents a
parameter vector which determines the neuron’s stimulus-response function. [54] discusses
an application of these recursive methods to perform optimal online experimental design —
i.e., to choose the stimulus at time t which will give us as much information as possible
about the observed neuron’s response properties, given all the observed stimulus-response
data from time 1 to t.

A number of offline applications have appeared as well: state-space methods have been
applied to perform optimal decoding of rat position given multiple hippocampal spike trains
[9, 120, 25], and to model behavioral learning experiments [96, 97, 98, 101]; in the latter
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case, qt represents the subject’s certainty about the behavioral task, which is not directly
observable and which changes systematically over the course of the experiment. In addition,
we should note that the forward-backward idea is of fundamental importance in the setting
of sequential Monte Carlo (“particle-filtering”) methods [23, 8, 46, 33, 93, 26, 106, 38],
though we will not focus on these applications here.

However, the forward-backward approach is not always directly applicable. For example, in
many cases the dynamics p(qt|qt−1) or observation density p(yt|qt) may be non-smooth (e.g.,
the state variable q may be constrained to be nonnegative, leading to a discontinuity in log
p(qt|qt−1) at qt = 0). In these cases the forward distribution p(qt|Y1:t) may be highly non-
Gaussian, and the basic forward-backward Gaussian approximation methods described
above may break down1. In this paper, we will review more general direct optimization
methods for performing inference in state-space models. We discuss this approach in section
2 below. This direct optimization approach also leads to more efficient methods for
estimating the model parameters θ (section 3). Finally, the state-space model turns out to be
a special case of a richer, more general framework involving banded matrix computations,
as we discuss at more length in section 4.

2 A direct optimization approach for computing the maximum a posteriori
path in state-space models
2.1 A direct optimization interpretation of the classical Kalman filter

We begin by taking another look at the classical Kalman filter-smoother [24, 112, 94]. The
primary goal of the smoother is to compute the conditional expectation E(Q|Y) of the hidden
state path Q given the observations Y. (Throughout this paper, we will use Q and Y to
denote the full collection of the hidden state variables {qt} and observations {yt},
respectively.) Due to the linear-Gaussian structure of the Kalman model, (Q, Y) forms a
jointly Gaussian random vector, and therefore p(Q|Y) is itself Gaussian. Since the mean and
mode of a Gaussian distribution coincide, this implies that E(Q|Y) is equal to the maximum
a posteriori (MAP) solution, the maximizer of the posterior p(Q|Y). If we write out the
linear-Gaussian Kalman model more explicitly,

(where (0, C) denotes the Gaussian density with mean 0 and covariance C), we can gain
some insight into the the analytical form of this maximizer:

(3)

1It is worth noting that other more sophisticated methods such as expectation propagation [58, 115, 119, 117, 51] may be better-
equipped to handle these strongly non-Gaussian observation densities p(yt|qt) (and are, in turn, closely related to the optimization-
based methods that are the focus of this paper); however, due to space constraints, we will not discuss these methods at length here.
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The right-hand-side here is a simple quadratic function of Q (as expected, since p(Q|Y) is
Gaussian, i.e., log p(Q|Y) is quadratic), and therefore E(Q|Y) may be computed by solving
an unconstrained quadratic program in Q; we thus obtain

where we have abbreviated the Hessian and gradient of log p(Q|Y):

The next key point to note is that the Hessian matrix H is block-tridiagonal, since log p(Q|Y)
is a sum of simple one-point potentials (log p(qt) and log p(yt|qt)) and nearest-neighbor two-
point potentials (log p(qt, qt−1)). More explicitly, we may write

(4)

where

(5)

and

(6)

for 1 < i < N. These quantities may be computed as simple functions of the Kalmanm del

parameters; for example, .

This block-tridiagonal form of H implies that the linear equation Q̂ = H−1∇ may be solved in
O(T) time (e.g., by block-Gaussian elimination [78]; note that we never need to compute
H−1 explicitly). Thus this matrix formulation of the Kalman smoother is equivalent both
mathematically and in terms of computational complexity to the forward-backward method.
In fact, the matrix formulation is often easier to implement; for example, if H is sparse and
banded, the standard Matlab backslash command Q̂ = H\∇ calls the O(T) algorithm
automatically — Kalman smoothing in just one line of code.

We should also note that a second key application of the Kalman filter is to compute the
posterior state covariance Cov(qt|Y) and also the nearest-neighbor second moments
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; the posterior covariance is required for computing confidence intervals around

the smoothed estimates E(qt|Y), while the second moments  are necessary to
compute the sufficient statistics in the expectation-maximization (EM) algorithm for
estimating the Kalman model parameters (see, e.g., [94] for details). These quantities may
easily be computed in O(T) time in the matrix formulation. For example, since the matrix H
represents the inverse posterior covariance matrix of our Gaussian vector Q given Y, Cov(qt|
Y) is given by the (t, t)-th block of H−1, and it is well-known that the diagonal and off-
diagonal blocks of the inverse of a block-tridiagonal matrix can be computed in O(T) time;
again, the full inverse H−1 (which requires O(T2) time in the block-tridiagonal case) is not
required [86, 87, 4].

2.2 Extending the direct optimization method to non-Gaussian models
From here it is straightforward to extend this approach to directly compute Q̂MAP in non-
Gaussian models of interest in neuroscience. In this paper we will focus on the case that log
p(qt+1|qt) is a concave function of Q; in addition, we will assume that the initial density log
p(q0) is concave and also that the observation density log p(yt|qt) is concave in qt. Then it is
easy to see that the log-posterior

is concave in Q, and therefore computing the MAP path Q̂ is a concave problem. Further, if
log p(q0), log p(yt|qt), and log p(qt+1|qt) are all smooth functions of Q, then we may apply
standard approaches such as Newton’s algorithm to solve this concave optimization.

To apply Newton’s method here, we simply iteratively solve the linear equation2

where we have again abbreviated the Hessian and gradient of the objective function log p(Q|
Y):

Clearly, the only difference between the general non-Gaussian case here and the special
Kalman case described above is that the Hessian H and gradient ∇ must be recomputed at
each iteration Q̂(i); in the Kalman case, again, log p(Q|Y) is a quadratic function, and
therefore the Hessian H is constant, and one iteration of Newton’s method suffices to
compute the optimizer Q̂.

In practice, this Newton algorithm converges within a few iterations for all of the
applications discussed here. Thus we may compute the MAP path exactly using this direct
method, in time comparable to that required to obtain the approximate MAP path computed

2In practice, the simple Newton iteration does not always increase the objective log p(Q|Y); we have found the standard remedy for
this instability (perform a simple backtracking linesearch along the Newton direction Q̂(i) − δ(i)H−1 ∇ to determine a suitable stepsize
δ(i) ≤ 1) to be quite effective here.
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by the recursive approximate smoothing algorithm discussed in section 1. This close
connection between the Kalman filter and the Newton-based computation of the MAP path
in more general state-space models is well-known in the statistics and applied math literature
(though apparently less so in the neuroscience literature). See [28, 29, 5, 18, 42] for further
discussion from a statistical point of view, and [51] for applications to the integrate-and-fire
model for spiking data. In addition, [117] previously applied a related direct optimization
approach in the context of neural decoding (though note that the conjugate gradients
approach utilized there requires O(T3) time if the banded structure of the Hessian is not
exploited).

2.3 Example: inferring common input effects in multineuronal spike train recordings
Recent developments in multi-electrode recording technology [63, 55] and fluorescence
microscopy [14, 67, 64] enable the simultaneous measurement of the spiking activity of
many neurons. Analysis of such multineuronal data is one of the key challenges in
computational neuroscience today [10], and a variety of models for these data have been
introduced [12, 103, 56, 39, 90, 72, 102, 65, 89, 92, 77, 91]. Most of these models include
stimulus-dependence terms and “direct coupling” terms representing the influence that the
activity of an observed cell might have on the other recorded neurons. These coupling terms
are often interpreted in terms of “functional connectivity” between the observed neurons; the
major question now is how accurately this inferred functional connectivity actually reflects
the true underlying anatomical connectivity in the circuit.

Fewer models, however, have attempted to include the effects of the population of neurons
which are not directly observed during the experiment [65, 66, 52]. Since we can directly
record from only a small fraction of neurons in any physiological preparation, such
unmeasured neurons might have a large collective impact on the dynamics and coding
properties of the observed neural population, and may bias the inferred functional
connectivity away from the true anatomical connectivity, complicating the interpretation of
these multineuronal analyses. For example, while [77] found that neighboring parasol retinal
ganglion cells (RGCs) in the macaque are functionally coupled — indeed, incorporating this
functional connectivity in an optimal Bayesian decoder significantly amplifies the
information we can extract about the visual stimulus from the observed spiking activity of
large ensembles of RGCs — [48] recently demonstrated, via simultaneous pairwise
intracellular recordings, that RGCs receive a significant amount of strongly correlated
common input, with weak direct anatomical coupling between RGCs. Thus the strong
functional connectivity observed in this circuit is in fact largely driven by common input,
not direct anatomical connectivity.

Therefore it is natural to ask if it is possible to correctly infer the degree of common input
versus direct coupling in partially-observed neuronal circuits, given only multineuronal
spike train data (i.e., we do not want to rely on multiple simultaneous intracellular
recordings, which are orders of magnitude more difficult to obtain than extracellular
recordings). To this end, [52] introduced a state-space model in which the firing rates
depend not only on the stimulus history and the spiking history of the observed neurons but
also on common input effects (Fig. 1). In this model, the conditional firing intensity, λi(t), of
the i-th observed neuron is:

(7)

where x is the spatiotemporal visual stimulus, yi is cell i’s own spike-train history, μi is the
cell’s baseline log-firing rate, yj are the spike-train histories of other cells at time t, ki is the
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cell’s spatiotemporal stimulus filter, hi is the post-spike temporal filter accounting for past
spike dependencies within cell i, and lij are direct coupling temporal filters, which capture
the dependence of cell i’s activity on the recent spiking of other cells j. The term qi(t), the
hidden common input at time t, is modeled as a Gauss-Markov autoregressive process, with
some correlation between different cells i which we must infer from the data. In addition, we
enforce a nonzero delay in the direct coupling terms, so that the effects of a spike in one
neuron on other neurons are temporally strictly causal.

In statistical language, this common-input model is a multivariate version of a Cox process,
also known as a doubly-stochastic point process [15, 99, 59]; the state-space models applied
in [96, 102, 17] are mathematically very similar. See also [116] for discussion of a related
model in the context of motor planning and intention.

As an example of the direct optimization methods developed in the preceding subsection, we
reanalyzed the data from [77] with this common input model [104]. We estimated the model
parameters θ = (ki, hi, lij, μi) from the spiking data by maximum marginal likelihood, as
described in [51] (see also section 3 below, for a brief summary); the correlation time of Q
was set to ~ 5 ms, to be consistent with the results of [48]. We found that this common-input
model explained the observed cross-correlations quite well (data not shown), and the
inferred direct-coupling weights were set to be relatively small (Fig. 2); in fact, the quality
of the fits in our preliminary experiments is indistinguishable from those described in [77],
where a model with strong direct-coupling terms and no common-input effects was used.

Given the estimated model parameters θ, we used the direct optimization method to estimate
the sub-threshold common input effects q(t), on a single-trial basis (Fig. 2). The observation
likelihood p(yt|qt) here was given by the standard point-process likelihood [99]:

(8)

where yit denotes the number of spikes observed in time bin t from neuron i; dt denotes the
temporal binwidth. We see in Fig. 2 that the inferred common input effect is strong relative
to the direct coupling effects, in agreement with the intracellular recordings described in
[48]. We are currently working to quantify these common input effects qi(t) inferred from
the full observed RGC population, rather than just the pairwise analysis shown here, in order
to investigate the relevance of this strong common input effect on the coding and correlation
properties of the full network of parasol cells. See also [113] for applications of similar
common-input state-space models to improve decoding of population neural activity in
motor cortex.

2.4 Constrained optimization problems may be handled easily via the log-barrier method
So far we have assumed that the MAP path may be computed via an unconstrained smooth
optimization. In many examples of interest we have to deal with constrained optimization
problems instead. In particular, nonnegativity constraints arise frequently on physical
grounds; as emphasized in the introduction, forward-backward methods based on Gaussian
approximations for the forward distribution p(qt|Y0:t) typically do not accurately incorporate
these constraints. To handle these constrained problems while exploiting the fast tridiagonal
techniques discussed above, we can employ standard interior-point (aka “barrier”) methods
[7, 51]. The idea is to replace the constrained concave problem
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with a sequence of unconstrained concave problems

clearly, Q̂ε satisfies the nonnegativity constraint, since log u → −∞ as u → 0. (We have
specialized to the nonnegative case for concreteness, but the idea may be generalized easily
to any convex constraint set; see [7] for details.) Furthermore, it is easy to show that if
Q̂MAP is unique, then Q̂ε converges to Q̂MAP as ε → 0.

Now the key point is that the Hessian of the objective function log p(Q|Y) + ε Σt log qt
retains the block-tridiagonal properties of the original objective log p(Q|Y), since the barrier
term contributes a simple diagonal term to H. Therefore we may use the O(T) Newton
iteration to obtain Q̂ε, for any ε, and then sequentially decrease ε (in an outer loop) to obtain
Q̂. Note that the approximation arg maxQ p(Q|Y) ≈ E(Q|Y) will typically not hold in this
constrained case, since the mean of a truncated Gaussian distribution will typically not
coincide with the mode (unless the mode is sufficiently far from the nonnegativity
constraint).

We give a few applications of this barrier approach below. See also [51] for a detailed
discussion of an application to the integrate-and-fire model, and [105] for applications to the
problem of efficiently deconvolving slow, noisy calcium fluorescence traces to obtain
nonnegative estimates of spiking times. In addition, see [16] for an application of the log-
barrier method to infer firing rates given point process observations in a closely-related
Gaussian process model [82]; these authors considered a slightly more general class of
covariance functions on the latent stochastic process qt, but the computation time of the
resulting method scales superlinearly3 with T.

2.4.1 Example: point process smoothing under Lipschitz or monotonicity
constraints on the intensity function—A standard problem in neural data analysis is
to smooth point process observations; that is, to estimate the underlying firing rate λ(t)
given single or multiple observations of a spike train [44]. One simple approach to this
problem is to model the firing rate as λ(t) = f(qt), where f(.) is a convex, log-concave,
monotonically increasing nonlinearity [69] and qt is an unobserved function of time we
would like to estimate from data. Of course, if qt is an arbitrary function, we need to contend
with overfitting effects; the “maximum likelihood” Q̂ here would simply set f(qt) to zero
when no spikes are observed (by making −qt very large) and f(qt) to be very large when
spikes are observed (by making qt very large).

A simple way to counteract this overfitting effect is to include a penalizing prior; for
example, if we model qt as a linear-Gaussian autoregressive process

3More precisely, [16] introduce a clever iterative conjugate-gradient (CG) method to compute the MAP path in their model; this
method requires O(T log T) time per CG step, with the number of CG steps increasing as a function of the number of observed spikes.
(Note, in comparison, that the computation times of the state-space methods reviewed in the current work are insensitive to the
number of observed spikes.)
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then computing Q̂MAP leads to a tridiagonal optimization, as discussed above. (The resulting
model, again, is mathematically equivalent to those applied in [96, 102, 52, 17, 104].) Here
1/σ2 acts as a regularization parameter: if σ2 is small, the inferred Q̂MAP will be very smooth
(since large fluctuations are penalized by the Gaussian autoregressive prior), whereas if σ2 is
large, then the prior term will be weak and Q ̂MAP will fit the observed data more closely.

A different method for regularizing Q was introduced by [13]. The idea is to impose hard
Lipschitz constraints on Q, instead of the soft quadratic penalties imposed in the Gaussian
state-space setting: we assume

for all (s, t), for some finite constant K. (If qt is a differentiable function of t, this is
equivalent to the assumption that the maximum absolute value of the derivative of Q is
bounded by K.) The space of all such Lipschitz Q is convex, and so optimizing the concave
loglikelihood function under this convex constraint remains tractable. [13] presented a
powerful method for solving this optimization problem (their solution involved a dual
formulation of the problem and an application of specialized fast min-cut optimization
methods). In this one-dimensional temporal smoothing case, we may solve this problem in a
somewhat simpler way, without any loss of efficiency, using the tridiagonal log-barrier
methods described above. We just need to rewrite the constrained problem

as the unconstrained problem

with dt some arbitrarily small constant and the hard barrier function b(.) defined as

The resulting concave objective function is non-smooth, but may be optimized stably, again,
via the log-barrier method, with efficient tridiagonal Newton updates. (In this case, the
Hessian of the first term log p(Q|Y) with respect to Q is diagonal and the Hessian of the
penalty term involving the barrier function is tridiagonal, since b(.) contributes a two-point
potential here.) We recover the standard state-space approach if we replace the hard-
threshold penalty function b(.) with a quadratic function; conversely, we may obtain sharper
estimates of sudden changes in qt if we use a concave penalty b(.) which grows less steeply
than a quadratic function (so as to not penalize large changes in qt as strongly), as discussed
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by [31]. Finally, it is interesting to note that we may also easily enforce monotonicity
constraints on qt, by choosing the penalty function b(u) to apply a barrier at u = 0; this is a
form of isotonic regression [95], and is useful in cases where we believe that a cell’s firing
rate should be monotonically increasing or decreasing throughout the course of a behavioral
trial, or as a function of the magnitude of an applied stimulus.

2.4.2 Example: inferring presynaptic inputs given postsynaptic voltage
recordings—To further illustrate the flexibility of this method, let’s look at a
multidimensional example. Consider the problem of identifying the synaptic inputs a neuron
is receiving: given voltage recordings at a postsynaptic site, is it possible to recover the time
course of the presynaptic conductance inputs? This question has received a great deal of
experimental and analytical attention [6, 74, 110, 79, 61, 37, 108, 114, 71], due to the
importance of understanding the dynamic balance between excitation and inhibition
underlying sensory information processing.

We may begin by writing down a simple state-space model for the evolution of the post-
synaptic voltage and conductance:

(9)

Here  denotes the excitatory presynaptic conductance at time t, and  the inhibitory
conductance; VL, VE, and VI denote the leak, excitatory, and inhibitory reversal potentials,
respectively. Finally, εt denotes an unobserved i.i.d. current noise with a log-concave

density, and  and  denote the presynaptic excitatory and inhibitory inputs (which must
be nonnegative on physical grounds); we assume these inputs also have a log-concave
density.

Assume Vt is observed noiselessly for simplicity. Then let our observed variable yt = Vt+dt −

Vt and our state variable . Now, since  and  are linear functions of  and 

(for example,  is given by the convolution , the log-posterior may be
written as

in the case of white Gaussian current noise εt with variance σ2dt, for example4, we have

4The approach here can be easily generalized to the case that the input noise has a nonzero correlation timescale. For example, if the
noise can be modeled as an autoregressive process of order p instead of the white noise process described here, then we simply include
the unobserved p-dimensional Markov noise process in our state variable (i.e., our Markov state variable qt will now have dimension p
+ 2 instead of 2), and then apply the O(T) log-barrier method to this augmented state space.
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this is a quadratic function of Q.

Now applying the O(T) log-barrier method is straightforward; the Hessian of the log-
posterior log p(Q|Y) in this case is block-tridiagonal, with blocks of size two (since our state
variable qt is two-dimensional). The observation term log p(Y|Q) contributes a block-
diagonal term to the Hessian; in particular, each observation yt contributes a rank-1 matrix
of size 2×2 to the t-th diagonal block of H. (The low-rank nature of this observation matrix
reflects the fact that we are attempting to extract two variables — the excitatory and
inhibitory conductances at each time step — given just a single voltage observation per time
step.)

Some simulated results are shown in Fig. 3. We generated Poisson spike trains from both
inhibitory and excitatory presynaptic neurons, then formed the postsynaptic current signal It
by contaminating the summed synaptic and leak currents with white Gaussian noise as in
equation (9), and then used the O(T) log-barrier method to simultaneously infer the
presynaptic conductances from the observed current It. The current was recorded at 1 KHz
(1 ms bins), and we reconstructed the presynaptic activity at the same time resolution. We
see that the estimated Q̂ here does a good job extracting both excitatory and inhibitory
synaptic activity given a single trace of observed somatic current; there is no need to average
over multiple trials. It is worth emphasizing that we are inferring two presynaptic signals
here given just one observed postsynaptic current signal, with limited “overfitting” artifacts;
this is made possible by the sparse, nonnegatively constrained nature of the inferred
presynaptic signals. For simplicity, we assumed that the membrane leak, noise variance, and
synaptic time constants τE and τI were known here; we used exponential (sparsening) priors

 and , but the results are relatively robust to the details of these priors (data not
shown). See [37, 38, 71] for further details and extensions, including methods for inferring
the membrane parameters directly from the observed data.

3 Parameter estimation
In the previous sections we have discussed the inference of the hidden state path Q in the
case that the system parameters are known. However, in most applications, we need to
estimate the system parameters as well. As discussed in [45], standard modern methods for
parameter estimation are based on the likelihood p(Y|θ) of the observed data Y given the
parameters θ. In the state-space setting, we need to compute the marginal likelihood by
integrating out the hidden state path Q5:

(10)

This marginal likelihood is a unimodal function of the parameters θ in many important cases
[70], making maximum likelihood estimation feasible in principle. However, this high-
dimensional integral can not be computed exactly in general, and so many approximate

5In some cases, Q may be observed directly on some subset of training data. If this is the case (i.e., direct observations of qt are
available together with the observed data Y), then the estimation problem simplifies drastically, since we can often fit the models p(yt|
qt, θ) and p(qt|qt−1, θ) directly without making use of the more involved latent-variable methods discussed in this section.
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techniques have been developed, including Monte Carlo methods [84, 18, 42, 1] and
expectation propagation [58, 115, 119, 51].

In the neural applications reviewed in section 1, the most common method for maximizing
the loglikelihood is the approximate Expectation-Maximization (EM) algorithm introduced
in [96], in which the required expectations are approximated using the recursive Gaussian
forward-backward method. This EM algorithm can be readily modified to optimize an
approximate log-posterior p(θ|Y), if a useful prior distribution p(θ) is available [52]. While
the EM algorithm does not require us to compute the likelihood p(Y|θ) explicitly, we may
read this likelihood off of the final forward density approximation p(qT, y1:T) by simply
marginalizing out the final state variable qT. All of these computations are recursive, and
may therefore be computed in O(T) time.

The direct global optimization approach discussed in the preceding section suggests a
slightly different strategy. Instead of making T local Gaussian approximations recursively
— once for each forward density p(qt, y1:t) — we make a single global Gaussian
approximation for the full joint posterior:

(11)

where the Hessian Hθ is defined as

note the implicit dependence on θ through

Equation (11) corresponds to nothing more than a second-order Taylor expansion of log
p(Q|Y, θ) about the optimizer Q̂θ.

Plugging this Gaussian approximation into equation (10), we obtain the standard “Laplace”
approximation [43, 18, 117] for the marginal likelihood,

(12)

Clearly the first two terms here can be computed in O(T), since we have already
demonstrated that we can obtain Q ̂θ in O(T) time, and evaluating log p(Y|Q, θ) + log p(Q|θ)
at Q = Q̂θ is relatively easy. We may also compute log |− Hθ| stably and in O(T) time, via
the Cholesky decomposition for banded matrices [18, 51]. In fact, we can go further: [51]
show how to compute the gradient of equation (12) with respect to θ in O(T) time, which
makes direct optimization of this approximate likelihood feasible via conjugate gradient
methods6.

6It is worth mentioning the work of [16] again here; these authors introduced conjugate gradient methods for optimizing the marginal
likelihood in their model. However, their methods require computation time scaling superlinearly with the number of observed spikes
(and therefore superlinearly with T, assuming that the number of observed spikes is roughly proportional to T).
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It is natural to compare this direct optimization approach to the EM method; again, see [51]
for details on the connections between these two approaches. It is well-known that EM can
converge slowly, especially in cases in which the so-called “ratio of missing information” is
large; see [19, 57, 88, 68] for details. In practice, we have found that direct gradient ascent
of expression (12) is significantly more efficient than the EM approach in the models
discussed in this paper; for example, we used the direct approach to perform parameter
estimation in the retinal example discussed above in section 2.3. One important advantage of
the direct ascent approach is that in some special cases, the optimization of (12) can be
performed in a single step (as opposed to multiple EM steps). We illustrate this idea with a
simple example below.

3.1 Example: detecting the location of a synapse given noisy, intermittent voltage
observations

Imagine we making noisy observations from a dendritic tree (for example, via voltage-
sensitive imaging methods [21]) which is receiving synaptic inputs from another neuron. We
do not know the strength or location of these inputs, but we do have complete access to the
spike times of the presynaptic neuron (for example, we may be stimulating the presynaptic
neuron electrically or via photo-uncaging of glutamate near the presynaptic cell [3, 64]).
How can we determine if there is a synapse between the two cells, and if so, how strong the
synapse is and where it is located on the dendritic tree?

To model this experiment, we assume that the neuron is in a stable, subthreshold regime,
i.e., the spatiotemporal voltage dynamics are adequately approximated by the linear cable
equation

(13)

Here the dynamics matrix A includes both leak terms and intercompartmental coupling
effects: for example, in the special case of a linear dendrite segment wih N compartments,
with constant leak conductance g and intercompartmental conductance a, A is given by the
tridiagonal matrix

with D2 denoting the second-difference operator. For simplicity, we assume that Ut is a
known signal:

h(t) is a known synaptic post-synaptic (PSC) current shape (e.g., an α-function [50]), *
denotes convolution, and Σi δ(t − ti) denotes the presynaptic spike train. The weight vector θ
is the unknown parameter we want to infer: θi is the synaptic weight at the i-th dendritic
compartment. Thus, to summarize, we have assumed that each synapse fires
deterministically, with a known PSC shape (only the magnitude is unknown) at a known
latency, with no synaptic depression or facilitation. (All of these assumptions may be
relaxed significantly [73].)
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Now we would like to estimate the synaptic weight vector θ, given U and noisy observations
of the spatiotemporal voltage V. V is not observed directly here, and therefore plays the role
of our hidden variable Q. For concreteness, we further assume that the observations Y are
approximately linear and Gaussian:

In this case the voltage V and observed data Y are jointly Gaussian given U and the
parameter θ, and furthermore V depends on θ linearly, so estimating θ can be seen as a
rather standard linear-Gaussian estimation problem. There are many ways to solve this
problem: we could, for example, use EM to alternatively estimate V given θ and Y, then
estimate θ given our estimated V, alternating these maximizations until convergence.
However, a more efficient approach (and one which generalizes nicely to the nonlinear case
[51]) is to optimize equation (12) directly. Note that this Laplace approximation is in fact
exact in this case, since the posterior p(Y|θ) is Gaussian. Furthermore, the log-determinant
term log | − Hθ| is constant in θ (since the Hessian is constant in this Gaussian model), and
so we can drop this term from the optimization. Thus we are left with

(14)

i.e., optimization of the marginal likelihood p(Y|θ) reduces here to joint optimization of the
function log p(Y|V)+log p(V|θ) in (V, θ). Since this function is jointly quadratic and
negative semidefinite in (V, θ), we need only apply a single step of Newton’s method. Now
if we examine the Hessian H of this objective function, we see that it is of block form:

here the HVV block is itself block-tridiagonal, with T blocks of size n (where n is the
number of compartments in our observed dendrite) and the Hθθ block is of size n × n. If we
apply the Schur complement to this block H and then exploit the fast methods for solving
linear equations involving HVV, it is easy to see that solving for θ̂ can be done in a single
O(T) step; see [51] for details.

Figure 4 shows a simulated example of this inferred θ in which U⃗ (t) is chosen to be two-
dimensional (corresponding to inputs from two presynaptic cells, one excitatory and one
inhibitory); given only half a second of intermittently-sampled, noisy data, the posterior p(θ|
Y) is quite accurately concentrated about the true underlying value of θ.

The form of the joint optimization in equation (14) sheds a good deal of light on the
relatively slow behavior of the EM algorithm here. The E step here involves inferring V
given Y and θ; in this Gaussian model, the mean and mode of the posterior p(V|θ, Y) are
equal, and so we see that
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Similarly, in the M-step, we compute arg maxθ log p(V̂|θ). So we see that EM here is simply
coordinate ascent on the objective function in equation (14): the E step ascends in the V
direction, and the M step ascends in the θ direction. (In fact, it is well-known that EM may
be written as a coordinate ascent algorithm much more generally; see [62] for details.)
Coordinate ascent requires more steps than Newton’s method in general, due to the “zigzag”
nature of the solution path in the coordinate ascent algorithm [78], and this is exactly our
experience in practice7.

As emphasized above, the linear-Gaussian case we have treated here is special, because the
Hessian H is constant, and therefore the log |H| term in equation (12) can be neglected.
However, in some cases we can apply a similar method even when the observations are non-
Gaussian; see [51, 104] for examples and further details.

4 Generalizing the state-space method: exploiting banded and sparse
Hessian matrices

Above we have discussed a variety of applications of the direct O(T) optimization idea. It is
natural to ask whether we can generalize this method usefully beyond the state space setting.
Let’s look more closely at the assumptions we have been exploiting so far. We have
restricted our attention to problems where the log-posterior p(Q|Y) is log-concave, with a
Hessian H such that the solution of the linear equation ∇ = HQ can be computed much more
quickly than the standard O(dim(Q)3) required by a generic linear equation. In this section
we discuss a couple of examples that do not fit gracefully in the state-space framework, but
where nonetheless we can solve ∇ = HQ quickly, and therefore very efficient inference
methods are available.

4.1 Example: banded matrices and fast optimal stimulus decoding
The neural decoding problem is a fundamental question in computational neuroscience [83]:
given the observed spike trains of a population of cells whose responses are related to the
state of some behaviorally-relevant signal x(t), how can we estimate, or “decode,” x(t)?
Solving this problem experimentally is of basic importance both for our understanding of
neural coding [77] and for the design of neural prosthetic devices [22]. Accordingly, a rather
large literature now exists on developing and applying decoding methods to spike train data,
both in single cell- and population recordings; see [76, 1] for a recent review.

We focus our attention here on a specific example. Let’s assume that the stimulus x(t) is
one-dimensional, with a jointly log-concave prior p(X), and that the Hessian of this log-prior
is banded at every point X. Let’s also assume that the observed neural population whose
responses we are attempting to decode may be well-modeled by the generalized linear model
framework applied in [77]:

7An additional technical advantage of the direct optimization approach is worth noting here: to compute the E step via the Kalman
filter, we need to specify some initial condition for p(V (0)). When we have no good information about the initial V (0), we can use
“diffuse” initial conditions, and set the initial covariance Cov(V (0)) to be large (even infinite) in some or all directions in the n-
dimensional V (0)-space. A crude way of handling this is to simply set the initial covariance in these directions to be very large
(instead of infinite), though this can lead to numerical instability. A more rigorous approach is to take limits of the update equations as
the uncertainty becomes large, and keep separate track of the infinite and non-infinite terms appropriately; see [24] for details. At any
rate, these technical difficulties are avoided in the direct optimization approach, which can handle infinite prior covariance easily (this
just corresponds to a zero term in the Hessian of the log-posterior).
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Here * denotes the temporal convolution of the filter ki against the stimulus x(t). This model
is equivalent to equation (7), but we have dropped the common-input term q(t) for simplicity
here.

Now it is easy to see that the loglikelihood log p(Y|X) is concave, with a banded Hessian,
with bandwidth equal to the length of the longest stimulus filter ki [76]. Therefore,
Newton’s method applied to the log-posterior log p(X|Y) requires just O(T) time, and
optimal Bayesian decoding here runs in time comparable to standard linear decoding [109].
Thus we see that this stimulus decoding problem is a rather straightforward extension of the
methods we have discussed above: instead of dealing with block-tridiagonal Hessians, we
are now simply exploiting the slightly more general case of a banded Hessian.

The ability to quickly decode the input stimulus x(t) leads to some interesting applications.
For example, we can perform perturbation analyses with the decoder: by jittering the
observed spike times (or adding or removing spikes) and quantifying how sensitive the
decoded stimulus is to these perturbations, we may gain insight into the importance of
precise spike timing and correlations in this multineuronal spike train data [2]. Such
analyses would be formidably slow with a less computationally-efficient decoder.

See [1] for further applications to fully-Bayesian Markov chain Monte Carlo (MCMC)
decoding methods; bandedness can be exploited quite fruitfully for the design of fast
preconditioned Langevin-type algorithms [84]. It is also worth noting that very similar
banded matrix computations arise naturally in spline models [107, 34], which are at the heart
of the powerful BARS method for neural smoothing [20, 44]; see [1] for a discussion of how
to exploit bandedness in the BARS context.

4.2 Smoothness regularization and fast estimation of spatial tuning fields
The applications discussed above all involve state-space models which evolve through time.
However, these ideas are also quite useful in the context of spatial models [60]. Imagine we
would like to estimate some two-dimensional rate function from point process observations.
[81] discuss a number of distinct cases of this problem, including the estimation of place
fields in hippocampus [9] or of tuning functions in motor cortex [72]; for concreteness, we
focus here on the setting considered in [17]. These authors analyzed repeated observations
of a spike train whose mean rate function changed gradually from trial to trial; the goal of
the analysis here is to infer the firing rate λ(t, i), where t denotes the time within a trial and i
denotes the trial number.

One convenient approach to this problem is to model λ(t, i) as

and then to discretize (t, i) into two-dimensional bins in which q(t, i) may be estimated by
maximum likelihood in each bin. However, as emphasized in [44, 96, 45, 17], this crude
histogram approach can lead to highly variable, unreliable estimates of the firing rate λ(t, i)
if the histogram bins are taken to be too small; conversely, if the bins are too large, then we
may overcoarsen our estimates and lose valuable information about rapid changes in the
firing rate as a function of time t or trial number i.

A better approach is to use a fine binwidth to estimate λ, but to regularize our estimate so
that our inferred λ̂ is not overly noisy. One simple approach is to compute a penalized
maximum likelihood estimate
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(15)

the observation likelihood p(Y|Q) is given by the standard point-process log likelihood

where dt denotes the temporal binwidth; yit here denotes the number of spikes observed in
time bin t during trial i (c.f. equation (8)). The constants c1 and c2 serve as regularizer
weights: if c1 is large, then we penalize strongly for fluctuations in q(t, i) along the t-axis,
whereas conversely c2 sets the smoothness along the i-axis.

This quadratic penalty has a natural Bayesian interpretation: Q̂ is the MAP estimate under a
“smoothing” Gaussian prior of the form

(16)

(Note that this specific Gaussian prior is improper, since the quadratic form in equation (16)
does not have full rank — the sums in log p(Q) evaluate to zero for any constant Q — and
the prior is therefore not integrable. This can be corrected by adding an additional penalty
term, but in practice, given enough data, the posterior is always integrable and therefore this
improper prior does not pose any serious difficulty.)

Now the key problem is to compute Q̂ efficiently. We proceed as before and simply apply
Newton’s method to optimize equation (15). If we represent the unknown Q as a long vector
formed by appending the columns of the matrix q(t, i), then the Hessian with respect to Q
still has a block-tridiagonal form, but now the size of the blocks scales with the number of
trials observed, and so direct Gaussian elimination scales more slowly than O(N), where N
is the dimensionality (i.e., the total number of pixels) of q(t, i). Nonetheless, efficient
methods have been developed to handle this type of sparse, banded matrix (which arises, for
example, in applied physics applications requiring discretized implementations of Laplace’s
or Poisson’s equation); for example, in this case Matlab’s built in H\∇ code computes the
solution to Hx = ∇ in O(N3/2) time, which makes estimation of spatial tuning functions with
N ~ 104 easily feasible (on the order of seconds on a laptop). See Fig. 6 for an example of an
estimated two-dimensional firing rate λ(t, i), and [81] for further details.

5 Conclusion
Since the groundbreaking work of [9], state-space methods have been recognized as a key
paradigm in neuroscience data analysis. These methods have been particularly dominant in
the context of online decoding analyses [9, 8, 102, 93, 112, 100, 53] and in the analysis of
plasticity and nonstationary tuning properties [11, 30, 25, 97, 17, 54, 81], where the need for
statistically rigorous and computationally efficient methods for tracking a dynamic “moving
target” given noisy, indirect spike train observations has been particularly acute.

The direct optimization viewpoint discussed here (and previously in [28, 29, 5, 18, 42, 51])
opens up a number of additional interesting applications in neuroscience, and has a couple
advantages, as we have emphasized. Pragmatically, this method is perhaps a bit conceptually
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simpler and easier to code, thanks to the efficient sparse matrix methods built into Matlab
and other modern numerical software packages. The joint optimization approach makes the
important extension to problems of constrained optimization quite transparent, as we saw in
section 2.4. We also saw that the direct techniques outlined in section 3 can provide a much
more efficient algorithm for parameter estimation than the standard Expectation-
Maximization strategy. In addition, the direct optimization approach makes the connections
to other standard statistical methods (spline smoothing, penalized maximum likelihood,
isotonic regression, etc.) quite clear, and can also serve as a quick initialization for more
computationally-intensive methods that might require fewer model assumptions (e.g., on the
concavity of the loglikelihoods p(yt|qt)). Finally, this direct optimization setting may be
generalized significantly: we have mentioned extensions of the basic idea to constrained
problems, MCMC methods, and spatial smoothing applications, all of which amply illustrate
the flexibility of this approach. We anticipate that these state-space techniques will continue
to develop in the near future, with widespread and diverse applications to the analysis of
neural data.
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Figure 1.
Schematic illustration of the common-input model described by equation (7); adapted from
[52].
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Figure 2.
Single-trial inference of the relative contribution of common, stimulus, direct coupling, and
self inputs in a pair of retinal ganglion ON cells [104]; data from [77]. Top panel: Inferred
linear common input, Q̂: red trace shows a sample from the posterior distribution p(Q|Y),
black trace shows the conditional expectation E(Q|Y), and shaded region indicates ±1
posterior standard deviation about E(Q|Y), computed from the diagonal of the inverse log-
posterior Hessian H. 2nd panel: Direct coupling input from the other cell, lj · yj. (The first
two panels are plotted on the same scale to facilitate comparison of the magnitudes of these
effects.) Blue trace indicates cell 1; green indicates cell 2. 3rd panel: The stimulus input, k ·
x. 4th panel: Refractory input, hi · yi. Note that this term is strong but quite short-lived
following each spike. All units are in log-firing rate, as in equation (7). Bottom: Observed
paired spike trains Y on this single trial. Note the large magnitude of the estimated common
input term q̂(t), relative to the direct coupling contribution lj · yj.
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Figure 3.
Inferring presynaptic inputs given simulated postsynaptic voltage recordings. Top: true
simulated conductance input (green indicates inhibitory conductance; blue excitatory).
Middle: observed noisy current trace from which we will attempt to infer the input
conductance. Bottom: Conductance inferred by nonnegative MAP technique. Note that
inferred conductance is shrunk in magnitude compared to true conductance, due to the

effects of the prior  and , both of which peak at zero here; shrinkage is more
evident in the inferred inhibitory conductance, due to the smaller driving force (the holding
potential in this experiment was −62 mV, which is quite close to the inhibitory reversal
potential; as a result, the likelihood term is much weaker for the inhibitory conductance than
for the excitatory term). Inference here required about one second on a laptop computer per
second of data (i.e., real time), at a sampling rate of 1 KHz.
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Figure 4.
Estimating the location and strength of synapses on a simulated dendritic branch. Left:
simulation schematic. By observing a noisy, subsampled spatiotemporal voltage signal on
the dendritic tree, we can infer the strength of a given presynaptic cell’s inputs at each
location on the postsynaptic cell’s dendritic tree. Right: illustration of the method applied to
simulated data [73]. We simulated two presynapic inputs: one excitatory (red) and one
inhibitory (blue). The (known) presynaptic spike trains are illustrated in the top panel,
convolved with exponential filters of τ = 3 ms (excitatory) and τ = 2 ms (inhibitory) to form
Ut. Second panel: True (unobserved) voltage (mV), generated from the cable equation (13).
Note that each presynaptic spike leads to a post-synaptic potential of rather small magnitude
(at most ≈ 1 mV), relative to the voltage noise level. In this case the excitatory presynaptic
neuron synapses twice on the neuron, on compartment 12 and and a smaller synapse on
compartment 8, while the inhibitory neuron synapses on compartment 3. Third panel:
Observed (raster-scanned) voltage. The true voltage was not observed directly; instead, we
only observed a noisy, spatially-rastered (linescanned), subsampled version of this signal.
Note the very low effective SNR here. Bottom panel: True and inferred synaptic weights.
The true weight of each synapse is indicated by an asterisk (*) and the errorbar shows the

posterior mean E(θi|Y) and standard deviation  of the synaptic weight given the
observed data. Note that inference is quite accurate, despite the noisiness and the brief
duration (500 ms) of the data.
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Figure 5.
MAP decoding of the spatio-temporal stimulus ki * x(t) from the simultaneously recorded
spike trains of three pairs of ON and OFF retinal ganglion cells, again from [77]. The top six
panels show the true input ki * x(t) to each cell (jagged black line; the filters ki were
estimated by maximum likelihood from a distinct training set here), and the decoded MAP
estimate (smooth curve) ±1 posterior s.d. (gray area). The MAP estimate is quite accurate
and is computed in O(T) time, where T is the stimulus duration. In this example, fully-
Bayesian Markov chain Monte Carlo decoding produced nearly identical results; see [1] for
details.
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Figure 6.
An example of the fast spatial estimation method applied to data from [17], Fig. 3. Top
panel: observed spike train data. Note that the firing rate qualitatively changes both as a
function of time t and trial number i; 50 trials total are observed here. Bottom: λ(t, i)
estimated using the fast regularized methods described in [81]. See [81] for further
comparisons, e.g. to linear kernel smoothing methods.
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