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Abstract Kernel smoother and a time-histogram are
classical tools for estimating an instantaneous rate of
spike occurrences. We recently established a method
for selecting the bin width of the time-histogram, based
on the principle of minimizing the mean integrated
square error (MISE) between the estimated rate and
unknown underlying rate. Here we apply the same
optimization principle to the kernel density estimation
in selecting the width or “bandwidth” of the kernel,
and further extend the algorithm to allow a variable
bandwidth, in conformity with data. The variable ker-
nel has the potential to accurately grasp non-stationary
phenomena, such as abrupt changes in the firing rate,
which we often encounter in neuroscience. In order to
avoid possible overfitting that may take place due to
excessive freedom, we introduced a stiffness constant
for bandwidth variability. Our method automatically
adjusts the stiffness constant, thereby adapting to the
entire set of spike data. It is revealed that the classical
kernel smoother may exhibit goodness-of-fit compara-
ble to, or even better than, that of modern sophisticated
rate estimation methods, provided that the bandwidth
is selected properly for a given set of spike data, accord-
ing to the optimization methods presented here.
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1 Introduction

Neurophysiologists often investigate responses of a
single neuron to a stimulus presented to an animal
by using the discharge rate of action potentials, or
spikes (Adrian 1928; Gerstein and Kiang 1960; Abeles
1982). One classical method for estimating spike rate is
the kernel density estimation (Parzen 1962; Rosenblatt
1956; Sanderson 1980; Richmond et al. 1990; Nawrot
et al. 1999). In this method, a spike sequence is convo-
luted with a kernel function, such as a Gauss density
function, to obtain a smooth estimate of the firing
rate. The estimated rate is sometimes referred to as a
spike density function. This nonparametric method is
left with a free parameter for kernel bandwidth that
determines the goodness-of-fit of the density estimate
to the unknown rate underlying data. Although theo-
ries have been suggested for selecting the bandwidth,
cross-validating with the data (Rudemo 1982; Bowman
1984; Silverman 1986; Scott and Terrell 1987; Scott
1992; Jones et al. 1996; Loader 1999a, b), individual
researchers have mostly chosen bandwidth arbitrarily.
This is partly because the theories have not spread
to the neurophysiological society, and partly due to
inappropriate basic assumptions of the theories them-
selves. Most optimization methods assume a stationary
rate fluctuation, while the neuronal firing rate often
exhibits abrupt changes, to which neurophysiologists, in
particular, pay attention. A fixed bandwidth, optimized
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using a stationary assumption, is too wide to extract the
details of sharp activation, while in the silent period, the
fixed bandwidth would be too narrow and may cause
spurious undulation in the estimated rate. It is therefore
desirable to allow a variable bandwidth, in conformity
with data.

The idea of optimizing bandwidth at every in-
stant was proposed by Loftsgaarden and Quesenberry
(1965). However, in contrast to the progress in methods
that vary bandwidths at sample points only (Abramson
1982; Breiman et al. 1977; Sain and Scott 1996; Sain
2002; Brewer 2004), the local optimization of band-
width at every instant turned out to be difficult be-
cause of its excessive freedom (Scott 1992; Devroye
and Lugosi 2000; Sain and Scott 2002). In earlier
studies, Hall & Schucany used the cross-validation of
Rudemo and Bowman, within local intervals (Hall and
Schucany 1989), yet the interval length was left free.
Fan et al. applied cross-validation to locally optimized
bandwidth (Fan et al. 1996), and yet the smoothness of
the variable bandwidth was chosen manually.

In this study, we first revisit the fixed kernel method,
and derive a simple formula to select the bandwidth of
the kernel density estimation, similar to the previous
method for selecting the bin width of a peristimulus
time histogram (See Shimazaki and Shinomoto 2007).
Next, we introduce the variable bandwidth into the ker-
nel method and derive an algorithm for determining the
bandwidth locally in time. The method automatically
adjusts the flexibility, or the stiffness, of the variable
bandwidth. The performance of our fixed and variable
kernel methods are compared with established den-
sity estimation methods, in terms of the goodness-of-
fit to underlying rates that vary either continuously or
discontinuously. We also apply our kernel methods to
the biological data, and examine their ability by cross-
validating with data.

Though our methods are based on the classical ker-
nel method, their performances are comparable to var-
ious sophisticated rate estimation methods. Because of
the classics, they are rather convenient for users: the
methods simply suggest bandwidth for the standard
kernel density estimation.

2 Methods

2.1 Kernel smoothing

In neurophysiological experiments, neuronal response
is examined by repeatedly applying identical stimuli.

The recorded spike trains are aligned at the onset of
stimuli, and superimposed to form a raw density, as

xt = 1

n

N∑

i=1

δ (t − ti), (1)

where n is the number of repeated trials. Here, each
spike is regarded as a point event that occurs at an
instant of time ti (i = 1, 2, · · · , N) and is represented
by the Dirac delta function δ(t). The kernel density
estimate is obtained by convoluting a kernel k(s) to the
raw density xt,

λ̂t =
∫

xt−sk(s) ds. (2)

Throughout this study, the integral
∫

that does not
specify bounds refers to

∫ ∞
−∞. The kernel function sat-

isfies the normalization condition,
∫

k(s) ds = 1, a zero
first moment,

∫
sk(s) ds = 0, and has a finite bandwidth,

w2 = ∫
s2k(s) ds < ∞. A frequently used kernel is the

Gauss density function,

kw(s) = 1√
2πw

exp

(
− s2

2w2

)
, (3)

where the bandwidth w is specified as a subscript. In the
body of this study, we develop optimization methods
that apply generally to any kernel function, and derive
a specific algorithm for the Gauss density function in
the Appendix.

2.2 Mean integrated squared error optimization
principle

Assuming that spikes are sampled from a stochastic
process, we consider optimizing the estimate λ̂t to be
closest to the unknown underlying rate λt. Among
several plausible optimizing principles, such as the
Kullback-Leibler divergence or the Hellinger distance,
we adopt, here, the mean integrated squared error
(MISE) for measuring the goodness-of-fit of an esti-
mate to the unknown underlying rate, as

MISE =
∫ b

a
E(λ̂t − λt)

2 dt, (4)

where E refers to the expectation with respect to the
spike generation process under a given inhomogeneous
rate λt. It follows, by definition, that Ext = λt.

In deriving optimization methods, we assume the
Poisson nature, so that spikes are randomly sampled at
a given rate λt. Spikes recorded from a single neuron
correlate in each sequence (Shinomoto et al. 2003, 2005,
2009). In the limit of a large number of spike trains,
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however, mixed spikes are statistically independent and
the superimposed sequence can be approximated as a
single inhomogeneous Poisson point process (Cox 1962;
Snyder 1975; Daley and Vere-Jones 1988; Kass et al.
2005).

2.3 Selection of the fixed bandwidth

Given a kernel function such as Eq. (3), the density
function Eq. (2) is uniquely determined for a raw den-
sity Eq. (1) of spikes obtained from an experiment.
A bandwidth w of the kernel may alter the density
estimate, and it can accordingly affect the goodness-of-
fit of the density function λ̂t to the unknown underlying
rate λt. In this subsection, we consider applying a kernel
of a fixed bandwidth w, and develop a method for
selecting w that minimizes the MISE, Eq. (4).

The integrand of the MISE is decomposed into three
parts: Eλ̂2

t − 2λt Eλ̂t + λ2
t . Since the last component

does not depend on the choice of a kernel, we subtract it
from the MISE, then define a cost function as a function
of the bandwidth w:

Cn (w) = MISE −
∫ b

a
λ2

t dt

=
∫ b

a
Eλ̂2

t dt − 2
∫ b

a
λt Eλ̂t dt. (5)

Rudemo and Bowman suggested the leave-one-out
cross-validation to estimate the second term of Eq. (5)
(Rudemo 1982; Bowman 1984). Here, we directly esti-
mate the second term with the Poisson assumption (See
also Shimazaki and Shinomoto 2007).

By noting that λt = Ext, the integrand of the second
term in Eq. (5) is given as

Ext Eλ̂t = E
[
xtλ̂t

] − E
[
(xt − Ext)

(
λ̂t − Eλ̂t

)]
, (6)

from a general decomposition of covariance of two
random variables. Using Eq. (2), the covariance (the
second term of Eq. (6)) is obtained as

E
[
(xt − Ext)

(
λ̂t − Eλ̂t

)]

=
∫

kw (t − s) E [(xt − Ext) (xs − Exs)] ds

=
∫

kw(t − s)
[
δ (t − s)

1

n
Exs

]
ds

= 1

n
kw(0)Ext. (7)

Here, to obtain the second equality, we used the as-
sumption of the Poisson point process (independent
spikes).

Using Eqs. (6) and (7), Eq. (5) becomes

Cn (w) =
∫ b

a
Eλ̂2

t dt

−2
∫ b

a

{
E
[
xtλ̂t

] − 1

n
kw(0)Ext

}
dt. (8)

Equation (8) is composed of observable variables only.
Hence, from sample sequences, the cost function is
estimated as

Ĉn (w) =
∫ b

a
λ̂2

t dt − 2
∫ b

a

{
xtλ̂t − 1

n
kw(0)xt

}
dt. (9)

In terms of a kernel function, the cost function is writ-
ten as

Ĉn (w) = 1

n2

∑

i, j

ψw

(
ti, t j

)

− 2

n2

⎧
⎨

⎩
∑

i, j

kw

(
ti − t j

) − kw(0)N

⎫
⎬

⎭

= 1

n2

∑

i, j

ψw

(
ti, t j

) − 2

n2

∑

i �= j

kw

(
ti − t j

)
, (10)

where

ψw

(
ti, t j

) =
∫ b

a
kw(t−ti) kw

(
t−t j

)
dt. (11)

The minimizer of the cost function, Eq. (10), is an
estimate of the optimal bandwidth, which is denoted by
w∗. The method for selecting a fixed kernel bandwidth
is summarized in Algorithm 1. A particular algorithm
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developed for the Gauss density function is given in the
Appendix.

2.4 Selection of the variable bandwidth

The method described in Section 2.3 aims to select
a single bandwidth that optimizes the goodness-of-fit
of the rate estimate for an entire observation interval
[a, b ]. For a non-stationary case, in which the degree
of rate fluctuation greatly varies in time, the rate es-
timation may be improved by using a kernel function
whose bandwidth is adaptively selected in conformity

with data. The spike rate estimated with the variable
bandwidth wt is given by

λ̂t =
∫

xt−skwt (s) ds. (12)

Here we select the variable bandwidth wt as a fixed
bandwidth optimized in a local interval. In this ap-
proach, the interval length for the local optimization
regulates the shape of the function wt, therefore, it
subsequently determines the goodness-of-fit of the esti-
mated rate to the underlying rate. We provide a method
for obtaining the variable bandwidth wt that minimizes
the MISE by optimizing the local interval length.

To select an interval length for local optimization, we
introduce the local MISE criterion at time t as

localMISE =
∫

E
(
λ̂u − λu

)2
ρu−t

W du, (13)

where λ̂u = ∫
xu−skw(s) ds is an estimated rate with a

fixed bandwidth w. Here, a weight function ρu−t
W local-

izes the integration of the squared error in a character-
istic interval W centered at time t. An example of the
weight function is once again the Gauss density func-
tion. See the Appendix for the specific algorithm for
the Gauss weight function. As in Eq. (5), we introduce
the local cost function at time t by subtracting the term
irrelevant for the choice of w as

Ct
n (w, W) = localMISE −

∫
λ2

uρ
u−t
W du. (14)

The optimal fixed bandwidth w∗ is obtained as a mini-
mizer of the estimated cost function:

Ĉt
n (w, W) = 1

n2

∑

i, j

ψ t
w,W

(
ti, t j

)

− 2

n2

∑

i �= j

kw

(
ti − t j

)
ρ

ti−t
W , (15)

where

ψ t
w,W

(
ti, t j

) =
∫

kw (u − ti) kw

(
u − t j

)
ρu−t

W du. (16)

The derivation follows the same steps as in the previ-
ous section. Depending on the interval length W, the
optimal bandwidth w∗ varies. We suggest selecting an
interval length that scales with the optimal bandwidth
as γ −1w∗. The parameter γ regulates the interval length
for local optimization: With small γ (� 1), the fixed
bandwidth is optimized within a long interval; With
large γ (∼ 1), the fixed bandwidth is optimized within a
short interval. The interval length and fixed bandwidth,
selected at time t, are denoted as Wγ

t and w̄
γ
t .

The locally optimized bandwidth w̄
γ
t is repeatedly

obtained for different t(∈ [a, b ]). Because the intervals
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overlap, we adopt the Nadaraya-Watson kernel regres-
sion (Nadaraya 1964; Watson 1964) of w̄

γ
t as a local

bandwidth at time t:

w
γ
t =

∫
ρ t−s

Wγ
s
w̄γ

s ds
/∫

ρ t−s
Wγ

s
ds. (17)

The variable bandwidth w
γ
t obtained from the same

data, but with different γ , exhibits different degrees
of smoothness: With small γ (� 1), the variable band-
width fluctuates slightly; With large γ (∼ 1), the variable
bandwidth fluctuates significantly. The parameter γ is
thus a smoothing parameter for the variable bandwidth.
Similar to the fixed bandwidth, the goodness-of-fit of
the variable bandwidth can be estimated from the data.
The cost function for the variable bandwidth selected
with γ is obtained as

Ĉn (γ ) =
∫ b

a
λ̂2

t dt − 2

n2

∑

i �= j

kw
γ
ti

(
ti − t j

)
, (18)

where λ̂t = ∫
xt−skw

γ
t
(s) ds is an estimated rate, with the

variable bandwidth w
γ
t . The integral is calculated nu-

merically. With the stiffness constant γ ∗ that minimizes
Eq. (18), local optimization is performed in an ideal

interval length. The method for optimizing the variable
kernel bandwidth is summarized in Algorithm 2.

3 Results

3.1 Comparison of the fixed and variable kernel
methods

By using spikes sampled from an inhomogeneous
Poisson point process, we examined the efficiency of
the kernel methods in estimating the underlying rate.
We also used a sequence obtained by superimposing
ten non-Poissonian (gamma) sequences (Shimokawa
and Shinomoto 2009), but there was practically no
significant difference in the rate estimation from the
Poissonian sequence.

Figure 1 displays the result of the fixed kernel me-
thod based on the Gauss density function. The kernel
bandwidth selected by Algorithm 1 applies a reason-
able filtering to the set of spike sequences. Figure 1(d)
shows that a cost function, Eq. (10), estimated from the
spike data is similar to the original MISE, Eq. (4), which
was computed using the knowledge of the underlying

Fig. 1 Fixed kernel density
estimation. (a) The
underlying spike rate λt of the
Poisson point process. (b) 20
spike sequences sampled
from the underlying rate, and
(c) Kernel rate estimates
made with three types of
bandwidth: too small,
optimal, and too large. The
gray area indicates the
underlying spike rate. (d) The
cost function for bandwidth
w. Solid line is the estimated
cost function, Eq. (10),
computed from the spike
data; The dashed line is the
exact cost function, Eq. (5),
directly computed by using
the known underlying rate
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rate. This demonstrates that MISE optimization can, in
practice, be carried out by our method, even without
knowing the underlying rate.

Figure 2(a) demonstrates how the rate estimation
is altered by replacing the fixed kernel method with
the variable kernel method (Algorithm 2), for identi-
cal spike data (Fig. 1(b)). The Gauss weight function
is used to obtain a smooth variable bandwidth. The
manner in which the optimized bandwidth varies in the
time axis is shown in Fig. 2(b): the bandwidth is short
in a moment of sharp activation, and is long in the pe-
riod of smooth rate modulation. Eventually, the sharp
activation is grasped minutely and slow modulation is
expressed without spurious fluctuations. The stiffness
constant γ for the bandwidth variation is selected by
minimizing the cost function, as shown in Fig. 2(c).

3.2 Comparison with established density estimation
methods

We wish to examine the fitting performance of the
fixed and variable kernel methods in comparison with
established density estimation methods, by paying at-
tention to their aptitudes for either continuous or dis-

continuous rate processes. Figure 3(a) shows the results
for sinusoidal and sawtooth rate processes, as sam-
ples of continuous and discontinuous processes, respec-
tively. We also examined triangular and rectangular
rate processes as different samples of continuous and
discontinuous processes, but the results were similar.
The goodness-of-fit of the density estimate to the un-
derlying rate is evaluated in terms of integrated squared
error (ISE) between them.

The established density estimation methods exam-
ined for comparison are the histogram (Shimazaki
and Shinomoto 2007), Abramson’s adaptive kernel
(Abramson 1982), Locfit (Loader 1999b), and Bayesian
adaptive regression splines (BARS) (DiMatteo et al.
2001; Kass et al. 2003) methods, whose details are
summarized below.

A histogram method, which is often called a peri-
stimulus time histogram (PSTH) in neurophysiologi-
cal literature, is the most basic method for estimating
the spike rate. To optimize the histogram, we used a
method proposed for selecting the bin width based on
the MISE principle (Shimazaki and Shinomoto 2007).

Abramson’s adaptive kernel method (Abramson
1982) uses the sample point kernel estimate λ̂t =∑

i kwti
(t − ti), in which the bandwidths are adapted
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Fig. 2 Variable kernel density estimation. (a) Kernel rate esti-
mates. The solid and dashed lines are rate estimates made by the
variable and fixed kernel methods for the spike data of Fig. 1(b).
The gray area is the underlying rate. (b) Optimized bandwidths.
The solid line is the variable bandwidth determined with the
optimized stiffness constant γ ∗ = 0.8, selected by Algorithm 2;

the dashed line is the fixed bandwidth selected by Algorithm 1.
(b) The cost function for bandwidth stiffness constant. The solid
line is the cost function for the bandwidth stiffness constant γ ,
Eq. (18), estimated from the spike data; the dashed line is the
cost function computed from the known underlying rate
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Fig. 3 Fitting performances of the six rate estimation methods,
histogram, fixed kernel, variable kernel, Abramson’s adaptive
kernel, Locfit, and Bayesian adaptive regression splines (BARS).
(a) Two rate profiles (2 [s]) used in generating spikes (gray
area), and the estimated rates using six different methods. The
raster plot in each panel is sample spike data (n = 10, superim-
posed). (b) Comparison of the six rate estimation methods in

their goodness-of-fit, based on the integrated squared error (ISE)
between the underlying and estimated rate. The abscissa and
the ordinate are the ISEs of each method applied to sinusoidal
and sawtooth underlying rates (10 [s]). The mean and standard
deviation of performance evaluated using 20 data sets are plotted
for each method

at the sample points. Scaling the bandwidths as wti =
w (g/λ̂ti)

1/2 was suggested, where w is a pilot bandwidth,
g = (

∏
i λ̂ti)

1/N , and λ̂t is a fixed kernel estimate with w.
Abramson’s method is a two-stage method, in which
the pilot bandwidth needs to be selected beforehand.
Here, the pilot bandwidth is selected using the fixed
kernel optimization method developed in this study.

The Locfit algorithm developed by Loader (1999b)
fits a polynomial to a log-density function under the
principle of maximizing a locally defined likelihood.
We examined the automatic choice of the adaptive
bandwidth of the local likelihood, and found that the
default fixed method yielded a significantly better fit.
We used a nearest neighbor based bandwidth method,
with a parameter covering 20% of the data.

The BARS (DiMatteo et al. 2001; Kass et al. 2003)
is a spline-based adaptive regression method on an
exponential family response model, including a Poisson
count distribution. The rate estimated with the BARS
is the expected splines computed from the posterior
distribution on the knot number and locations with
a Markov chain Monte Carlo method. The BARS is,
thus, capable of smoothing a noisy histogram without
missing abrupt changes. To create an initial histogram,
we used 4 [ms] bin width, which is small enough to
examine rapid changes in the firing rate.

Figure 3(a) displays the density profiles of the six dif-
ferent methods estimated from an identical set of spike
trains (n = 10) that are numerically sampled from a si-
nusoidal or sawtooth underlying rate (2 [s]). Figure 3(b)
summarizes the goodness-of-fit of the six methods to
the sinusoidal and sawtooth rates (10 [s]) by averaging
over 20 realizations of samples.

For the sinusoidal rate function, representing con-
tinuously varying rate processes, the BARS is most
efficient in terms of ISE performance. For the saw-
tooth rate function, representing discontinuous non-
stationary rate processes, the variable kernel estimation
developed here is the most efficient in grasping abrupt
rate changes. The histogram method is always inferior
to the other five methods in terms of ISE performance,
due to the jagged nature of the piecewise constant
function.

3.3 Application to experimental data

We examine, here, the fixed and variable kernel meth-
ods in their applicability to real biological data. In
particular, the kernel methods are applied to the spike
data of an MT neuron responding to a random dot
stimulus (Britten et al. 2004). The rates estimated from
n = 1, 10, and 30 experimental trials are shown in
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Fig. 4. Fine details of rate modulation are revealed
as we increase the sample size (Bair and Koch 1996).
The fixed kernel method tends to choose narrower
bandwidths, while the variable kernel method tends to
choose wider bandwidths in the periods in which spikes
are not abundant.

The performance of the rate estimation methods
is cross-validated. The bandwidth, denoted as wt for

both fixed and variable, is obtained with a training
data set of n trials. The error is evaluated by comput-
ing the cost function, Eq. (18), in a cross-validatory
manner:

Ĉn (wt) =
∫ b

a
λ̂2

t dt − 2

n2

∑

i �= j

kw
t′i

(
t′i − t′j

)
, (19)
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Fig. 4 Application of the fixed and variable kernel methods
to spike data of an MT neuron (j024 with coherence 51.2% in
nsa2004.1 (Britten et al. 2004)). (a–c): Analyses of n = 1, 10,
and 30 spike trains; (top) Spike rates [spikes/s] estimated with
the fixed and variable kernel methods are represented by the
gray area and solid line, respectively; (middle) optimized fixed
and variable bandwidths [s] are represented by dashed and solid
lines, respectively; (bottom) A raster plot of the spike data used
in the estimation. (d) Comparison of the two kernel methods.
Bars represent the difference between the cross-validated cost
functions, Eq. (19), of the fixed and variable kernel methods (fix

less variable). The positive difference indicates superior fitting
performance of the variable kernel method. The cross-validated
cost function is obtained as follows. Whole spike sequences
(ntotal = 60) are divided into ntotal/n blocks, each composed
of n(= 1, 5, 20, 30) spike sequences. A bandwidth was selected
using spike data of a training block. The cross-validated cost
functions, Eq. (19), for the selected bandwidth are computed
using the ntotal/n − 1 leftover test blocks, and their average is
computed. The cost function is repeatedly obtained ntotal/n-times
by changing the training block. The mean and standard deviation,
computed from ntotal/n samples, are displayed
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where the test spike times {t′i} are obtained from n
spike sequences in the leftovers, and λ̂t = 1

n

∑
i kwt(t−t′i).

Figure 4(d) shows the performance improvements by
the variable bandwidth over the fixed bandwidth, as
evaluated by Eq. (19). The fixed and variable kernel
methods perform better for smaller and larger sizes
of data, respectively. In addition, we compared the
fixed kernel method and the BARS by cross-validating
the log-likelihood of a Poisson process with the rate
estimated using the two methods. The difference in
the log-likelihoods was not statistically significant for
small samples (n = 1, 5 and 10), while the fixed kernel
method fitted better to the spike data with larger sam-
ples (n = 20 and 30).

4 Discussion

In this study, we developed methods for selecting the
kernel bandwidth in the spike rate estimation based
on the MISE minimization principle. In addition to the
principle of optimizing a fixed bandwidth, we further
considered selecting the bandwidth locally in time, as-
suming a non-stationary rate modulation.

We tested the efficiency of our methods using
spike sequences numerically sampled from a given rate
(Figs. 1 and 2). Various density estimators constructed
on different optimization principles were compared in
their goodness-of-fit to the underlying rate (Fig. 3).
There is in fact no oracle that selects one among various
optimization principles, such as MISE minimization or
likelihood maximization. Practically, reasonable prin-
ciples render similar detectability for rate modulation;
the kernel methods based on MISE were roughly com-
parable to the Locfit based on likelihood maximization
in their performances. The difference of the perfor-
mances is not due to the choice of principles, but rather
due to techniques; kernel and histogram methods lead
to completely different results under the same MISE
minimization principle (Fig. 3(b)). Among the smooth
rate estimators, the BARS was good at representing
continuously varying rate, while the variable kernel
method was good at grasping abrupt changes in the rate
process (Fig. 3(b)).

We also examined the performance of our methods
in application to neuronal spike sequences by cross-
validating with the data (Fig. 4). The result demon-
strated that the fixed kernel method performed well in
small samples. We refer to Cunningham et al. (2008)
for a result on the superior fitting performance of a

fixed kernel to small samples in comparison with the
Locfit and BARS, as well as the Gaussian process
smoother (Cunningham et al. 2008; Smith and Brown
2003; Koyama and Shinomoto 2005). The adaptive
methods, however, have the potential to outperform
the fixed method with larger samples derived from a
non-stationary rate profile (See also Endres et al. 2008
for comparisons of their adaptive histogram with the
fixed histogram and kernel method). The result in Fig. 4
confirmed the utility of our variable kernel method for
larger samples of neuronal spikes.

We derived the optimization methods under the
Poisson assumption, so that spikes are randomly drawn
from a given rate. If one wishes to estimate spike rate
of a single or a few sequences that contain strongly cor-
related spikes, it is desirable to utilize the information
as to non-Poisson nature of a spike train (Cunningham
et al. 2008). Note that a non-Poisson spike train may be
dually interpreted, as being derived either irregularly
from a constant rate, or regularly from a fluctuating
rate (Koyama and Shinomoto 2005; Shinomoto and
Koyama 2007). However, a sequence obtained by su-
perimposing many spike trains is approximated as a
Poisson process (Cox 1962; Snyder 1975; Daley and
Vere-Jones 1988; Kass et al. 2005), for which dual
interpretation does not occur. Thus the kernel methods
developed in this paper are valid for the superimposed
sequence, and serve as the peristimulus density estima-
tor for spike trains aligned at the onset or offset of the
stimulus.

Kernel smoother is a classical method for estimating
the firing rate, as popular as the histogram method. We
have shown in this paper that the classical kernel meth-
ods perform well in the goodness-of-fit to the underly-
ing rate. They are not only superior to the histogram
method, but also comparable to modern sophisticated
methods, such as the Locfit and BARS. In particular,
the variable kernel method outperformed competing
methods in representing abrupt changes in the spike
rate, which we often encounter in neuroscience. Given
simplicity and familiarity, the kernel smoother can still
be the most useful in analyzing the spike data, pro-
vided that the bandwidth is chosen appropriately as
instructed in this paper.
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Appendix: Cost functions of the Gauss kernel function

In this appendix, we derive definite MISE optimization
algorithms we developed in the body of the paper with
the particular Gauss density function, Eq. (3).

A.1 A cost function for a fixed bandwidth

The estimated cost function is obtained, as in Eq. (10):

n2Ĉn (w) =
∑

i, j

ψw

(
ti, t j

) − 2
∑

i �= j

kw

(
ti − t j

)
,

where, from Eq. (11),

ψw

(
ti, t j

) =
∫ b

a
kw(t−ti) kw

(
t−t j

)
dt.

A symmetric kernel function, including the Gauss func-
tion, is invariant to exchange of ti and t j when comput-
ing kw(ti − t j). In addition, the correlation of the kernel
function, Eq. (11), is symmetric with respect to ti and t j.
Hence, we obtain the following relationships
∑

i �= j

kw

(
ti − t j

) = 2
∑

i< j

kw

(
ti − t j

)
, (20)

∑

i, j

ψw

(
ti, t j

) =
∑

i

ψw (ti, ti) + 2
∑

i< j

ψw

(
ti, t j

)
. (21)

By plugging Eqs. (20) and (21) into Eq. (10), the cost
function is simplified as .

n2Ĉn (w) =
∑

i

ψw (ti, ti)

+2
∑

i< j

{
ψw

(
ti, t j

) − 2kw

(
ti − t j

)}
. (22)

For the Gauss kernel function, Eq. (3), with band-
width w, Eq. (11) becomes

ψw

(
ti, t j

)= 1√
π4w

e− (ti−t j)
2

4w2

×
{

erf
(

2b − ti − t j

2w

)
− erf

(
2a − ti − t j

2w

)}
,

(23)

where erf (z) = 2√
π

∫ z
0 e−t2

dt. A simplified equation is
obtained by evaluating the MISE in an unbounded
domain: a → −∞ and b → +∞. Using erf (±∞) = ±1,
we obtain

ψw

(
ti, t j

) ≈ 1√
π2w

e− (ti−t j)
2

4w2 . (24)

Using Eq. (24) in Eq. (22), we obtain a formula for
selecting the bandwidth of the Gauss kernel function,
2
√

πn2Ĉn(w):

N
w

+ 2

w

∑

i< j

{
e− (ti−t j)

2

4w2 − 2
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2e− (ti−t j)
2

2w2

}
. (25)

A.2 A local cost function for a variable bandwidth

The local cost function is obtained, as in Eq. (15):

n2Ĉt
n (w, W) =

∑

i, j

ψ t
w,W
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) − 2
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i �= j

kw

(
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W ,

where, from Eq. (16),

ψ t
w,W

(
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) =
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W du.

For the summations in the local cost function, Eq. (15),
we have equalities:

∑

i �= j

kw

(
ti − t j

)
ρ

ti−t
W =

∑

i< j

kw

(
ti − t j

) {
ρ

ti−t
W + ρ

t j−t
W

}
,

(26)
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(27)

The first equation holds for a symmetric kernel. The
second equation is derived because Eq. (16) is invariant
to an exchange of ti and t j. Using Eqs. (26) and (27),
Eq. (15) can be computed as
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(28)
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For the Gauss kernel function and the Gauss weight
function with bandwidth w and W respectively, Eq. (16)
is calculated as

ψ t
w,W

(
ti, t j

) = 1

2πw2

1√
2πW

×
∫
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[
− (u − ti)2 + (
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]
du. (29)

By completing the square with respect to u, the expo-
nent in the above equation is written as
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Using the formula
∫

e−Au2
du =√

π
A , Eq. (16) is ob-

tained as
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