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Abstract The retino-tecto-rotundal pathway is the
main visual pathway in non-mammalian vertebrates
and has been found to be highly involved in visual
processing. Despite the extensive receptive fields of
tectal and rotundal wide-field neurons, pattern dis-
crimination tasks suggest a system with high spatial
resolution. In this paper, we address the problem of
how global processing performed by motion-sensitive
wide-field neurons can be brought into agreement with
the concept of a local analysis of visual stimuli. As
a solution to this problem, we propose a firing-rate
model of the retino-tecto-rotundal pathway which de-
scribes how spatiotemporal information can be orga-
nized and retained by tectal and rotundal wide-field
neurons while processing Fourier-based motion in ab-
sence of periodic receptive-field structures. The model

Action Editor: Jonathan David Victor

B. Dellen (B)
Bernstein Center for Computational Neuroscience,
Max-Planck-Institute for Dynamics and Self-Organization,
Bunsenstrasse 10, 37073 Göttingen, Germany
e-mail: bkdellen@bccn-goettingen.de

B. Dellen
Institut de Robòtica i Informàtica Industrial (CSIC-UPC),
Llorens i Artigas 4-6, 08028 Barcelona, Spain

R. Wessel · J. W. Clark
Physics Department, CB 1105, Washington University
in St. Louis, One Brookings Drive,
St. Louis, MO 63130-4899, USA

F. Wörgötter
Bernstein Center for Computational Neuroscience
III. Physikalisches Institut-Biophysik, Georg-August
Universität Göttingen, Friedrich-Hund Platz 1,
37077 Göttingen, Germany

incorporates anatomical and electrophysiological ex-
perimental data on tectal and rotundal neurons, and
the basic response characteristics of tectal and rotundal
neurons to moving stimuli are captured by the model
cells. We show that local velocity estimates may be de-
rived from rotundal-cell responses via superposition in
a subsequent processing step. Experimentally testable
predictions which are both specific and characteristic to
the model are provided. Thus, a conclusive explanation
can be given of how the retino-tecto-rotundal pathway
enables the animal to detect and localize moving ob-
jects or to estimate its self-motion parameters.
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1 Introduction

Visual motion is one of the most important cues en-
abling the animal to interact with its environment in
a meaningful way. The computation of local velocity
is the basis for such important tasks as the detection
and location of independently moving objects and the
estimation of self-motion parameters. Not surprisingly,
neurons sensitive to visual motion have been found in
many brain areas (Nakayama 1985; Dellen and Wessel
2008). However, computational models of motion
processing have focused mainly on neurons in the thala-
mocortical pathway (Adelson and Bergen 1985; Heeger
1988; Wörgötter and Koch 1991; Hennig et al. 2002)
and are specific to the small and periodic receptive
fields of V1 neurons. The situation is different for
motion-sensitive neurons in the retino-tecto-rotundal
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system, which constitutes the main visual pathway in
non-mammalian vertebrates. Their response properties
are generally incompatible with these kinds of models
due to their entirely different organization (see Fig. 1).

Retinal axons belonging to the retino-tecto-rotundal
pathway project in a precise retinotopical manner to
the optic tectum (TO) (Mpodozis et al. 1996; Karten
et al. 1997). The tectofugal projection arises exclusively
from cells in the tectal layer 13 or stratum griseum cen-
trale (SGC) and targets the thalamic nucleus rotundus
(Rt) without maintaining a retinotopic organization
(Fig. 1(a, b)) (Benowitz and Karten 1976; Engelage
and Bischof 1993; Mpodozis et al. 1996; Marin et al.
2003). Nevertheless, deficits in pattern-discrimination
tasks and the dramatic postlesional threshold vari-
ations in acuity measurements point to the exis-
tence of a system with high spatial resolution (Hodos
and Karten 1966; Hodos 1969; Hodos and Bonbright
1974; Mulvanny 1979; Hodos et al. 1984; Macko and
Hodos 1984; Bessete and Hodos 1989; Watanabe 1991;
Güntürkün and Hahmann 1999; Laverghetta and
Shimizu 1999; Nguyen et al. 2004). Hodos and Karten
(1966) conducted behavioral experiments with pigeons
which were trained to peck one of two discs on which vi-
sual stimuli were projected. They observed that lesions
in the nucleus rotundus caused severe deficits in perfor-
mance in brightness- and pattern-discrimination tasks.
Later on, Laverghetta and Shimizu (1999) showed that
lesions in the nucleus rotundus impaired the detection
of small moving stimuli. Furthermore, lesions in the
caudal ectostriatum, which is the telencephalic target
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Fig. 1 (a) Retino-tecto-rotundal pathway. (b) Schematic of net-
work connectivity of the retino-tecto-rotundal pathway. (c) Re-
construction of a tectal neuron (SGC-I) (Luksch et al. 1998).
(d) Reconstructed dendritic field of a tectal neuron (Mahani et al.
2006)

of the tectofugal visual pathway, also caused severe to
moderate deficits in visual acuity and motion processing
tasks (Hodos et al. 1984; Nguyen et al. 2004).

Tectal neurons with somata in tectal layer 13 have
large circular receptive fields spanning ≈ 10 − 60 de-
grees of the visual field (Luksch et al. 1998; Wu et al.
2005; Schmidt and Bischof 2001). A reconstruction of
a representative neuron in the optic tectum is shown
in Fig. 1(c). The distribution of dendritic endings is
sparse, such that the summed receptive fields of the
dendritic endings fill less than 1% of the total receptive
field (Mahani et al. 2006). The anatomical organization
corresponds to a spotty receptive-field fine structure
(Troje and Frost 1998; Letelier et al. 2002; Mahani
et al. 2006; Schmidt and Bischof 2001) (Fig. 1(d)).
Tectal neurons respond vigorously to small moving
stimuli, but they are only weakly selective for the ori-
entation or direction of motion of the stimulus (Frost
and Nakayama 1983; Sun et al. 2002). In the tecto-
rotundal projection, rotundal neurons receive input
from tectal neurons distributed throughout the entire
tectum (Fig. 1(b)), whereby the precise point-to-point
topography of the retino-tectal projection is completely
lost (Benowitz and Karten 1976; Ngo et al. 1994; Karten
et al. 1997; Deng and Rogers 1998; Hellmann and
Güntürkün 2001; Marin et al. 2003). The tecto-rotundal
projection is currently interpreted as implementing a
transformation from a retinotopically-organized map
into a functionally-organized map (Hellmann and
Güntürkün 2001). The several anatomical subdivisions
of the Rt correlate with neural populations that respond
specifically to different visual modalities, such as two-
dimensional motion and in-depth motion (Revzin 1970;
Wang and Frost 1990; Wang et al. 1993).

From a theoretical point of view, the following ques-
tions arise: (i) How is spatial information organized
in the retino-tecto-rotundal pathway, in view of the
sparse but extensive receptive and dendritic fields of the
neurons? (ii) How is sensitivity to direction of motion
generated in the rotundus largely in the absence of
periodically arranged subunits that account for motion
sensitivity in neural models of other brain areas such
as V1 or MT? (iii) How can local velocity estimates be
retrieved from motion-sensitive neurons, i.e. rotundal
neurons, that have receptive fields spanning up to 120
deg of visual angle?

The paper is structured as follows. In Section 2, we
propose a model of the retino-tecto-rotundal pathway
and investigate theoretically the spatial organization
of this pathway. We also propose a neural network
for the extraction of local-velocity fields from the ro-
tundal neural population. In Section 3, we establish
by means of computer simulations that the proposed
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model accounts for motion-sensitive responses of neu-
rons in the optic tectum and the nucleus rotundus. We
further provide experimentally testable predictions and
demonstrate that local-velocity fields can be computed
from the responses of rotundal model neurons. Finally,
in Section 4, the results of the model are discussed and
directions for future research are indicated.

2 Model

In this section, the retino-tectal-rotundal-pathway
model is defined and its properties are analyzed
theoretically. The basic organization is described in
Section 2.1, then, motion-sensitive mechanisms of ro-
tundal model neurons are described in Section 2.2. In
Section 2.3 we present a neural model for extracting
local-velocity fields from rotundal neurons, serving as
a proof of concept. In Section 2.4, the connectivity
constraints of the model at the tecto-rotundal pro-
jection are explored theoretically. In Sections 2.5–2.7,
a preprocessing filter is described, model parameters
used in computer simulations are characterized, and an
error measure for performance evaluation is defined,
respectively.

2.1 Basic organization of the retino-tecto-rotundal
pathway

We propose a firing-rate model of the retino-tecto-
rotundal pathway. The tectal and rotundal neurons are
modelled as summing units that integrate the responses
of input neurons, followed by a rectification of the
signal. The receptive/dendritic field properties of tectal
and rotundal neurons are constructed from anatomical
and electrophysiological data, and as such provide pa-
rameters to the model. Sensitivity to stimulus velocity
is introduced into the model by including temporal
filters at the stage of the tecto-rotundal projection in
Section 2.2.

Let us model the response to a 2D stimulus I(x, t) of
a tectal neuron i through a continuous, time-dependent
firing-rate function

ri
tc(t) =

[∫
A

Ri
tc(x)I(x, t)dx

]
+

, (1)

where A is the area of the visual field, Ri
tc(x) is the

receptive field, x = (x, y) is the position vector, and t is
the temporal dimension of the visual input. The visual
input, integrated over the receptive field, is rectified
(rectification is being symbolized by [ ]+). According
to the rectification model, [a]+ = a if a > τ , and zero

otherwise, where τ is a threshold parameter (Granit
et al. 1963). The functional form of the model neurons
is chosen according to standard firing-rate models
(Dayan and Abbott 2005). A schematic of the sparse
and random connectivity of a tectal neuron is presented
in Fig. 2 (colored in red). The receptive fields of the
model tectal neurons are assumed to have a spotty and
random fine structure in accordance with experimental
data. The parameters of the model are specified in
Section 2.6 and Fig. 4.

We compute the Fourier transform of the recep-
tive field Ri

tc(x) of each model tectal cell i. Multiply-
ing the Fourier transforms of the tectal-cell receptive
fields of ntc tectal neurons by their respective firing-
rate functions and summing, we obtain a representation
(or map) of tectal responses in Fourier space

Mtc(k, t) =
ntc∑
i=1

Ri
tc(k)ri

tc(t), (2)

where Ri
tc(k) = F[Ri

tc(x)] is the spatial Fourier transfor-
mation of Ri

tc(x) and k = (kx, ky) is a wave vector with
spatial frequencies kx and ky. It is important to note
that the map Mtc(k, t) is only implicitly defined through
the population of tectal neurons. This map serves as a
mental construct in tracking the functional processing
path of the neural system being modeled. In Section 3.1,
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Fig. 2 Schematic of a rotundal model neuron. Tectal cells (TC)
in the deep layers of the optic tectum integrate the responses of
retinotopically organized retinal ganglion cells (RGC) in a sparse
and random fashion. A representative tectal cell is depicted in
red. The spatial integration is followed by a rectification. At the
nucleus rotundus, the responses of subpopulations of tectal cells
are summed via intermediate rotundal units (IRU), which could
be subsets of synapses, or dendritic branches. A representative
intermediate rotundal unit is depicted in green. The rotundal cell
response is modelled by summing over the responses of the in-
termediate rotundal units, followed by a rectification. Sensitivity
to stimulus velocity is introduced into the model by temporally
filtering the subpopulation responses
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we will employ computer simulations to show that for
large numbers of tectal neurons, the approximation

Mtc(k, t) ≈ F [I(x, t)] (3)

is applicable (up to a scaling factor).
Each spatial-frequency component of Mtc(k, t) cor-

responds to a subpopulation of tectal neurons, while
each tectal neuron can be a member of more than
one subpopulation. We assume that rotundal neurons
receive input from these subpopulations via an interme-
diate rotundal unit (depicted in green in Fig. 2). These
mediating units are merely constructs to schematize the
spatial-frequency processing of the rotundal neurons.
We model the response of a rotundal neuron j by ran-
domly sampling the responses of tectal supopulations
to obtain

r j
rc(t) =

[∫
Ã

R j
rc(k)Mtc(k, t)dk

]
+

, (4)

where R j
rc(k) is the spatial Fourier transform of a func-

tion in real space Rrc(x), assuring that r j
rc(t) is real

valued. Inserting Eq. (2) in Eq. (4) yields

r j
rc(t) =

[∫
Ã

R j
rc(k)

(
ntc∑
i=1

Ri
tc(k)ri

tc(t)

)
dk

]

+
(5)

=
[

ntc∑
i=1

(∫
Ã

R j
rc(k)Ri

tc(k)dk
)

ri
tc(t)

]

+
(6)

=
[

ntc∑
i=1

wijri
tc(t)

]

+
(7)

where

wij =
∫

Ã
R j

rc(k)Ri
tc(k)dk (8)

is the connection strength of tectal neuron i and ro-
tundal neuron j. Hence, according to our model, the
connectivity pattern at the tecto-rotundal projection
is determined by the receptive-field structure of tectal
and rotundal neurons via Eq. (8). Consequently, within
our model, function—expressed in neuronal response
properties—is directly related to network connectivity.
This is a characteristic feature of the model which
may provide the opportunity in the future to test the
underlying assumptions of the model directly.

The choice of the functional form of the projection
can be motivated as follows. First, reconstruction of
the stimulus at the tecto-rotundal projection ensures
that at each layer of the pathway the stimulus can be
encoded using the same number of neurons, as shown in
Section 2.4, instead of requiring an increasingly growing
number of neurons along the pathway. Second, spatial
frequencies are “exposed” at the projection, allowing
spatiotemporal filtering to be employed, e.g. to obtain
velocity sensitivity, without requiring periodic receptive
fields in accordance with experimental observation.

We reconstruct the visual input through linear super-
position of the responses of nrc rotundal neurons, giving

Mrc(x, t) =
nrc∑
j=1

R j
rc(x)r j

rc(t), (9)

where R j
rc(x) is the inverse Fourier transform of R j

rc(k).
In the Section 3.1 we show by means of computer sim-
ulations that for large numbers of tectal and rotundal
cells

Mrc(x, t) ≈ I(x, t) (up to a scaling factor). (10)

2.2 Motion processing with tectal
and rotundal neurons

So far, we have described how spatial visual data is
organized in our model of the retino-tecto-rotundal
pathway. We have defined tectal subpopulations rep-
resenting global Fourier components of the visual in-
put. However, tectal and rotundal neurons also show
selectivity for motion attributes. For example, tectal
neurons have been shown to be selective for moving
stimuli, while they are only weakly selective for direc-
tion of motion (Troje and Frost 1998). This property
of tectal neurons might have its origin in the synaptic
properties of tectal neurons that promote suppression
for static stimuli (Luksch et al. 2004; Khanbabaie et al.
2007), and/or in retinal preprocessing that enhances
stimulus contrast. Hence we preprocess the visual input
with a high-pass filter (see Section 2.5) to account for
spatiotemporal contrast enhancement effects, without
going into more detail here.

In the retino-tecto-rotundal pathway, pronounced
selectivity for direction of motion is observed for ro-
tundal neurons. In previous work, it was shown that
motion processing can be performed in global Fourier
space using spatial-frequency-dependent temporal fil-
ters (Dellen et al. 2007). We assume that directional
temporal filtering takes places at the interface between
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tectal and rotundal neurons. In the model, intermediate
rotundal units temporally filter the input from the asso-
ciated tectal subpopulation. We can write the response
of a rotundal neuron j selective for a velocity v as

r j
rc,v(t) =

[∫
Ã

R j
rc(k)M̃tc,v(k, t)dk

]
+

, (11)

with

M̃tc,v(k, t) =
∫

Tv,k(t − t′)Mtc(k, t′)dt′, (12)

where Tv,k(t) is a temporal filter selective for a tempo-
ral frequency ω = k · v, which implements the motion
constraint equation (Adelson and Bergen 1985; Barron
et al. 1994). This equation states that all the nonzero
power associated with a translating 2D pattern lies on
a plane through the origin in Fourier space, whose
orientation is determined by the pattern velocity vector.
The pattern velocity itself can be derived from the
nonzero Fourier components by finding the velocity for
which the constraint lines of the Fourier components
intersect.

Inserting Eq. (2) in Eq. (11) yields

r j
rc,v(t)=

[∫
Ã

R j
rc(k)

(∫
Tv,k(t − t′)

×
(

ntc∑
i=1

Ri
tc(k)ri

tc(t
′)

)
dt′

)
dk

]

+
(13)

=
[

ntc∑
i=1

∫ (∫
Ã

R j
rc(k)Tv,k(t−t′)Ri

tc(k)dk
)

ri
tc(t

′)dt′
]

+
(14)

=
ntc∑
i=1

∫
wij(t − t′)ri

tc(t
′)dt′, (15)

where

wij(t) =
∫

Ã
R j

rc(k)Tv,k(t)Ri
tc(k)dk (16)

is a changing effective (functional) connectivity spec-
ifying the connection of tectal neuron i and rotundal
neuron j.

To date, experimental evidence is insufficient to de-
termine the precise properties of the temporal filtering.
In this paper, we use the function

Tv,k(t)=
∫

exp
[
iω′t

]
exp

[−(ω′ − k · v)2/ξ |k|2] dω′, (17)

if t ≥ 0 and zero otherwise. The function exp[−(ω −
k · v)2/ξ |k|2] is a Gaussian of width ξ . This functional

form allows us to adjust how strictly the motion con-
straint equation is enforced (by varying ξ). The pa-
rameter ξ has dimensions deg2/s2. The temporal filter
contains a spatial-frequency-dependent weighting term,
which ensures that the same number of cycles is sam-
pled for each spatial frequency.

According to our model, a population of rotundal
neurons selective for velocity v segments the part of
the image moving with the corresponding velocity. Re-
construction of the segmented entity in real space can
be achieved by summing over all rotundal responses
selective for the velocity v, giving

Mrc,v(x, t) =
∑

j

R j
rc(x)r j

rc,v(t). (18)

2.3 Extracting local velocity from rotundal responses

In Section 2.2, we proposed that moving entities can
be segmented by means of velocity-selective rotundal
model neurons based on Eq. (18). In Section 3.4, we will
support this proposition with computer simulations. Of
course, real image sequences exhibit complex patterns
of motion involving accelerated motions, including ro-
tation. It is thus desirable to compute a local-velocity
field (or optic-flow field) of the visual input, in which
a velocity estimate is assigned to each point in the
image sequence. In this subsection, we formulate a
neural model that permits local-velocity estimates to be
derived from populations of velocity-selective rotundal
neurons, following up with an algorithmic implementa-
tion of the model.

The computation of local velocity requires a joint
representation of velocity and position. However, ro-
tundal neurons are selective for velocity but not for
position. In the Section 3.1, it is demonstrated that
position can be retrieved from the rotundal responses
by integrating the responses of certain subpopulations
(see also Eqs. (9–10) and Eq. (18)). We assume that
this operation is implemented by neurons positioned at
a higher level in the visual pathway, which we call C1
neurons. These neurons might be located in the caudal
ectostriatum (Gu et al. 2002; Nguyen et al. 2004).

The response of a C1 neuron o jointly selective for
velocity v and position x is defined by

ro
c1,x,v(t) =

⎡
⎣∑

j

R j
rc(x)r j

rc,v(t)

⎤
⎦

+/−
(19)

= [
Mrc,v(x, t)

]
+/− , (20)

where the idea expressed in Eq. (18) has been adapted
to C1 neurons. Here, we use a full rectification with
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[a]+/− = [a]+ if a ≥ 0 and [−a]+ otherwise. Construc-
tive interference, measured by taking the absolute
value, i.e. full rectification, of the superposed weighted
responses of velocity-selective rotundal neurons, leads
to a joint selectivity for position and velocity.

We further implement a spatiotemporal smoothing
by combining C1 responses at a secondary stage C2.
Thus we obtain

ro
c2,x,v(t) =

∫
Rc2(x − x′)ro

c1,x′,v(t)dx′, (21)

with

Rc2(x′) = exp
(−x′2/α2

)
(22)

where α is a smoothing parameter with dimension deg.
This computational scheme is illustrated in Fig. 3. The
smoothing operation at the secondary stage could al-
ternatively be implemented by horizontal interactions
between C1 neurons instead of a two-stage neural
network.

We now can assign a velocity ve(x, t) to each point
of the input sequence I(x, t) by finding the C2 neuron
among the C2 subpopulation selective for x that shows
the strongest response, thereby providing the local ve-
locity estimate

ve(x, t) = arg
{

max
v

[
rc2,x,v

]}
. (23)

Note that this step is only introduced to obtain a rep-
resentation of local velocity, which allows evaluating
the performance of the motion-processing system both
qualitatively and quantitively. In the animal brain, simi-
lar operations may be implemented in order to generate
motor output.

Fig. 3 Extracting local velocity from rotundal responses. C1
neurons integrate the responses of rotundal subpopulations ac-
cording to Eq. (20), generating joint selectivity for position and
velocity (depicted in red). C2 neurons average the responses of
C1 neurons of similar selectivity

In the limit of large tectal and rotundal populations,
we make the substitutions

Mtc(x, t) = F [I(x, t)] (24)

and

Mrc,v(x, t) = F̃
[
Tv,k(t) ∗t F[I(x, t)]] , (25)

in Eqs. (11) and (20), respectively. The symbol ∗t

denotes a temporal convolution and F̃ is the inverse
spatial Fourier transformation. Keeping in mind that
the total rectification performed in Eq. (20) is math-
ematically equivalent to taking the absolute value of
Mrc,v(x, t), Eq. (23) can then be replaced by

ve(x, t)

=arg
{

max
v

[∣∣∣F̃ [
Tv,k(t) ∗t F[I(x, t)]

]∣∣∣∗x exp
(−x2/α2

)]}
,

(26)

which constitutes an algorithm for the computation of
optic flow utilizing global spatiotemporal filters. The
symbol ∗x denotes a spatial convolution. It has been
demonstrated recently that algorithms utilizing global
Fourier transformations for velocity estimation are not
impaired by uncertainties arising in algorithms that
utilize a local measurement window (Dellen and
Wörgötter 2008). Furthermore, a confidence measure
can be defined as

c(x, t)=
∣∣∣F̃ [

Tve,k(t) ∗t F[I(x, t)]]∣∣∣ ∗x exp
(−x2/α2

)
, (27)

upon which a threshold τr can be applied to select only
the more reliable velocity estimates—which is a com-
mon strategy in computer vision (Barron et al. 1994).

2.4 Connectivity of the tecto-rotundal projection

The weight (connection strength) of a connection be-
tween a tectal and rotundal neuron is defined via
Eq. (8). If the weight is zero or sufficiently close to
zero, the connection can be considered as non-existing.
Hence, according to our model, the number of connec-
tions is influenced by the choice of the model parame-
ters (see also Section 2.6).

The total number of (non-zero) connections is also
bounded by the upper limit ntc of the sum of Eq. (7).
To assure proper transmission of the spatial informa-
tion of the stimulus, ntc is assumed to be large, which
implies that a rotundal neuron makes connections with
many tectal cells. Experiments (in the cerebral cortex)
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indicate that a neuron receives input from about 104

neurons (Koch 1999; Pakkenberg et al. 2003). The large
dendritic fields of rotundal neurons may suggest an
even higher number for the tecto-rotundal projection.
However, we will show in the following that the number
of required connections can be decreased by creating
rotundal subpopulations which receive input from an
exclusive subset of tectal neurons, distributed through-
out the entire tectum.

Let us assume a rotundal neuron j receives only input
from a subpopulation Ps of nc tectal neurons. Hence,
we write

r j,s
rc =

[∫
R j,s

rc (k)As(k)dk
]

+
(28)

with

As(k) =
∑
l∈Ps

Rl
tc(k)rl

tc. (29)

For large number ntc of tectal neurons, the following
equations hold

F[I(x, t)] =
ntc∑
i=1

Ri
tc(k)ri

tc (30)

=
nq∑

s=1

∑
l∈Ps

Rl
tc(k)rl

tc (31)

=
nq∑

s=1

As(k), (32)

if the subpopulations {P1, P2, ..., Pnq} are mutually ex-
clusive and ncnq = ntc is fulfilled. Here, nq denotes the
number of subpopulations. It can be shown by com-
puter simulations that for large numbers of na of rotun-
dal neurons, one can write (in some approximation)

As(k) =
na∑
j=1

R j,s
rc (k)r j,s

rc . (33)

Inserting Eq. (33) in Eq. (32), we obtain

F[I(x, t)] =
nq∑

s=1

∑
j∈P′

s

R j,s
rc (k)r j,s

rc , (34)

where P′
s is a subpopulation of na rotundal neurons

receiving exclusively input from tectal subpopulation
Ps. Hence, we have a total number of nrc = nanq ro-
tundal neurons. According to this derivation, the num-
ber of connections can be decreased without impairing
function if a proportional amount of rotundal subpopu-

lations is created, each subpopulation receiving input
from the same group of tectal neurons. Assuming a
fixed total number of tectal neurons ntc and na constant,
then system performance is constant if

ncnrc = nantc = const, (35)

i.e. the number of required tectal neurons within each
subpopulation can be decreased by increasing the to-
tal number of rotundal neurons (by creating more
subpopulations). Using double-tracer injections in the
nucleus rotundus, Marin et al. (2003) discovered that
the tecto-rotundal projection is interdigitating, i.e. in-
termingled sets of tectal neurons terminate in separate
regions within one subdivision of the nucleus rotun-
dus. According to our model, this architecture might
have its origin in connectivity constraints which have
to be compensated by creating rotundal subpopulations
(within a subdivision). These results further demon-
strate that incomplete implicit stimulus reconstruction
at the tecto-rotundal projection has to be compensated
at the rotundal level by increasing the total number
of neurons if the entire stimulus is to be transmitted,
favoring an architecture as proposed by Eq. (8) for
efficiency arguments.

2.5 Preprocessing

We preprocess the image sequence with a high-pass
filter. This step accounts for change sensitivity at the
tectal level. The high-pass (Butterworth) filter is de-
fined in Fourier space as

� f = 1/
[
1 + τ f /

(
k2

x + k2
y + fsk2

t

)]
, (36)

where τ f is a threshold parameter with dimension
deg−2 and kx, ky, and kt are the frequencies of the
image sequence, and fs = s2/deg2. This filter enhances
the spatiotemporal contrast of the image sequence.

2.6 Tectal and rotundal receptive-field parameters

The parameters of the model are specified by defining
the receptive fields of tectal and rotundal model neu-
rons. The receptive field of a tectal neuron is generated
by first creating points in the area A with a uniform
probability of 0.1 points/deg2. This is done by tiling
the potential receptive-field area into small surface
elements of 1 deg by 1 deg. With probability 0.1, we
locate a point (corresponding to a dendritic ending) in
that element. This is repeated for all surface elements.
Ideally, this should be done for elements of 1/n deg by
1/n deg and probability 0.1/n with n → ∞. In Fig. 4(a),
the histogram of nearest neighbor distances between
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Fig. 4 Receptive-field properties of model neurons. (a) His-
togram of nearest-neighbor distances between points defining
the receptive field of tectal neurons. (b) Histogram of the corre-
sponding weight distribution. (c) Spatial pattern of points in real
space used to generate the real-space receptive field of tectal and
rotundal model neurons (only a quarter of the pattern is shown
for better display). (d) Power spectrum of the spatial Fourier
space of the receptive field shown in (c). (e) Histogram of the
weight distribution of tecto-rotundal connections according to
Eq. (8). (f) Alternative choice of spatial pattern of tectal and
rotundal receptive fields in real space assuming sparseness in
Fourier space (only a quarter of the pattern is shown for better
display). (g) Power spectrum of the spatial Fourier space of
the receptive field shown in (f). (h) Histogram of the weight
distribution of tecto-rotundal connections according to Eq. (8).
Most weights are zero

the created points is shown, representing the distribu-
tion of dendritic endings of tectal cells. A visual angle
of 1 deg corresponds approximately to 100 μm on the
tectal surface (Mahani et al. 2006). The resulting distri-
bution of points (corresponding to dendritic endings)
is thus in a realistic range. Having specified the point
distribution (or dendritic endings), the corresponding
weights to each point are determined by sampling a
uniform distribution between −0.5 and 0.5, as depicted

in Fig. 4(b). The corresponding spatial pattern is pre-
sented in Fig. 4(c). The corresponding energies of the
spatial Fourier components are shown in Fig. 4(d).

The receptive fields of rotundal neurons are defined
in spatial Fourier space and are generated by taking
the spatial Fourier transform of a point distribution
identical to the one used to generate tectal receptive
fields (Fig. 4(c)). To our knowledge, there is no conclu-
sive data available about the receptive-field structure of
rotundal neurons. Using Eq. (8), we compute the distri-
bution of weights representing the connection strength
between a tectal and rotundal neuron. The histogram
of the weights is shown in Fig. 4(e). Weights range
between −0.5 and 0.5 with a maximum at zero. Hence,
for the chosen receptive fields, only a small fraction
of connections are strong. This is in accordance with
experimental data (Marin et al. 2003).

Our knowledge about the precise receptive-field
properties of tectal neurons is limited. Tectal dendritic-
field properties only provide an approximation of tectal
receptive fields (Troje and Frost 1998; Mahani et al.
2006; Schmidt and Bischof 2001). However, potential
hidden structures in tectal and rotundal receptive fields
may have a considerable impact on tecto-rotundal con-
nectivity. Experimental data by Schmidt and Bischof
(2001) indicates that the sparse and spotty receptive
fields of tectal neurons contain substructures, which are
however not yet sufficiently quantified to draw further
conclusions with respect to our model. Receptive-field
parameters have also been measured for neurons in the
superior colliculus (Prevost et al. 2007; Mooney et al.
1988), the mammalian homolog of the optic tectum,
but mainly in superficial layers. Future measurements
of responses of deep tectal neurons to grating stimuli,
i.e. spatial frequency, would allow us to further con-
strain the model. For example, sparseness in the spatial
Fourier space (instead of sparseness in real space) of
tectal and rotundal receptive fields has a strong impact
on the connectivity pattern predicted by the model. In
Fig. 4(f, g) the corresponding spatial patterns of the
receptive fields are shown in real space and in Fourier
space, respectively. Most weights defining the tecto-
rotundal projection are zero, resulting in a sharp peak
in the histogram (Fig. 4(h)).

It is important to keep in mind that our model
of the retino-tecto-rotundal pathway is completely de-
fined through Eqs. (1)–(18). Experimentally measur-
able quantities, such as the receptive-field structure
of tectal and rotundal neurons, are parameters to the
model that can be adjusted according to current knowl-
edge. Predictions of the model such as the distribution
of weights of the tecto-rotundal connection are neces-
sarily influenced by the parameter values.
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2.7 Error measurements

When the true velocities of a sequence of images of
sizes m×n are given, error measures can be computed
to quantify the performance of the algorithm. Accord-
ing to Barron et al. (1994), the angular error is defined as

Ē =
∑

x

E(x)/nm, (37)

with

E(x) = arccos
{(|v(x) · ve(x)|2+1

)−1/2

/
[(|v(x)|2+1

) · (|ve(x)|2+1
)]−1/2

}
, (38)

where ve is the estimated velocity and v is the true
velocity.

3 Results

In this section, response properties of tectal and rotun-
dal model neurons are computed using computer sim-
ulations using the model of the retino-tecto-rotundal
pathway introduced in Section 2. We choose parame-
ters τ f = 0.2 deg2 and ξ = 0.6 frame2/deg2 for the spa-
tiotemporal filters of the retino-tecto-rotundal pathway
(see Eqs. (17) and (36)). The 2D spatial functions,
defining the receptive fields of tectal and rotundal neu-
rons, Rtc(x) and Rrc(x), respectively, are specified in
Section 2.6. To obtain an intensity distribution with
a zero mean for each image sequence, we subtract
the mean intensity value from I(x, t). The rectification
threshold τ (see Eq. (1)) is set to zero. We further show
in Section 3.6 that local velocity fields can be computed
from the output of model of the retino-tecto-rotundal
pathway using the computational scheme derived in
Section 2.3. For the C2 neurons, we choose a smooth-
ing parameter α = 10 deg (see Eqs. (26) and (22)).
The model parameters are not altered unless indicated
otherwise.

3.1 Organization of spatial information in the tectal
and rotundal cell populations

Computer simulations are used to predict the responses
of the model tectal and rotundal cell populations. First
we demonstrate that the tectal responses approximate
the Fourier transform of an input image of size 95 × 128
pixels2, assuming that each pixel corresponds to 1 deg of
visual angle. For computational reasons, the resolution
is constrained to a maximum of 1 deg, which is below
the resolution of the avian visual system. The receptive

field of each model tectal cell is generated according
to Section 2.6 assuming sparseness in real space (see
Fig. 5(a–c)). For practicality, the receptive field size was
chosen such that the visual field is tiled into equally
large parts. This detail has no effect on the results of the
computation. For the tectal-cell populations, we com-
puted the representation of the population response in
Fourier space (Eq. (2)) and calculated the correlation
coefficient of the Fourier transform F[I(x)] of the input
image and Mtc(k). In Fig. 5(a), the correlation coef-
ficient is plotted as function of the number of tectal
cells. For large numbers of cells, a correlation coeffi-
cient above 0.95 is obtained. The squared correlation
coefficient measures the correlation (or amount of vari-
ance reconstructed) and has a value larger than 0.9,
demonstrating that the original image can be largely
retrieved from the tectal populations. The input image,
shown as the left panel of the inset in Fig. 5(a) and
also shown in Fig. 10(b), is a snapshot of the so-called
taxi sequence. The reconstructed image from the tectal
responses is juxtaposed as the right panel of the inset.

The receptive field of rotundal neurons is generated
according to Section 2.6 assuming sparseness in real
space (see Fig. 4(c–e)) having a size of 95 × 128 deg.
The representation of a representative rotundal recep-
tive field in Fourier space is shown in Fig. 4(d). We
can now reconstruct the visual input from the rotundal
responses by computing Mrc(x, t), but replacing Mtc(k)

by F[I(x)]. The correlation coefficient of the input
image I(x) and Mrc(x) is then calculated and plotted in
Fig. 5(b) as a function of the number of rotundal cells.
For large numbers of cells, a correlation coefficient
above 0.9 is obtained, demonstrating that the origi-
nal image can be largely retrieved from the rotundal
populations.

We investigate how noise in the connectivity be-
tween tectal and rotundal neurons affects the quality
of reconstruction. According to Eq. (2), each tectal
cell contributes to each supopulation k with a weight
Rtc(k). To each of these weights, we add a noise term
fnnr|Rtc(k)| where fn is the noise factor and nr is ran-
dom number drawn from a Gaussian distribution with
a standard deviation of 1. The correlation coefficient
of the reconstructed image and the original are plotted
in Fig. 5(c). Noise in the connectivity impairs image-
reconstruction performance for noise terms being in
the range of the average absolute connection strength,
approximated by |Rtc(k)|. However, for noise level of
50% of the average absolute connection strength, i.e.
fn = 0.5, performance drops only by about 10%. For
a noise level of 400%, i.e. fn = 4, performance de-
creases by about 40%. These values suggest robustness
and graceful degradation of performance with network
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Fig. 5 Stimulus reconstruction from tectal and rotundal popula-
tion responses. (a) Correlation coefficient of the Fourier space
representation of the tectal neuronal populations (Eq. (2)) and
Fourier transform of the visual input plotted for increasing num-
bers of tectal neurons. For large numbers of cells, a correlation
coefficient above 0.95 is obtained, corresponding to a correlation
larger than 0.9 (see text). The reconstructed image from the tectal
population, presented in the inset (right panel), may be compared
with the original image (left panel of inset). (b) Correlation coef-
ficient of the real-space representation of the rotundal neuronal
populations (Eq. (6)) and the visual input, plotted against the
number of rotundal neurons. For large numbers, we achieve cor-
relation coefficients larger than 0.95. (c) Correlation coefficient
of the original and the reconstructed image for different levels of
noise fn in the connectivity (see text)

damage, which is typical for coarse-coding schemes
(Hinton et al. 1986).

3.2 Response properties of tectal neurons

We also simulate the response of tectal neurons to
various stimulus attributes, i.e. spatial frequency, orien-
tation, and speed. The same parameters are used for the
tectal neuron as in the previous subsection. The image
sequence contains 20 frames of size 100 × 100 deg2. We
choose the size of tectal receptive fields to be 50 × 50
deg2. The remaining receptive field parameters are not
altered. The size of the rotundal-cell receptive fields is
chosen as 100 × 100 deg2. In the following, velocities
are defined in deg/frame for convenience, and typical
speeds of objects in this paper are chosen to be in the
range of 0 to 5 deg/frame. The frame rate of the motion
sequence allows translating the velocity units to deg/s.
Typical frame rates are 24 frames/s. For example, a
speed of 1 deg/frame corresponds to a speed of 24 deg/s.

First, we investigate the response of model tectal
neurons to a grating that moves in the x direction with
1 deg/frame as a function of the spatial frequency of the
grating. While the spatial-frequency tuning curves of
individual model neurons exhibit multiple but random
peaks (Fig. 6(a), left panel, blue lines). The mean re-
sponse of the population (averaged over 200 neurons)
shows a slight preference for high spatial frequencies
(Fig. 6b, thick red line). This result can be attributed
to the preprocessing of the image sequence with a
high-pass filter and conforms with the observation that
tectal responses are suppressed by static stimuli. We
calculate the number of peaks and the corresponding
peak heights (above the mean) of the individual tuning
curves. The histogram of the number of peaks and peak
heights are plotted in the right upper and lower panel.
Multiple peaks are commonly observed.

Next, we calculate the response of tectal neurons to a
grating of a spatial frequency k = 0.2 cycles/deg moving
with 1 deg/frame for different orientations of the grat-
ing. While the tuning curves of individual neurons show
multiple peaks (Fig. 6(b), blue lines), the averaged
tuning curve does not show selectivity for orientation
(Fig. 6(b), thick red line). The histogram of the number
of peaks and the peak heights of the corresponding
tuning curves are given in the right upper and lower
panel, respectively.

Lastly, we compute the response of tectal model
neurons to a solid square of size 10 × 10 deg2 moving
along the x axis for different constant velocities. Indi-
vidual tuning curves show sensitivity to stimulus speed
and occasionally weak directional selectivity (Fig. 6(c),
blue lines). The averaged tuning curve exhibits strong
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Fig. 6 Response properties
of tectal model neurons. (a)
Spatial frequency tuning and
(b) orientation tuning each
summed over a time interval
of 20 frames and plotted for 9
neurons (blue curves). The
average tuning curve
obtained from 200 model
cells is plotted in thick red.
The corresponding
histograms of peak number
and peak height (above
mean) are depicted in the
upper and lower right panels,
respectively. (c) Responses to
a square moving along the
x-axis with different constant
speed plotted as a function of
x-velocity for 9 model
neurons in blue and average
tuning curve from 200 model
in thick red. The histogram of
the speed tuning index is
depicted in the right panel
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sensitivity to stimulus speed, but does not show any
directional selectivity (Fig. 6(c), thick red line). This
result is in accordance with experimental data (Troje
and Frost 1998). We calculated the speed tuning index
of a tectal neuron by computing [r1 − r0]/r1 where r1

and r0 are the respective values of the tuning curve at
vx =1 deg/frame and vx =0 deg/frame. All speed tuning
indices smaller than zero were set to zero. The resulting

histogram of the speed tuning index is presented in the
right panel of Fig. 6(c). Most neurons of the population
have a speed-tuning index close to 1.

To our knowledge, no experimental tuning curves
to frequency and orientation of spatial Fourier com-
ponents are available for deep tectal neurons of the
tectofugal pathway. Spatial-frequency tuning has been
measured only for neurons in superficial layers of the
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optic tectum. However, there is experimental evidence
that deep tectal neurons are only weakly selective for
direction of motion, but strongly tuned to speed (Troje
and Frost 1998; Letelier et al. 2002).

3.3 Response properties of rotundal
model neurons

Computer simulation is applied to study the response
of a motion-sensitive rotundal model neuron selective
for a velocity v = (1, 0) deg/frame to a solid square of
size 10 × 10 deg2 moving along the x axis at differ-
ent constant velocities. The parameters of the tectal

neurons are chosen as in the previous subsection. The
rotundal-cell receptive fields are again of size 100 × 100
deg2. For the temporal filter of the rotundal neurons,
we take ξ = 0.6 frame2/deg2. The individual velocity
tuning curves are presented in Fig. 7(a) (blue lines).
Most of the tuning curves exhibit a pronounced sen-
sitivity to direction of motion. This is reflected in the
average tuning curve (based on 200 neurons), depicted
in thick red. Directional selectivity has been observed
for a certain class of rotundal neurons (Wang and Frost
1990; Wang et al. 1993).

For comparison, we compute the tuning curves for
rotundal neurons without including the preprocessing

Fig. 7 Response properties
of rotundal model neurons.
(a) Velocity tuning curves
of individual rotundal model
neurons, selective for a
velocity in the x-direction
of 1 deg/frame, are depicted
in blue. The average tuning
curve is plotted in thick red.
Here, preprocessing is
included in the model. (b)
Same as a, but with no
preprocessing.
(c) Histogram of the peak
height for the tuning curves
of rotundal neurons (with
preprocessing).
(d) Histogram of the peak
number obtained from the
tuning curves of rotundal
neurons (with preprocessing).
(e) Histogram of the
direction-tuning index
obtained from the tuning
curves of rotundal neurons
(with preprocessing)
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step at the tectal level (Fig. 7(b)). The resulting tuning
curves show strong selectivity for direction of motion,
demonstrating that this rotundal property is not a con-
sequence of the preprocessing operation. The selec-
tivity for direction stems instead from the temporal
filtering taking place at the tecto-rotundal projection.

To date, there is not sufficient data available to com-
pare our results quantitatively to real velocity-tuning
curves. Experiments however have shown that neurons
in the ventral subdivision of the nucleus rotundus are
sensitive to the direction of motion (Wang et al. 1993;
Wang and Frost 1990).

For the rotundal population of Fig. 7(a), we com-
puted the peak height and the number of peaks of the
tuning curves. The histograms are plotted in Fig. 7(c, d).
Most tuning curves exhibit only a single peak, how-
ever double peaks are observed as well. We further
calculated the direction tuning index of each rotundal
neuron as [r1 − r−1]/r1 where r1 and r−1 are the respec-
tive values of the tuning curve at vx = 1 and vx = −1
deg/frame. Most neurons of the population are direc-
tionally selective, with a direction tuning index larger
than 0.5 deg/frame (see Fig. 7(e)). A population of
12 × 104 tectal neurons was chosen for this simulation.

3.4 Motion segmentation through motion-sensitive
rotundal subpopulations

Simulations are carried out to explore the responses
of rotundal model neurons, that are selective for a
velocity v=(1, 0) deg/frame, to a stimulus consisting of
a camouflaged random-dot square moving with a speed
of 1 deg/frame to the right, in front of a random-dot
background pattern moving with a speed of 1 deg/frame
to the left. A schematic of the stimulus is given in
Fig. 8(a). Motion segmentation in the proposed model
is simulated by computing Mrc,v(x, t) for the input im-
age sequence based on a tectal cell population of 12 ×
104 neurons and a rotundal cell population of 8 × 104

neurons. The response Mr,v(x, t) of the rotundal popu-
lation in real space is depicted in Fig. 8(b). The moving
camouflaged random-dot square has been segmented
with sharp boundaries and precise spatiotemporal
detail.

3.5 Local velocity computation and the aperture
problem

We first investigate the response pattern of a C2 model
neuron population to a moving square stimulus of 3 × 3
deg size. The mean response values of C2 model neu-
rons at the time point where the stimulus crosses their
receptive-field center is plotted as a function of the

(a)

(b)

Fig. 8 Motion segmentation. (a) Input image sequence showing
a camouflaged random-dot square moving to the right in front of
a random-dot background that moves to the left. (b) Segmented
random-dot square reconstructed from a velocity-selective rotun-
dal subpopulation response

preferred velocity of the C2 model neurons in Fig. 9(a).
The curve peaks at vx = 2 deg/frame, which is the
velocity of the stimulus. The position tuning curve of
a C2 neuron to the same stimulus with respect to its
receptive-field center is shown in Fig. 9(b). The re-
sponsive region of the C2 neurons is approximately
20 deg in diameter. If using a larger stimulus of 12 × 12
deg size, population tuning becomes less pronounced
(see Fig. 9(c), solid line), however, the correct velocity
estimate can still be extracted from the population
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Fig. 9 Response properties of C2 neurons. (a) Mean response
value of C2 model neurons as a function of their preferred
velocity to a small square of 3 × 3 deg size moving along with
vx = 2 deg/frame in the x-direction. The correct stimulus velocity
can be derived form the population response by finding the C2
model neuron with the largest response. (b) Mean response value
of a C2 model neuron as a function of the position (with respect
to the receptive-field center) of the same stimulus. (c) For a
larger square of 12 × 12 deg size, the mean response value of
the C2 model neurons still peaks at the correct stimulus velocity
(solid line), even though the square approximates the size of the
responsive area of the C2 model neurons (see b). If the area out-
side the responsive region of the model neuron of approximately
20 deg in diameter is masked, the population response sug-
gests an incorrect stimulus velocity of vx = −2 deg/frame in the
x-direction (dashed line)

response. If the area outside the responsive region of
the model neuron is masked, the responses of the C2
neuron suggest an incorrect stimulus velocity of vx =
−2 deg/frame in the x-direction (see Fig. 9(c), dashed
line). This demonstrates that distributed global process-

ing of velocity and subsequent reconstruction of posi-
tion allow velocities to be reconstructed locally with-
out introducing an aperture. The parameter choices
of the C2 model neurons have been τ f = 0.2 deg2,
ξ = 0.6 frame2/deg2, and α = 3 deg.

3.6 Local-velocity fields from rotundal responses

In this section, we demonstrate that the proposed
model enables the animal to compute optic flow from
real image sequences. Using the algorithmic implemen-
tation of Eq. (26), we compute the local-velocity fields
of four image sequences for parameter choices τ f =
0.2 deg2, ξ = 0.6 frame2/deg2, α = 10 deg, and τr = 5.
For practical implementation reasons, the temporal fil-
ter here has been chosen to be non-causal, which is
expected to have only a minor effect on the results.
The image sequences selected are benchmark exam-
ples commonly used in the machine-vision community
(Barron et al. 1994).

In the SRI Sequence, a camera moves parallel to the
ground plane along the x-axis (horizontal direction) in
front of several trees. The velocities are as large as two
pixels/frame, and the sequence contains 20 frames. A
snapshot is depicted in the left panel of Fig. 10(a), while
the right panel shows the estimated velocity field in the
x-direction. The optic-flow field captures the predomi-
nant velocity pattern of the sequence and segments the
images into foreground and background.

In the Hamburg taxi sequence, a street scene is
shown with four moving objects: a taxi turning the
corner, a car in the lower left driving from the left to
the right, a van in the lower right driving from the right
to the left, and a person walking in upper left. Image
speeds of the four moving objects are approximately
1.0, 3.0, 3.0, and 0.3 pixels/frame, respectively. The se-
quence contains 20 frames. A snapshot is shown in the
right panel of Fig. 10(b). Adopting the same parameters
as for the SRI-sequence, our algorithm returns an optic-
flow field in which the moving objects are clearly visible
(Fig. 10(b), right panel). The velocity estimates are
close to the true velocities of the objects.

The translating and diverging tree sequence are cre-
ated by moving a camera sideways and towards an
image of a tree, respectively. The algorithm returns flow
fields with 97% density and angular errors of 1.19 dega

for the translating-tree sequence and 3.83 dega for the
diverging-tree sequence (Fig. 10(c)).

We also apply the algorithm to the well-known
Yosemite sequence (Fig. 10(d)). Each frame of the
Yosemite sequence has been generated by mapping
aerial photography onto a digital-terrain map. Speeds
in the lower left corner go up to four pixels/frame,
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Fig. 10 Estimated
local-velocity fields. (a) SRI
sequence. (b) Hamburg taxi
sequence. (c) Translating/
diverging tree sequence.
(d) Yosemite sequence
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while the clouds translate with about one pixel/frame
to the right. The algorithm achieves an angular error of
7.73 dega everywhere except for the area of the clouds.
In the cloud area, the true motion is unknown, since the
clouds are undergoing Brownian motion and changing
shape.

4 Discussion

We have presented a firing-rate model of the retino-
tecto-rotundal pathway for the processing of Fourier-
based motion. In this model, responses of tectal
neurons are obtained by integrating the visual space
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over the receptive field of the neuron, which, in ac-
cordance with experimental data, is assumed to con-
sist of random dots sparsely distributed over a large
area of the visual space. We have established that de-
spite of the lack of periodic structures, motion signals
can be generated, giving rise to directionally-selective
responses of neurons in the nucleus rotundus. Using
biologically plausible model parameters, a characteris-
tic distribution of direction-tuning indices for the ro-
tundal population is predicted. Furthermore, spatial
information is retained in the population response and
can be retrieved at any stage of the processing stream.
As a proof of concept, we showed that local velocity
estimates may be derived from responses of the rotun-
dal model neuron population through superposition of
rotundal responses by a neural network. This includes
the prediction of neurons jointly selective for position
and velocity, potentially located in the caudal ectostria-
tum (Nguyen et al. 2004). Motion-sensitive neurons in
the caudal ectostriatum receive input from the nucleus
rotundus and have large receptive fields (Nguyen et al.
2004; Gu et al. 2002). The emergence of so-called hot
spots within the excitatory receptive field of ectostriatal
neurons might indicate the onset of position reconstruc-
tion (Gu et al. 2002). Using an algorithmic equivalent of
the model, local-velocity fields of four real sequences
featuring complex motions have been computed for a
fixed set of parameters, demonstrating the feasibility of
the approach.

Considering the large receptive fields of tectal
and rotundal neurons, a distributed representation
of spatiotemporal information is considered to be a
plausible choice to describe motion processing in
the retino-tecto-rotundal pathway. The model results
demonstrate that high spatial acuity is indeed in agree-
ment with the specific properties of this pathway. This
is also in agreement with work on coarse coding by
Hinton et al. (1986), who showed that a stimulus can be
represented more accurately by a collection of neurons
with broad response functions than by a collection of
neurons with more finely-tuned response functions.

So far, we confined the analysis and modeling
to feedforward processes. However, neurons in the
tecto-rotundal pathway exhibit contextual effects. For
example, tectal responses to a moving stimulus are
suppressed by a background moving in the same direc-
tion, and vice versa (Frost and Nakayama 1983; Sun
et al. 2002). Contextual influences are thought to be
mediated by lateral connections or through feedback
from brain areas at a later processing stage (Nakayama
1985; Dellen and Wessel 2008). Our model of the
retino-tecto-rotundal pathway might be extended to
allow for such interactions. In the future, we aim to

investigate the role of isthmo-tectal feedback on mo-
tion processing (Meyer et al. 2008). Further, there is
evidence that certain classes of neurons in the nucleus
rotundus compute various optical variables of looming
objects (Wang et al. 1993; Sun and Frost 1998). The
neuronal responses of these neurons could be modelled
adequately by sampling over tectal subpopulations that
encode radial spatial frequencies at the tecto-rotundal
projection.

Representing the stimulus by distributed representa-
tions and performing motion processing in this global
space offers specific advantages compared to local rep-
resentations, such as representational efficiency, i.e.
more entities can be encoded by the same number
of neurons, and graceful degradation of performance
in response to network damage or noise. For mo-
tion processing tasks, distributed representations have
the advantage that local velocity responses obtained
via superposition of responses of wide-field neurons
are not constrained by the (measurement-window-
induced) aperture problem (see Fig. 9), which is typ-
ically introduced when utilizing a small measurement
window, i.e. small receptive fields. Hence, the pro-
posed model and the respective optic-flow algorithm
are fundamentally different from theories of motion
processing culminating in the computation of optic flow
that have been developed for the geniculocortical path-
way in mammals (Adelson and Bergen 1985; Heeger
1988). In these models, velocity estimates are derived
from simple and complex cells that feature periodically
arranged on and off subunits, with each cell covering
a local patch of the visual space. In our model, local
velocity estimates arise from constructive interference
effects in distributed representations. Constructive in-
terference allows joint selectivity for position and ve-
locity to arise, even though at previous processing
steps velocity-sensitive rotundal neurons have received
input from the entire visual field. The model shows
that global transformations are not in conflict with the
computation of local velocities.
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