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Abstract The occurrence of neuronal spikes may be characterized by not only the

rate but also the irregularity of firing. We have recently developed a Bayes method

for characterizing a sequence of spikes in terms of instantaneous rate and irregularity,

assuming that interspike intervals (ISIs) are drawn from a distribution whose shape

may vary in time. Though any parameterized family of ISI distribution can be in-

stalled in the Bayes method, the ability to detect firing characteristics may depend on

the choice of a family of distribution. Here, we select a set of ISI metrics that may

effectively characterize spike patterns and determine the distribution that may extract

these characteristics. The set of the mean ISI and the mean log ISI are uniquely selected

based on the statistical orthogonality, and accordingly the corresponding distribution

is the gamma distribution. By applying the Bayes method equipped with the gamma

distribution to spike sequences derived from different ISI distributions such as the log-

normal and inverse-Gaussian distribution, we confirm that the gamma distribution

effectively extracts the rate and the shape factor.

Keywords firing irregularity · firing rate · gamma distribution · point processes ·
Bayesian estimation

1 Introduction

In the analysis of neuronal spike trains, attention has been paid mainly to the rate

of spike occurrences correlated to the stimulus or the behavioral context of the ani-

mal [Gerstein and Kiang 1960,Abeles 1982,DiMatteo et al. 2001,Dayan and Abbott 2001,

Kass et al. 2005,Shimazaki and Shinomoto 2007]. From the same sequence, it may be
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possible to further extract information about irregularity of firing [Kara et al. 2000,

Kostal and Lansky 2006,Mitchell et al. 2007]. The irregularity of firing has been mea-

sured by the ISI distribution, or the coefficient of variation CV defined by the ratio of

the standard deviation to the mean of ISIs. However, these metrics are easily affected by

fluctuation in the mean rate of firing caused by extrinsic stimuli [Gabbiani and Koch 1998,

Nawrot et al. 2008]. A sequence of spikes that looks irregular can be interpreted ei-

ther as being randomly generated at a fixed rate, or as being derived regularly with

a fluctuating rate. We have proposed the Bayes method to select an interpretation

from a continuous spectrum between these two extremes in light of the statistical

plausibility for each given spike train [Koyama and Shinomoto 2005]. The nature of

intrinsic randomness of neuronal firing has also been discussed using metrics such as

the local variation LV measuring the instantaneous irregularity [Shinomoto et al. 2003,

Shinomoto et al. 2005,Shinomoto et al. 2009,Davies et al. 2006,Holt et al. 1996,Miura et al. 2006].

The use of information on the firing regularity was proposed to improve the firing rate

estimation [Cunningham et al. 2008].

In these studies, the degree of irregularity or regularity is assumed to be constant

throughout a single train of neuronal spikes. However, it was also reported that the fir-

ing irregularity may vary with behavioral context [Davies et al. 2006,Churchland et al. 2006,

Mitchell et al. 2007]. To examine how the firing irregularity varies in time or with con-

text, we have recently extended the Bayes method so that it can estimate both the

rate and the regularity moment by moment, by assuming that the shape of the ISI

distribution varies in time [Shimokawa and Shinomoto 2009].

In measuring the firing irregularity, any parameterized family of ISI distributions

cannot perfectly account for the underlying distribution that has actually generated a

sequence of spikes. Therefore, the accuracy of the inference would depend on the choice

of a family of distributions that is installed in the Bayes method. Here, we first select

a set of ISI metrics that may characterize any spike sequence effectively and a family

of distributions suitable for extracting them. By imposing the information geometrical

orthogonality, we found that a suitable set of metrics is the mean ISI and the mean log

ISI, and the corresponding distribution is the gamma distribution. Next, we examine

the Bayes method equipped with the gamma distribution in its ability in estimating the

instantaneous rate and regularity of spike sequences. It is found that the Bayes method

equipped with the gamma distribution can capture the instantaneous firing rate and

regularity reasonably well, even for spike sequences derived from the log-normal and

inverse-Gaussian ISI distributions.

2 Orthogonal ISI metrics

For the purpose of characterizing spike trains, we seek a set of ISI metrics that satisfy

information geometrical orthogonality, under which the estimators can be indepen-

dent, thereby the estimation of each metric is not affected by the estimation error

of another metric. Here we assume a renewal process, in which ISIs are derived from

an identical distribution p(T ). Under the principle of maximum entropy [Jaynes 1957,

Schneidman et al. 2006], the ISI distribution p(T ) may be uniquely determined, given

information on the spiking characteristics.

The most basic information about a spike sequence is the firing rate λ(= 1/E[T ] =

1/
R∞
0 Tp(T ) dT ). We define a rate-rescaled distribution assuming scale invariance [Reich et al. 1998]
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by

p(T )dT = λg(λT )dT, (1)

thus satisfying

Z ∞

0
g(Λ)dΛ = 1, (2)

Z ∞

0
Λg(Λ)dΛ = 1, (3)

where Λ ≡ λT . With the rate-rescaled distribution g(Λ), the differential entropy can

be separated into rate and shape terms,

h = −
Z ∞

0
p(T ) log p(T )dT (4)

= − log λ−
Z ∞

0
g(Λ) log g(Λ)dΛ. (5)

Given the firing rate λ, the distribution that maximizes the differential entropy is an

exponential function, exp (−Λ). The process of generating spikes with this exponential

ISI distribution is the Poisson process.

Next, let us consider the situation in which we obtain additional information with

another firing metric A(Λ),

Z ∞

0
A(Λ)g(Λ)dΛ = η. (6)

The distribution that maximizes the entropy under the given λ and η is obtained by

the method of Lagrange multipliers [Kapur 1989],

Z ∞

0
δg(Λ) {log g(Λ) + 1 + a + bΛ + cA(Λ)} dΛ = 0, (7)

giving the rate-rescaled distribution,

g(Λ) = exp [−{1 + a + bΛ + cA(Λ)}] . (8)

To make the ISI metric A(Λ) effective in characterizing spike sequences, we re-

quire it to be orthogonal to the mean ISI. The information geometrical orthogonal-

ity [Amari and Nagaoka 2000,Ikeda 2005], or diagonalizing the Fisher information ma-

trix, is given by

E

»
∂2

∂λ∂η
log p(T )

–
= 0. (9)

Using Eqs.(1), (8), and (9), we obtain

1

λ

∂b

∂η
+

∂c

∂η
E[TA′(λT )] = 0. (10)

Here,

1

λ

∂b

∂η
+

∂c

∂η
E[TA′(λT )] + c

∂

∂η
E[TA′(λT )] = 0 (11)
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is derived by differentiating the following equation with respect to η,

E

»
∂

∂λ
log p(T )

–
=

∂

∂λ

Z ∞

0
dTp(T ) = 0. (12)

Combining Eqs.(10) and (11), we obtain

∂

∂η
E[TA′(λT )] = 0. (13)

In this way, the condition for the metric E[A(λT )] being always orthogonal to E[T ] is

that TA′(λT ) = const., or equivalently,

A(λT ) ∝ log λT . (14)

Thus, the orthogonal set of metrics is found to be the mean ISI and the mean log

ISI, which represent the scale and the shape of the ISI distribution, respectively. The

suitability of the log ISI in measuring the firing pattern was also discussed by Dor-

val, who noted that with logarithmic partitioning of ISIs, firing rate changes become

independent of firing pattern entropy [Dorval 2008]. Furthermore, for a rate-rescaled

distribution (1) whose shape is parameterized by κ, the expectation of the metric,

−E[log λT ] = log E[T ]− E[log T ] is computed as

−E[log λT ] = −
Z ∞

0
p(T ) log λTdT

= −
Z ∞

0
gκ(Λ) log ΛdΛ

≡ f(κ). (15)

(Here, we expressed the dependency of gκ on κ explicitly.) Thus, −E[log λT ] is a

function of only κ, suggesting that the shape of a rate-rescaled distribution may be

parameterized by−E[log λT ]. Hence,−E[log λT ] is suitable for characterizing the firing

regularity independently from the firing rate.

−E[log λT ] may be expanded as

−E[log λT ] = −E

»
log

„
1 +

T − E[T ]

E[T ]

«–
(16)

=
E[(T − E[T ])2]

2E[T ]2
− E[(T − E[T ])3]

3E[T ]3
+

E[(T − E[T ])4]

4E[T ]4
− · · · , (17)

where the first term of the rhs in above equation is squared CV . −E[log λT ] is, thus,

interpreted as a generalization of CV incorporating higher-order statistics.

Taking f(κ) in Eq.(15) to be

f(κ) = log κ− ψ(κ), (18)

where ψ(κ) is the digamma function, and combining it with Eq.(14), the distribution

that maximizes the differential entropy given the mean ISI and the mean log ISI is

found to be the gamma distribution [Kapur 1989],

p(T ) =
λκκκ

Γ (κ)
Tκ−1e−λκT , (19)

where Γ (κ) ≡ R∞0 xκ−1e−κxdx is the gamma function. We will hereafter characterize

any sequence of ISIs drawn from any distribution in terms of the firing rate λ and the

firing regularity κ.
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3 Bayesian inference of the rate and the regularity of firing

3.1 Spike generation

In deriving a Bayesian algorithm for characterizing spike sequences, we first consider a

process of drawing ISIs independently from an identical ISI distribution p(T | θ). Here,

we specify a set of parameters as θ = {λ, κ} that characterize the scale and shape of

the ISI distribution (Fig.1).
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ri
ty

 κ

regular

random

bursty

Fig. 1 A variety of ISI sequences derived from the gamma distributions in the parameter
space θ = {λ, κ} representing the scale and shape of the distribution.

Let us consider the situation in which the parameters or the state variables θ vary

in time. The probability for spikes to occur at times {ti}n
i=0 is approximated by the

product of the probabilities with the instantaneous state variables at the occurrence of

spikes,

p({ti} | {θ(t)}) =

n−1Y

i=0

p(Ti | θ(ti)), (20)

where Ti ≡ ti+1 − ti is the ith interspike interval.

In the preceding study [Shimokawa and Shinomoto 2009], we employed an accu-

rate formula that reproduces the probability for the inhomogeneous Poisson process,

exp
`− R r(t)dt

´
, in the case of κ = 1. However, the approximated formula (20) has

an advantage that the state space model can be applied straightforwardly. Note that

approximation (20) is secured if the state variables θ(t) are slowly modulated. This

is inevitably required for the inference of rate and regularity, since a certain number

of ISIs are needed for the estimation of parameters, and it is essentially impossible to

infer the variation of state variables during an ISI in which there is no spike.

3.2 Parameter inference

Next, we estimate the set of parameters, θ(t), from a given sequence of spikes, {ti}n
i=0,

by inverting the conditional distribution Eq.(20) with the Bayes formula,

p({θ(t)} | {ti}; γ) =
p({ti} | {θ(t)}) p({θ(t)}; γ)

p({ti}; γ)
. (21)
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The prior distributions for the parameters that represent the scale and shape fac-

tors are introduced here so that their large gradients are penalized; we introduce the

random-walk-type priors [Bialek et al. 1996] or equivalently the Gaussian process pri-

ors [Rasmussen and Williams 2006,Cunningham et al. 2008] for the rate and the shape

parameter,

p({θ(t)}; γ) = p({λ(t)}; γλ) p({κ(t)}; γκ), (22)

p({λ(t)}; γλ) =
1

Z(γλ)
exp

"
− 1

2γ2
λ

Z T

0

„
d log λ(t)

dt

«2

dt

#
, (23)

p({κ(t)}; γκ) =
1

Z(γκ)
exp

"
− 1

2γ2
κ

Z T

0

„
d log κ(t)

dt

«2

dt

#
, (24)

where γ = (γλ, γκ)T is a set of hyperparameters representing the degrees of flatness for

the modulation of the logarithms of rate λ(t) and the shape parameter κ(t). Z(γλ) and

Z(γκ) are the normalization constants. The result of the inference would be robust to

the order of differentiation in the prior distribution, as has been studied for the rate

estimation [Nemenman and Bialek, 2002].

In the empirical Bayes method, hyperparameters γ is determined so that it maxi-

mizes the marginalized likelihood [MacKay 1992,Carlin and Louis 2000],

p({ti}; γ) ≡
Z

d{θ(t)} p({ti} | {θ(t)}) p({θ(t)}; γ). (25)

Under the optimized hyperparameter γ = γ∗, we can obtain the maximum a posteriori

(MAP) estimates of the rate and the shape parameter θ(t) for which the posterior

distribution,

p({θ(t)} | {ti}; γ∗) ∝ p({ti} | {θ(t)}) p({θ(t)}; γ∗), (26)

is maximized.

The maximization of marginal likelihood (Eq.(25)) can be performed by the ex-

pectation and maximization (EM) method and Kalman filtering. Both the marginal

likelihood maximization and the exact evaluation of the MAP solution (Eq.(26)) re-

quire computation of the linear order of data size, O(n). Algorithms that allow practical

estimation are summarized in the Appendix.

4 The firing rate and regularity for other distributions

We consider here how the firing rate λ and firing regularity κ are translated into the

parameters of other distributions. For mathematical convenience, we take up here the

log-normal and inverse-Gaussian distributions. The log-normal distribution is given by

p(T |µ, σ) =
1√

2πσT
exp

»
− (log T − µ)2

2σ2

–
. (27)

The firing rate λ and firing regularity κ of a log-normal function are given in terms of

the parameter of the log-normal distribution µ and σ by

λ =
1

E[T ]
= exp


−(µ +

σ2

2
)

ff
, (28)

log κ− ψ(κ) = −E[log λT ] =
σ2

2
. (29)
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These relationships may be inverted to determine the parameter of the log-normal

distribution µ and σ, given the firing rate λ and firing regularity κ,

p(T |λ, κ) =
1

2T
p

π(log κ− ψ(κ))
exp

»
− (log λT + log κ− ψ(κ))2

4(log κ− ψ(κ))

–
. (30)

In the same way, the inverse-Gaussian distribution is represented in terms of λ and κ

as

p(T |λ, κ) =
1p

2πλσ2(κ)T 3
exp

»
− (λT − 1)2

2λσ2(κ)T

–
, (31)

where σ2(κ) is obtained by solving

log κ− ψ(κ) = −E[log λT ] = e
2

σ2 E1

„
2

σ2

«
, (32)

E1(x) =
R∞
x

e−t

t dt being the exponential integral. Figure 2 compares the log-normal,

inverse-Gaussian and gamma distributions that are equivalent in terms of λ and κ.

1/λ

κ = 0.5

1.5

2/λ

0.5

1.0

0

p(T)

T

p(T) p(T)

κ = 1.0 κ = 5.0

1.5

0.5

1.0

0

1.5

0.5

1.0

0
0 3/λ 1/λ 2/λ

T

0 3/λ 1/λ 2/λ

T

0 3/λ

Fig. 2 The log-normal distributions (dashed lines), inverse-Gaussian distributions (dotted
lines), and gamma distributions (solid lines) that yield the regularity κ = 0.5, 1, and 5, while
the rate λ is fixed at 1.

5 Efficiency comparison of different Bayes methods

Here we examine how well the Bayes method equipped with the gamma distribution

estimates the underlying rate and the regularity. For this purpose, we first generate a

variety of spike sequences with the rate λ(t) and regularity κ(t) that are modulated

in time, according to Eq.(20) on the basis of the gamma distribution, Eq.(19), the

log-normal distribution, Eq.(30), or the inverse-Gaussian distribution, Eq.(31). Next,

we apply the Bayes method to each sequence.

Figure 3 depicts the integrated squared errors (ISEs) of the estimates from the des-

ignated rate λ(t) and regularity κ(t), respectively, defined by 1/T
R T
0 (λ̂(t)− λ(t))2dt

and 1/T
R T
0 (κ̂(t)− κ(t))2dt. While the ISEs of estimated rate and regularity are the

smallest when the underlying model is the gamma distribution, the Bayes method

equipped with the gamma distribution is able to capture the rate and the regularity
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even when it does not match the underlying ISI distributions (i.e. the log-normal or

inverse Gaussian distributions). The identification of the rate and regularity seems to

hold (ISE converges to zero) in the adiabatic limit, in which the speed of the modula-

tion is infinitesimal. At the opposite extreme of the rapid modulation of the firing rate,

the optimal estimate of the hyperparameter, γλ, takes its value to be zero, resulting

that the ISE of the estimated rate becomes practically independent of time scale above

a certain 1/τ1. This implies that rate estimation is unrealizable for processes whose

underlying rate is modulated too rapidly, as has been reported for Bayesian rate esti-

mation [Koyama et al. 2007]. The ISE of estimated regularity κ̂ also exhibits similar

dependence, implying that the estimation of regularity is also unrealizable for processes

whose underlying regularity is modulated too rapidly. It is also observed that the time

scales above which the estimated rate or that of regularity becomes independent of

time scale of modulation are approximately the same among the distributions. These

results support that the gamma distribution works reasonably well for estimating the

rate and regularity even when it does not match the underlying distribution.

ISEλ(a)

1/τ1

(b) ISEκ

1010.10.01

[(sp/sec)2]

[sec-1]

0.1

1.0

10

100

1/τ2 [sec-1]

0.001

0.01

0.1

1

log-normal

gamma

inverse-Gauss

1010.10.01

log-normal

gamma

inverse-Gauss

Fig. 3 Integrated squared errors (ISEs) of the estimates of (a) the rate 1/T
R T
0 (λ̂(t)− λ(t))2dt

and (b) regularity 1/T
R T
0 (κ̂(t)− κ(t))2dt plotted against the inverse timescales 1/τ for the

modulation of rate and regularity (in each case, another timescale was fixed, τ2 = 10 sec, or
τ1 = 10 sec). The designated rate and regularity were given by λ(t) = 10 + 5.0 sin(t/τ1) and
κ(t) = 1 + 0.5 sin(t/τ2 + π/2). “©”, “4” and “˜” represent the results of the cases in which
the underlying model is given by the gamma, log-normal and inverse-Gaussian distribution,
respectively.

6 Discussion

In this paper, we selected a set of ISI metrics that may characterize spike patterns

effectively on the basis of information geometrical orthogonality. The orthogonality

was imposed in deriving the metrics so that the estimates of the rate and the shape

factor have no correlation asymptotically [Amari and Nagaoka 2000,Ikeda 2005]. The

most fundamental quantity used for characterizing a spike sequence is the firing rate,

or its inverse, the mean ISI. Another metric that is orthogonal to the mean ISI is found
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to be the mean log ISI. It was also shown that the shape of a rate-rescaled distribu-

tion may be parameterized by the expectation of these metrics, log E[ISI]−E[log ISI].

It is noteworthy that the log ISI has heuristically been used for characterizing the

firing patterns [Sigworth and Sine 1987,Selinger et al. 2007], and in particular, Dorval

recently pointed out that with logarithmic partitioning of ISIs, firing rate changes

become independent of firing pattern entropy [Dorval 2008]. The distribution that

parametrically represents the mean ISI and the mean log ISI is the gamma distribu-

tion, which has frequently been adopted in neuroscience [Stein 1965,Teich et al., 1997,

Baker and Lemon 2000]. The gamma distribution is also derived as the optimal ISI dis-

tribution under the energy constraint [Berger and Levy 2009]. From statistical point

of view, the mean ISI and the mean log ISI are sufficient statistics for the gamma dis-

tribution, which means that the estimator for the gamma distribution only depends on

these metrics. Because the Bayes estimator has a good statistical properties in terms of

sufficiency and consistency, the variance of it asymptotically achieves the Cramér-Rao

lower bound and it converges to the underlying parameters of the gamma distribu-

tion in the limit of large sample size [Lehmann and and Casella, 1998]. Therefore, the

gamma distribution effectively captures firing patterns that can be characterized by

those metrics.

We also examined the adaptability of gamma distribution in characterizing spike

trains. In particular, we installed the gamma distribution into the Bayesian framework,

and evaluated the accuracy of estimation of the rate and regularity of a spike sequence.

The Bayesian method equipped with the gamma distribution works reasonably well in

estimating time-dependent firing rate and regularity even when spike trains are derived

from the log-normal or inverse-Gaussian distributions, implying the generality of the

gamma distribution.

Note, however, that the simulation result does not guarantee that the gamma dis-

tribution always works well in any cases; if we have a prior knowledge about the type of

the underlying distribution, it should be incorporated into estimations to gain statis-

tical efficiency. To summarize, we proved that the gamma distribution is derived from

the orthogonality of ISI metrics between the rate and regularity, which supports using

the gamma distribution when we do not have a prior knowledge of the underlying ISI

distribution.
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Appendix

Numerical Algorithm

We construct a fast algorithm that may put the empirical Bayesian inference into

practice. First, the marginalized likelihood function is maximized with the expecta-

tion maximization (EM) method. Under the hyperparameters determined with the

EM method, the maximum a posteriori (MAP) estimates of time-dependent rate and

regularity are obtained with the Newton-Raphson method. The following algorithm

can be applied to any kind of distribution.
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Maximization of marginal likelihood

We select the set of hyperparameters γ = (γλ, γκ)T so that the marginal likelihood

Eq.(25) is maximized.

State space model

For the numerical marginalization path integral of Eq.(25), we discretize the time co-

ordinate at every time a spike occurred. Then the spike occurrence can be treated as the

state space model or the hidden Markov model, in which {θi ≡ (log λ(ti), log κ(ti))
T }n−1

i=0
are states or hidden variables, and {Ti}n−1

i=0 are observations. The system model is given

with the prior distribution Eq.(22),

p(θj+1|θj ; γ) =
1p

2π|Rj |
exp

»
−1

2
(θj+1 − θj)

T R−1
j (θj+1 − θj)

–
, (33)

where

Rj =

„
γ2

λTj 0

0 γ2
κTj

«
. (34)

The state equation for θi is represented as

θj+1 = θj + wj , (35)

where wj is the Gaussian noise with the mean 0, and variance-covariance matrix Rj .

The observation probability is given by the distribution, in which parameters θ are

varying in time,

p(Tj | θj). (36)

EM algorithm

The principle of the marginal likelihood maximization for selecting hyperparameters

may be regarded as the maximum likelihood principle for selecting the parameters

of the statistical model accompanied by the hidden variables. For the purpose of

maximizing the likelihood, one may apply the expectation maximization (EM) algo-

rithm [Dempster et al. 1977], in which the parameters of (marginal) likelihood Eq.(25)

is obtained by iterating the Q function maximization,

Q(γ | γ(p)) = E
h
log p({Tj}n−1

j=0 , {θj}n−1
j=0 ; γ) | {Ti}n−1

i=0 ; γ(p)
i
, (37)

where γ(p) = (γ
(p)
λ , γ

(p)
κ )T is the (hyper)parameters of pth iteration. The p + 1st γ is

obtained by maximizing this Q function, or equivalently the conditions for dQ/dγ = 0,

γ
(p+1)
λ =

vuut 1

n− 1

n−2X

j=0

1

Tj
E
h
(log λj+1 − log λj)2 | {Ti}n−1

i=0 ; γ(p)
i
, (38)

γ
(p+1)
κ =

vuut 1

n− 1

n−2X

j=0

1

Tj
E
h
(log κj+1 − log κj)2 | {Ti}n−1

i=0 ; γ(p)
i
. (39)



11

Kalman filter and smoothing algorithm

In carrying out the EM algorithms, Eqs.(38) and (39), we need the conditional proba-

bility distribution given ISIs {Ti}n−1
i=0 and hyperparameters γ(p). Under the Gaussian

assumption, the conditional distribution can be obtained with the Kalman filter and

smoothing [Smith and Brown 2003,Truccolo et al. 2005] applied to the mean, variance

and covariance of the distribution, respectively defined by

θj|l ≡ E
h
θj | {Ti}l

i=0; γ
(p)
i
, (40)

Vj|l ≡ E
h
{θj − θj|l}{θj − θj|l}T | {Ti}l

i=0; γ
(p)
i
, (41)

Vj,k|l ≡ E
h
{θj − θj|l}{θk − θk|l}T | {Ti}l

i=0; γ
(p)
i
. (42)

[prediction]: The mean θ and variance V are iterated in the prediction process as

θj|j−1 = θj−1|j−1, (43)

Vj|j−1 = Vj−1|j−1 + Rj−1. (44)

[filtering]: The algorithm recursively computes the posterior probability density [Mendel 1995,

Kitagawa and Gersh 1996],

p(θj | {Ti}j
i=0) =

p(θj | {Ti}j−1
i=0 ) p(Tj | θj , {Ti}j−1

i=0 )

p(Tj | {Ti}j−1
i=0 )

∝ p(θj | {Ti}j−1
i=0 ) p(Tj |θj). (45)

By assuming p(θj | {Ti}j−1
i=0 ) to be Gaussian, the log posterior probability density can

be given by

log p(θj | {Ti}j
i=0) = −1

2
(θj − θj|j−1)

T V −1
j|j−1(θj − θj|j−1) + log p(Tj |θj) + const.

(46)

By assuming further the posterior probability density p(θj | {Ti}j
i=0) to be Gaussian,

the mean θj|j and variance Vj|j are given by

d

dθj
log p(θj | {Ti}j

i=0)
˛̨
˛
θj=θj|j

= 0, (47)

Vj|j =

"
d2

dθ2
j

log p(θj | {Ti}j
i=0)

˛̨
˛
θj=θj|j

#−1

. (48)

Note that the concavity of the log posterior probability density (46) is not guaranteed.

A reasonable posterior mode θj|j can be found, however, by choosing θj|j−1 as a

starting value of an iterative algorithm in solving Eq. (47).

[fixed interval smoothing algorithm]: The smoothing can be carried out with the

iteration [Ansley and Kohn 1982],

θj|n = θj|j + Aj(θj+1|n − θj+1|j), (49)

Vj|n = Vj|j + Aj(Vj+1|n − Vj+1|j)A
T
j , (50)

where

Aj = Vj|jV
−1
j+1|j . (51)

[covariance algorithm]: The covariance is given by the combination of variances [de Jong and Mackinnon 1988],

Vj+1,j|n = AjVj+1|n. (52)
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Derivation of the exact MAP solutions

With the hyperparameters determined with the EM algorithms, we evaluate the MAP

estimates of time-dependent rate and regularity. The estimates of the states {θi}n−1
i=0

are obtained by maximizing the log a posteriori distribution,

log p({θi}n−1
i=0 | {ti}; γ) = log p({ti} | {θi}n−1

i=0 ) + log p({θi}n−1
i=0 ; γ) + const.

=

n−1X

j=0

log p(Tj | θj) +

n−2X

j=0

log p(θj+1 | θj ; γ) + const. (53)

The log a posteriori distribution can be rewritten in matrix expression with the states

Θ ≡ (θT
0 , θT

1 , · · · , θT
n−1)

T as

S(Θ) ≡ log p({θi}n−1
i=0 | {ti}; γ) = l(Θ)− 1

2
ΘT R−1Θ, (54)

where

l(Θ) ≡
n−1X

j=0

log p(Tj | θj), (55)

R−1 ≡

2
6666666664

R−1
0 −R−1

0 0 0 · · · 0

−R−1
0 R−1

0 + R−1
1 −R−1

1 0 · · · 0

0 −R−1
1 R−1

1 + R−1
2 −R−1

2

. . . 0
...

. . .
. . .

. . .
. . .

...

0 · · · 0 −Rn−3 R−1
n−3 + R−1

n−2 −R−1
n−2

0 · · · · · · 0 −R−1
n−2 R−1

n−2

3
7777777775

. (56)

The estimates of the states Θ̂ satisfy

∇ΘS(Θ̂) = 0. (57)

The Newton-Raphson method [Press et al. 1992] can be used to efficiently solve Eq.

(57) by choosing the provisional solution Θ̃ obtained under the Gaussian approximation

with the Kalman filter and smoothing as a starting value. We repeat the iteration

process,

∇∇ΘS(Θ̃)δΘ = −∇ΘS(Θ̃). (58)

We recursively add the δΘ obtained from this equation to revise the provisional solu-

tions Θ̃ until the solutions converge. As ∇∇ΘS(Θ̃) is a block tridiagonal matrix, the

δΘ of the recurrence equation is obtained by the O(n) computational complexity.

Once the MAP solution Θ̂ is obtained, the posterior covariance is approximated by

[−∇∇ΘS(Θ̂)]−1 which can be used to obtain confidence intervals.
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