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Abstract The temporal durations between events often
exert a strong influence over behavior. The details
of this influence have been extensively characterized
in behavioral experiments in different animal species.
A remarkable feature of the data collected in these
experiments is that they are often time-scale invari-
ant. This means that response measurements obtained
under intervals of different durations coincide when
plotted as functions of relative time. Here we describe
a biologically plausible model of an interval timing
device and show that it is consistent with time-scale
invariant behavior over a substantial range of interval
durations. The model consists of a set of bistable units
that switch from one state to the other at random times.
We first use an abstract formulation of the model to
derive exact expressions for some key quantities and to
demonstrate time-scale invariance for any range of in-
terval durations. We then show how the model could be
implemented in the nervous system through a generic
and biologically plausible mechanism. In particular, we
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show that any system that can display noise-driven tran-
sitions from one stable state to another can be used to
implement the timing device. Our work demonstrates
that a biologically plausible model can qualitatively
account for a large body of data and thus provides a link
between the biology and behavior of interval timing.
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1 Introduction

The duration of time intervals between behaviorally
meaningful events, such as a stimulus predicting food
and the actual access to the food, is known to influence
behavior both at short and long time-scales. For exam-
ple, when food is made conditionally available at a fixed
time interval after the previous collection of food (on
a so called fixed interval schedule of reinforcement),
animals will adapt the responses on single trials to the
current interval duration. When the duration of the
fixed interval is changed, animals learn to adapt their
responses in accordance with the new duration (Ferster
and Skinner 1957, Ch. 5). This ability, to change a
response behavior as a function of the arbitrary du-
ration of a time interval in the range of seconds to
minutes, is often referred to as ‘interval timing’ (e.g.
Staddon and Cerutti 2003) to distinguish it from other
types of ‘timing’ behaviors (e.g. Mauk and Buonomano
2004). In experimental studies of interval timing the
subjects are exposed to time intervals of different du-
rations and the variable of interest is typically how the
temporal distribution of responses varies as a function
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of interval duration. A remarkable fact of the results
obtained in these experiments is that they are often
time-scale invariant (Gibbon 1977). This means that the
temporal distributions of responses for two different
interval durations are the same if the time-axis is scaled
(divided) by the duration of the interval. Time-scale
invariant response distributions have been reported in
many different types of interval timing tasks and in sev-
eral different species including some mammals, fishes,
birds (Gibbon 1977; Lejeune and Wearden 2006), and
humans (Wearden and Lejeune 2008), indicating that
time-scale invariant behavior reflects a fundamental
property of the functional organization of perhaps all
vertebrates. The aim of the work presented here is to
show that time-scale invariance is a generic property
of a certain type of computational architecture and
moreover to demonstrate how such an architecture
can be implemented in the nervous system, possibly
accounting for the behavior in interval timing tasks.

There is substantial evidence indicating that cere-
bellum, basal ganglia and the cerebral cortex are par-
ticipating in different aspects of interval timing (for
reviews see Ivry 1996; Meck 1996; Gibbon et al. 1997,
Mauk and Buonomano 2004; Buhusi and Meck 2005),
but less is known about the actual neural mechanisms
supporting this behavior. One of the more difficult as-
pects of the data to account for is the substantial range
of interval durations over which time-scale invariance
has been demonstrated. Indeed in some tasks this range
covers two orders of magnitude (Gibbon 1977). This
flexibility in timing temporal durations makes it seem
implausible that the neuronal mechanisms involved re-
lies on dedicated, and fixed, time constants, something
that for example has been postulated in models of
timing behavior in the context of classical conditioning
(Grossberg and Schmajuk 1989; Fiala et al. 1996). It
rather seems more likely that interval timing behavior
results from a system having time constants that can
be changed depending on the reinforcement history of
the organism (cf Killeen and Fetterman 1988; Machado
1997).

Several models of interval timing have been previ-
ously proposed. Some models aim primarily at account-
ing for the behavioral data and are therefore often not
concerned with implementational issues (e.g. Gibbon
1977; Gibbon et al. 1984; Killeen and Fetterman 1988;
Machado 1997; Staddon and Higa 1999). These are
typically abstract models of general mechanisms that
can explain the main features of the behavioral data
such as time-scale invariance. Other models primarily
aim at accounting for some particular aspects of neural
activity believed to be involved in interval timing (e.g.
Kitano et al. 2003; Durstewitz 2003; Reutimann et al.
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2004). These are concrete models of neural mechanisms
and therefore not concerned with behavior. However, a
more complete understanding of interval timing must
come through models that bridge the behavioral and
neural levels. One model that both postulates a gen-
eral (abstract) mechanism of interval timing and pro-
vides anatomical and physiological details about the
implementation has been proposed by Meck and co-
workers (e.g. Matell and Meck 2004; Meck et al. 2008).
However, it remains to be seen if this model can be
implemented in a more realistic setting. We will return
to this and other models in Discussion.

In the work presented here we describe and analyze
a model of an interval timing device, the “stop-watch”,
and demonstrate that it is consistent with time-scale
invariant behavior over a substantial time-range. This
device consists of a set of bistable units that switch
from one state to the other at random times and the
rate at which they switch will be used to “encode”
time intervals of different durations. We will describe
two versions of the stop-watch below. First an abstract
version is described where the units are modeled prob-
abilistically. This abstract version can be fully analyzed
by elementary methods and will be used to isolate
a minimal mechanism of time-scale invariance. The
second version of the stop-watch will implement the
same mechanism of interval timing in terms of variables
that could be instantiated in the nervous system. This
implementation is generic in the sense that it could be
realized at different levels of nervous activity. We will
give two examples illustrating this fact: first each unit
in the stop-watch will be modeled as a single neuron;
in the second example each unit will be modeled as a
micro-circuit.

To use a set of bistable units with random state
changes in the context of interval timing was first
suggested some while ago (Miall 1993). More recent
models have suggested specific implementations of this
basic setup and shown that it can support time-scale
invariance (Okamoto and Fukai 2001; Miller and Wang
2006). In particular, in Miller and Wang (2006) the
authors suggest a particular architecture that supports
time-scale invariance through the same mechanism we
propose here. Our work extends and generalizes the
work of Miall (1993) and Miller and Wang (2006) in
several ways. We introduce an abstract and general
formulation of the original idea, through which it is
possible to derive simple analytical expressions for the
variables of interest and demonstrate a general form of
time-scale invariance. We show that this abstract model
can be implemented in the nervous system through
a generic mechanism and thus establish a strong link
between the behavioral and neural levels.



J Comput Neurosci (2010) 28:155-175

2 Overview of the computational architecture

The stop-watch has the following general characteris-
tics: (i) it consists of M identical bistable units that can
switch from one state to the other at random times.
We will refer to these two states as spontaneous and
activated respectively; (ii) The rate at which the units
switch from the spontaneous state to the activated
state (the activation rate) is the same for all units,
and is much higher than the rate of switching in the
other direction; (iii) The activation rate can be adjusted
through learning (between trials); (iv) The state of the
stop-watch at time ¢ is fully characterized by the number
of units in a particular state at this point in time; (v) The
states of the units can be simultaneously reset to the
spontaneous state by some control signal. On a single
trial, the stop-watch works in the following way: At
trial onset all units are in the spontaneous state and
as time (in the trial) progresses, more and more units
will switch to the activated state. The total number of
units in the activated state will influence the temporal
aspects of responding. Through learning, the activation
rates will be modified to be appropriate for the task at
hand.

3 The abstract stop-watch

In this stop-watch version each unit has a probability p
of switching from the spontaneous state to the activated
state (the activation probability) within a small time-
interval At (see Fig. 1(a)). The states themselves are not
explicitly modelled. The activation probability p is as-
sumed independent of how long time the unit has been
in the spontaneous state. The units are in this sense
memoryless or Markovian. Once a unit is activated, the
probability of it switching back to the spontaneous state
is much smaller than p and will be considered zero in
the following. A small non-zero value of this probability
would not change the results qualitatively. The state
of the stop-watch at a particular point in time is fully
characterized by the number of activated units at this
time. A realization of one “trial” of the stop-watch is
shown in Fig. 1(b). Note the random number of time
steps between individual activations. The activation
probability p determines the temporal durations the
stop-watch can measure: if p is small it takes (on aver-
age) a long time until a certain number of units become
activated, whereas if p is large, the time until the same
number of units become activated will be smaller. This
is illustrated in Fig. 1(c) where the state of the stop
watch is shown as a function of time for two different
values of p. Two things are noteworthy: first, by making
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Fig. 1 Schematic illustration of the abstract stop watch. (a) The
units of the stop watch have two possible states: spontaneous
(empty circles); activated (filled circles). The switching from the
spontaneous to the activated state occurs randomly according to a
probability p in each time interval Ar. Once in the activated state,
the probability of remaining in this state is close to one. (b) Time-
evolution of a stop-watch consisting of 49 units (i.e. M = 49). A
single trial with p = 0.0005 is shown. Top: four snap-shots of the
stop-watch at consecutively later times in the trial. At trial start all
the units are in the spontaneous state and as time progresses more
and more units become activated. Bottom: Detailed time course
of the state of the stop-watch for the same trial. (¢) Interval
duration can be encoded in the activation probability. Five trials
are shown for two different probabilities (p = 0.00157 in gray;
p =0.00157/5 in black) and M = 50. The histograms show the
distribution of time points at which 80% of the units (indicated
by the dashed line) are activated. The histograms were scaled (by
the same factor) to be visible

the probability five times smaller, the time it takes until
a given threshold is roughly five times longer (compare
gray and black curves in Fig. 1(c)); second, the distribu-
tion of time points for 80% of units activated becomes
wider as p becomes smaller (compare gray and black
histograms in Fig. 1(c)). In the next section we will
quantify the relation between p and interval duration
and show that the inverse proportionality seen in the
figure indeed holds true in general.

Since we assume that the activation probabilities
are small we can describe each unit succinctly by an
exponentially distributed random variable, U; say, with
a rate parameter that equals p (see Appendix). Thus,
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U; is the time at which unit i becomes activated. Using
this formulation it is straight-forward to derive analyt-
ical expressions for various aspects of the stop-watch
and moreover to demonstrate the general time-scale
invariance of the stop-watch. This we do next.

3.1 The relationship between interval duration and
activation probability

Time intervals of different durations will be estimated
by changing the activation probability p of the single
units. Hence, we need to understand how this prob-
ability relates to time. Since the activation times are
assumed to be random, the time-evolution of the state
of the stop-watch will (in general) not be the same
on two different trials (see Fig. 1(c)). We therefore
characterize the relation between p and time using the
expected time until a certain fraction f of units have
made a transition. Let T'y.); denote the time it takes for
f - M units to become activated, where M is the total
number of units. Note that 7.y will differ from trial
to trial: it is a random variable. Figure 1(c) shows two
distributions of 7's.); for M = 50 and f = 0.8 (the gray
and black histograms). In Appendix we show that the
expected value of T'f.y is given by

f-M—1

1
> (1)

k=0

E[T ] =

SR

The importance of this expression is that it shows that
time and probability are inversely proportional. Hence,
if it takes, on average, 1 s for 80% of the units to
go to the activated state (i.e. f=0.8) when p=p/,
it will take, on average, 10 s for 80% of the units to
become activated when p = p’/10. An example of the
inverse proportionality between probability and time
was shown in Fig. 1(c), where decreasing p by a factor
of five lead to an increase in 7'f.p; by the same factor.
The relationship between transition probability and
time is illustrated in more detail in Fig. 2(a).

Next we consider the variability of the stop-watch.
On any particular trial T'f., will typically differ from its
expected value (given by Eq. (1)) and it is of interest
to know how much it will typically differ, and how this
depends on the parameters. In Appendix we show that
the standard deviation of 7'y is given by

3 172
f-M—1 |

|
S[Tepm]l=— —_— . 2
rul= kX:% s (2)
Note that the standard deviation is also inversely

proportional to p. Figure 2(a) shows the standard
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Fig. 2 The time it takes for a certain fraction of units to become
activated. (a) Expected values of the time it takes for a certain
fraction of units to be activated (Eq. (1)) for two different
transition probabilities (solid lines). The error bars show two
standard deviations around this value, calculated according to
Eq. (2). Data shown for M = 50. (b) Coefficient of variation as a
function of fraction of total units active for three different values
of total number of units (M). (¢) Density functions of T4 for
three different values of p (0.00157, 0.000314, 0.000157) for a
stop-watch with 50 units. The inset shows the three densities as
functions of relative time, that is, after time is rescaled by the
nominal intervals (1, 5, and 10s)

deviation of T'y.); as error bars, for two values of the
activation probability.

From Egs. (1) and (2) and Fig. 2(a) it is clear that
both the expected value and the standard deviation of
Tr.m increase with f. Moreover, both expected value
and standard deviation depend on the total number
of units M as well as on the transition probability p.
We next investigate the relative variability of T’y
using the coefficient of variation (CV). The CV is the
standard deviation divided by the expected value and
hence is a unit-less measure of the relative variability of
a random variable (and it is often used in experimental
investigations). Given Egs. (1)—(2), we can express the
CVof Ty as

et 1 1/2
SITyml (Zk=° (M—k)2>

= = : 3
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=0 M-k
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Note that the CV is independent of p. Since we “en-
code” time intervals of different duration by changing
p, Eq. (3) shows that with M and f fixed, the CV is
independent of interval duration. This is one manifes-
tation of the time-scale invariance that we will study



J Comput Neurosci (2010) 28:155-175

159

more generally below. In Fig. 2(b) the CV is shown as
a function of f for three different values of M. Using
Eq. (3) it is easy to show that the CV is always between
0 and 1 and is equal to one if and only if f=1/M.
Moreover, for a fixed f the CV is a decreasing function
of M, in fact, for M large it will scale as /1/M (see
Appendix). This means that the precision of the stop-
watch increases as the number of units increases. In
Appendix we also demonstrate that for a fixed M, the
CV has a minimum when f =~ 0.8 (which also can be
seen in Fig. 2(b)).

Using Eq. (3) we can get a rough estimate of the
minimum number of units in the stop-watch. For exam-
ple, CVs around 0.3 have been reported in behavioral
data (e.g. Gibbon 1977, Fig. 5) and to get such a CV
using the abstract stop-watch requires at least 30 units.
Of course, the CV in behavioral data can just serve to
give a lower bound for the number of units since the
function(s) mapping the state of the stop-watch onto
an actual response is likely to add additional sources
of variability.

Given that the expected value and the standard de-
viation of T'r.j depend on p in the same way it is of
interest to also see how the higher moments depend
on p. We do this by looking at the probability density
function of T'y.p. If we let ¢ = f- M — 1, the density is
given by (see Appendix)

M
grm® = p(M— ¢)<¢>(1 — PP (e Py (M=9), )

Thatis, Pr{Tsy <1} = fol gr-m®dt. In Fig. 2(c) three
densities, corresponding to three different activation
rates, are shown. These rates were chosen according to
Eq. (1) to correspond to mean time intervals of 1, 5
and 10 s. It is clear that the spread of the distributions
increase together with the mean as Eq. (3) already
indicated. When the three distributions are plotted as
functions of relative time they are in-fact identical as
is shown in the inset in Fig. 2(c). Thus the whole
distribution of T'f.j is scale invariant. This result can
be derived directly from Eq. (4) but it will follow from
the more general demonstration in the next section.

3.2 Time-scale invariance

In the previous section we showed that the distrib-
ution of Ty is time-scale invariant. We will now
demonstrate that this is a simple consequence of
the activation-time distributions being exponential, to-
gether with the way we choose to encode the dura-
tion of different intervals. Indeed, we will show that
the distributions of activation times, corresponding to

different interval durations, are identical when consid-
ered as functions of relative time. The implication of
this is that the scale invariance of the stop-watch holds
more generally, and moreover that any function of the
stop-watch will be time-scale invariant as well.

Recall that the time it takes for a unit to become ac-
tivated is assumed to have an exponential distribution.
This implies that the probability that it will be activated
before time ¢, F,,(t') say, is given by

p
F,(t) = / pePldr=1—e P,
0

To express time in units relative to some fixed duration
T, we must change the independent variable to 7 =
t/T. Since p is a rate (with the units of 1/¢) it must also
be expressed in terms of relative time (7). If we let p’
denote this new rate parameter we get p’ = pT. This
gives

Fyt)y=1—e?" =1-¢?T",

Now, if p is inversely proportional to T, p = ¢/ T say,
this last expression becomes

Fy(t)=1—e"".

This expression describes an exponential distribution
with rate parameter ¢ and is independent of p. This
means that if time intervals of different durations are
encoded by rate parameters that are inversely propor-
tional to the nominal durations, the stop-watch units
will be identical after rescaling time. In other words,
the units are time-scale invariant. Since the stop-watch
is just a set of such units, it follows that also the stop-
watch is time-scale invariant. As an example, assume
the stop-watch is used to time two intervals of duration
T, and T,. Assume further that the corresponding
activation rates are chosen according to Eq. (1) to
be py =c¢/T, and p, = ¢/ T,. Then if we express the
probabilities as functions of relative time we get that
F, (1) = Fp, (7).

This argument rests on that the activation rates p are
inversely proportional to the interval durations. This
is a natural requirement, since we know from Eq. (1)
that this is how the probabilities should be chosen to
make E(7'f.p) coincide with the nominal time-interval
durations.

An important consequence of this general scale in-
variance is the following: if the temporal aspects of re-
sponding are controlled by the stop-watch, responding
will be scale invariant independently of the details of the
control. Phrased differently, the scale invariance does
not depend on the particular form of the “read-out” of
the stop-watch. In Fig. 2(c) we used a simple threshold
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to convert the state of the stop-watch to response on-
sets. The inset in this figure shows that the distribution
of Ty is scale invariant. The argument above explains
why this is so. That scale invariance is a more general
property is illustrated in Fig. 3 where another possible
implementation of how a response behavior is triggered
by the stop-watch is shown. For this figure we used a
stop watch with 50 units and simulated data for three
values of the activation rate p corresponding to interval
durations of 1, 5 and 10 s. The rate of responding was
taken as a sigmoidal function of the state of the stop-
watch. In particular we used the following function to
relate the response rate (r(f)) to the state of the stop-
watch (X (1)):

k
O = T epCa(X () = ) ®)

The constants k,« and B were chosen to make the
response curves look reasonable (k =4, = 0.25, 8 =
45). Note that in this case response rate is changing
with time, something often observed in behavioral data
from interval timing tasks. To illustrate the scale in-
variance in this case, we plot, in Fig. 3(a), the mean
(solid lines) and standard deviation (dotted lines) of the
response rate as a function of time for the three time
intervals. Figure 3(b) demonstrates that these functions
are scale invariant, i.e. that they coincide when plotted
as functions of relative time. However, according to the
demonstration above, the scale invariance should apply
to the whole distribution (which in this case is two-
dimensional). The inset in Fig. 3(b) shows the response
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Fig. 3 Another manifestation of time-scale invariance. (a) Out-
put of stop-watch after a sigmoidal transformation (Eq. (5)) for
three interval durations (Brown 1's; gray 5 s and black 10 s) as
a function of time. Solid lines show the mean “response rate”
and dotted lines the standard deviation of the response rate. (b)
Same data as in (a) after time has been rescaled by the interval
duration. Data based on 20000 simulations of a stop watch having
50 units using a step size (At) of 1 ms. The activation probabilities
(rates) for the three time intervals were: 1.5702 x 1073; 3.1405 x
10~* and 1.5702 x 10~* and were calculated according to Eq. (1).
The inset in (b) shows the relative frequency of the response rates
at a relative time of 80% of the interval duration for the three
intervals
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rate histograms when 80% of the interval duration has
expired. Note the high degree of overlap between the
three histograms as predicted by the theory.

3.3 Interactions between units

In a biological implementation of the stop-watch the
units may or may not interact with each other and
it is therefore of interest to consider what type of
interaction would be consistent with time-scale invari-
ance. Interactions between the units can be modeled by
making the activation rates depend on the state of the
stop-watch. In the general case we can let the activation
probability of unit i at time ¢ be modulated by the state
of some of the other units in the stop-watch. If this
modulation is multiplicative, exact scale invariance will
still hold. That is, if we denote the state of unit j at time
t by x;(t) the following rule will, for reasonable choices
of the functions f;, preserve time-scale invariance:

pi(t) = p - fi(x1(0), x2(0), ..., xp(D)). (6)

Here p can be considered a baseline activation rate
common to all units, and changing p will make the stop-
watch “encode” different temporal durations just as in
the model without interactions. According to this for-
mulation (e.g. Eq. (6)), in the time-interval between the
activation of the k-th and k + 1-th units the activation
rates are constant (but possibly different for different
units). When the k + 1-th unit becomes activated the
activation rates changes according to Eq. (6). Since
the activations times are exponentially distributed by
assumption, and the exponential distribution is mem-
oryless, the above modification of the activation rates
does not affect the scale invariance. The argument
made above (for the case of constant activation rates)
still applies. Note that within this framework we can
accommodate any type of interactions from all-to-all to
sparse and random. In the Electronic Supplementary
Material we exemplify this fact and state some analyti-
cal results for the all-to-all case.

4 A neuronal stop-watch

Here we will describe a generic mechanism by which
the units in the abstract stop-watch can be approxi-
mated and implemented in the nervous system. There
are several standard models of neuronal activity, both
at the single cell and at the local network levels, that
have parameter regimes for which this mechanism can
be implemented. We give examples of two such imple-
mentations towards the end of the section.
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The units of the abstract stop-watch have three criti-
cal characteristics that we want to keep: the units should
be bistable, memoryless, and the activation rates should
be modifiable. Bistability means that given a fixed con-
figuration of a system, there are two distinguishable
states that the system can be in for any longer amount
of time. We will assume that the spontaneous state
corresponds to an equilibrium point of the system. An
example of a phenomenon that could be modeled as a
system being at an equilibrium point is the membrane
potential of a single neuron receiving a fixed input not
strong enough to bring it to threshold. We do not make
assumptions about the nature of the activated state (it
could for example be an equilibrium point or a limit
cycle) but we do assume that it is more stable than
the spontaneous state. In the generic model described
below (Eq. (7)) we will not model the dynamics of the
activated state explicitly.

Memorylessness (also called the Markovian prop-
erty) means in our case that the probability of switch-
ing from the spontaneous state to the activated state
within a small time-interval should be independent of
the time already spent in the spontaneous state. We
saw in the previous section that memorylessness (i.e.
the exponential distribution of activation times) was
a crucial requirement to make the stop-watch scale
invariant. We will implement memorylessness in the
neuronal stop-watch by introducing a small amount of
noise into the system. With the right balance between
the noise amplitude and the stability of the equilibrium
point, the unit can be made to stay for long times
in the spontaneous state but to eventually leave this
state and enter the activated state. For the units to be
memoryless the time spent in the spontaneous state
should be exponentially distributed. It is known that
noise-induced escapes from an equilibrium point are in
fact approximately exponential (see Appendix).

The abstract stop-watch is used to estimate inter-
vals of different durations by changing the activation
probabilities p of the units. We assume that the corre-
sponding parameter in the neuronal stop-watch is the
mean input to a unit and that this input can be modified
between trials.

A simple model that approximates a bistable mem-
oryless unit with modifiable activation rates is given by
the following stochastic differential equation

x(0) = —/Iul/B. (7)

This equation describes the time evolution of the state
variable x(f) (the activity level) which is initiated at
—/11u]/B. Here £ (1) is the so-called white-noise process,
i.e. a time series of temporally uncorrelated random

dx = dt(u + Bx*) + Vdio&(r),

variables with a standard normal distribution and the
real numbers 8 > 0, 0 >0, u < 0 are assumed to be
constant during a realization (they are parameters, not
variables). When considered without noise (i.e. o =
0) the initial condition is a stable equilibrium point.
All trajectories initiated to the left of 4++/[[/B8 (which
is an unstable equilibrium point) will end up at this
point. On the other hand, all trajectories starting to
the right of +./[u|/B will end up in the only other
attracting “point”: +oo. To understand the effect of
a non-zero noise amplitude it is convenient to think
about Eq. (7) as describing a diffusion of a “particle”
on an “energy” landscape. The “energy” is given by the
negative of the integral of the deterministic part of the
right-hand side of Eq. (7). This scenario is depicted in
Fig. 4(a). The “particle” starts at the local minimum
of the “energy” (at —./[u[/B) and is pushed around
by the noise until it eventually makes it past the local
maximum (at +/[u[/B) from where on it will rapidly
accelerate towards +oo. The region around the stable
equilibrium corresponds to the spontaneous state and
the region to the right of the unstable equilibrium to
the activated state. In Fig. 4(b) four realizations of
Eq. (7) are shown, for two different values of u. The
activity stays close to the equilibrium points (~ —0.25
and ~ —0.3 respectively) for a long time until at some
point it shoots up and rapidly accelerates towards +ooc.
The time-point at which the activity diverges is used to
model the transition time from the spontaneous state to
the activated state (i.e. the activation time).

(a) (b)
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N state = [
2 . B
: 2 o Yl in!
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um l“k" [ A |
0 500 1000 1500 2000 2500

activity level time (ms)

Fig. 4 Tllustrations of the one-dimensional model. (a) Represen-
tation of the one-dimensional model in terms of an “energy”
landscape. The black and gray curves show the energy of the
one-dimensional model for two different values of the input (u
parameter in Eq. (7)). As the input increases the local minimum
becomes more shallow and there is a corresponding increase in
the probability per unit time of escape from the spontaneous
state. (b) Four realizations of Eq. (7) are shown. The gray curves
correspond to two trials with © = —0.0117 and the black curves
to two trials with © = —0.0178. Other parameters were g =
0.1901, o = 0.06044. The dotted line shows the threshold used to
detect when a unit becomes activated
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We assume that the mean input to the unit is mod-
elled by the constant term in Eq. (7) (i.e. by u). Chang-
ing this input will modify the activation probability of
the unit where we take the activation probability to
be the inverse of the mean activation time. The mean
activation-time can not be expressed in terms of ele-
mentary functions (it is given by Eq. (13) below) but for
the range of inputs we are considering there is a stan-
dard approximation that can be used (see Appendix):

®)

A Blul —8| |2
p(n) ~ —— €Xp )

3./Bo?

In Fig. 5 the relationship between p and activation
probability is shown (solid line). This relationship was
obtained by solving Eq. (13) numerically. The approxi-
mation given by Eq. (8) is shown as dashed lines in the
figure. For the values of input we will use (x < —0.01)
this approximation is very good and as y becomes more
negative the error in the approximation goes to zero.
In the “energy-landscape” representation of Eq. (7),
the effect of changing the inputs (i.e. u) corresponds
to making the local minimum in the energy more or
less shallow. Decreasing p will make the well around
the local minimum deeper and decrease the activation
probability. Increasing o will have the opposite effect.
In Fig. 4(a) the energies corresponding to two different
values of  are shown illustrating this point.
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Fig.5 Activation probability as a function of input (x in Eq. (7)).
The two plots show the same data but with different scaling of
the Y axes. Activation probability was taken as the inverse of
the mean escape time from the spontaneous state. The mean
escape time was obtained by solving Eq. (13) for different values
of u (solid lines). The approximation given by Eq. (8) is shown
as dashed lines. The other parameters of the model were g =
0.1901, o = 0.06044
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Each time the model described by Eq. (7) is inte-
grated it will take a random amount of time before
the system enters the activated state. These activation
times should be exponentially distributed for the units
to be memoryless and hence behave as the units in
the abstract model. Figure 6 show two activation time
densities corresponding to two different levels of mean
input. The two distributions are almost straight lines
on the logarithmic plot indicating that they are close
to exponential. However, for short times there is a
clear deviation from exponential distributions as can
be seen in the inset in Fig. 6. This deviation comes,
at least in part, from the fact that it takes a finite
amount of time to get from the initial condition at the
stable equilibrium to the threshold. We investigated
how this deviation from exponential activation-time
distributions affect the time-scale invariance through
numerical simulations. Each unit in the stop-watch was
modelled by Eq. (7). We fixed the values of o and 8
and changed the term corresponding to the input (i.e.
w). Simulations of a stop-watch consisting of 50 units
were run for inputs (u) corresponding to time intervals
of 1,2,5,10 and 100 s. As “response onset” we used the
time-point when 40 units have become activated. The
results are shown in Fig. 7. The “response” distributions
in this implementation are well described by the theo-
retical distribution given by Eq. (4) as can be seen in
Fig. 7(a) and (b). For the shortest interval (1 s) there
is a slight deviation from the theoretical distribution,
the distribution resulting from using Eq. (7) is slightly
steeper than the theoretical one (Fig. 7(a)). For the 10 s
interval the correspondence between the simulated and

0.001

0.0001

prob. density

le-05

0 5 10 15
time (sec)

Fig. 6 Activation time densities of the one-dimensional model.
Probability densities of activation times for the two values of u
used in Fig. 4(b). The inset shows the same data at a higher mag-
nification. Parameters were as in Fig. 4(b). The density functions
were obtained by solving Eq. (14) numerically (see Appendix)
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Fig. 7 “Response” distributions for the 1D model (Eq. (7)). (a)—
(b) Black crosses show numerical estimates of the distribution of
the time until 40 units have made a transition for two different
mean durations (and values of input, u). Solid lines shows the
corresponding theoretical distributions calculated from Eq. (4).
(a) Tao=1s: u=—0.0117. (b) Tso =10 s: & = —0.020. (¢) Es-
timated “response” densities shown as functions of relative time
for five different values of interval durations (and ). For 1 and
10 s the data are the same as that used in panel (a) and (b). For the
other intervals the following values of x were used: 2 s: —0.0146;
5 s: —0.0178; and 100 s: —0.0265. All estimates are based on
8000 simulations for each value of n. The transition probabilities
for the five time intervals were calculated according to Eq. (1).
The corresponding inputs to the model (Eq. (7)) were found by
solving Eq. (13) numerically. The fixed parameters of Eq. (7)
were: B = 0.1901, o = 0.06044

theoretical distributions is very good (Fig. 7(b)). As a
measure of how well the simulated distributions can
be described by the theory we used the CV. For the
theoretical distribution the CV is 0.175 independently
of interval duration. For the simulated distributions
the CVs were 0.168 + 0.0006, 0.173 4 0.0006, 0.174 +
0.0006, 0.174 £ 0.0006, 0.175 % 0.0006, for 1,2,5,10 and
100 s respectively. The standard deviations (numbers
after the £ sign) were estimated by resampling with

replacements from the simulated distributions and are
almost identical to standard deviations of the CVs
resulting from sampling from a normal distribution.
These small differences between the distributions are
almost not noticeable when data are shown as functions
of relative time (Fig. 7(c)). It is clear that this stop-
watch version is time-scale invariant. Note that for
durations of 5 s or longer the distributions are almost
perfectly predicted by the theory. This is so because the
distributions of transition times for the single units are
almost exponential for 5 s and will converge to the ex-
ponential distribution as the duration increases. From
this follows that a stop-watch build with units described
by Eq. (7) can time arbitrary large time-intervals in a
scale invariant manner. It is clear from the numerical
results in Fig. 7 that this particular instantiation of
the stop-watch can also time intervals at least as short
as 1 s without deviating substantially from the scale
invariance.

In the following sections we give two examples of
model systems that have approximately the dynamics
described by Eq. (7) and are possible implementations
of the stop-watch in the nervous system.

4.1 Example 1: single neuron model

In this section we assume that the dynamics of the
stop-watch units are described by the two-dimensional
Morris-Lecar model (Morris and Lecar 1981; Rinzel
and Ermentrout 1998; Izhikevich 2007). This is a model
of a point neuron with two voltage dependent non-
inactivating currents, one inwards and one outwards,
as well as a leak current. In the original paper the
inward current modelled was a calcium current and
the outward current a potassium current (Morris and
Lecar 1981). We will use the version of the model
described and analyzed in Izhikevich (2007) in which it
is referred to as the ‘persistent sodium plus potassium
model’. Hence the inward current is taken to be a
sodium current. However, we don’t intend to model any
particular cell or system, rather the aim is to show how
a model of a spiking neuron can serve as a unit in the
stop-watch and moreover that the relevant dynamics
(for the stop-watch) of this model is fully captured by
Eq. (7) studied above.
The differential equations governing the model are

CV =1—g(V—E)— gnamoc(V)(V — Exa)

—gn(V — Ex)

P ne(V) —n ©)

Tn
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The steady-states of the so-called gating variables mi,
and n, are given by

1

1 +exp([miy2 — V1/my)
1

1 +exp([ni2 — VI1/ni)

noc(V) =

Here V denotes the membrane voltage and » is the
gating variable of the potassium current. The defini-
tion of other terms and values of constants are given
in Appendix. We use this model in a regime where
there is (in the absence of noise) a stable equilibrium
(the spontaneous state) and a stable limit cycle (the
activated, spiking, state). When a small amount of noise
is added to the input current, the model can be made to
spontaneously switch between these two states. Thus,
we consider the input current / to be composed by two
parts: a mean u and a zero mean stochastic process
&), i.e. I(t) = pu+ o&(). For the dynamics to show
random switching from the spontaneous state to the
activated state the system must be close to a configura-
tion in which the spontaneous state becomes unstable.
Figure 8(a) shows traces from three different “trials”
with the model in such a configuration. In this figure
the model parameters were the same, only the noise
realizations differed. Note how the point of transition
from the spontaneous state to the activated state differs
between different realizations of the model.

When a dynamical system is close to a configurations
where the qualitative features of the system change
(e.g. the spontaneous state becomes unstable), it is of-
ten possible to reduce the dimensionality of the system
(see for example Carr 1981). In Appendix we show
that in the parameter regime we are interested in,
the Morris-Lecar model (Eq. (9)) can be reduced to
the one-dimensional model considered in the previous
section (Eq. (7)). Indeed, this reduction explains the
choice of parameter values we have used in applications
of Eq. (7). Figure 8(b) illustrates this reduction by
plotting one trial of both the Morris-Lecar model (black
trace) and the reduced model (red trace) when driven
by the same noisy inputs. As long as the Morris-Lecar
model is in the spontaneous state the approximation by
the reduced model is essentially perfect. Also the tran-
sition to the spiking state is very well approximated (see
inset in Fig. 8(b)). This direct correspondence between
the models implies that the distributions of activation
times will be essentially the same. This means that a
stop-watch where each unit is described by a Morris-
Lecar model will be scale invariant over the same
range as the one-dimensional model. To illustrate this
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Fig. 8 Stop-watch with Morris-Lecar units. (a) Three “trials” of
the Morris-Lecar model with the same mean input. The inset
shows the transition from the spontaneous to spiking state of
the top trace at higher magnification. (b) Comparison between
the Morris-Lecar model and the reduced model (Eq. (7)). One
realization of the Morris-Lecar model is shown in black. The
same noise process was used to drive the reduced model and
the result is shown in red. The output of the reduced model
was truncated at zero. The inset shows the transition from the
spontaneous state to the spiking state at higher magnification.
(¢) and (d) “Response” distributions from simulations of the
the stop-watch using Morris-Lecar units for 1 and 10 s intervals.
The crosses show the distribution estimated from simulations
and the solid line the theoretical distribution computed from
Eq. (4). The mean input in (¢) was —4.50125 and in (d) —4.49296.
(e) Estimated “response” densities shown as functions of relative
time for four different interval durations. The mean inputs for 2
and 5 s were: —4.49842 and —4.4952 respectively. Data in panel
(¢) to (e) were based on 4000 simulations for each value of the
inputs. The value of the other parameters were held fixed and are
given in Appendix

we run numerical simulations of a stop-watch having
50 Morris-Lecar units. The ‘read-out’ was taken as a
simple threshold, detecting when at least 40 units are
activated, i.e. have entered the spiking state. Figure 8(c)
and (d) show the distributions of these times for two dif-
ferent values of input (corresponding to 1 and 10's). The
distributions are similar to the theoretical distributions
(solid lines in the figure). For 1 s duration there is again
a small (but significant) difference between the theo-
retical distribution and the distribution resulting from
the Morris-Lecar stop-watch. Figure 8(e) shows that the
estimated response densities coincide very well when
displayed as functions of relative time. That is, also this
version of the stop-watch is time-scale invariant. The
CVs of the “response” distributions were 0.165, 0.171,
0.172 and 0.176 for 1,2,5, and 10 s respectively. The
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standard deviations of these estimates were estimated
to be approximately 0.002.

4.2 Example 2: micro-circuit model

In this section we assume that the dynamics of the
stop-watch units are described by a model of a small
network of recurrently connected excitatory neurons.
We use the circuit model considered in Koulakov et al.
(2002) where it was part of a model of a discrete inte-
grator. Each unit consists of three excitatory neurons
recurrently connected through NMDA-like synapses.
Each neuron in the model has two compartments, one
describing the soma and axon and the other describing
the dendrites. The soma compartment have the stan-
dard spike generating conductances and the dendrites
have a voltage dependent synaptic conductance with a
slow time-scale (the NMDA-like conductance). The in-
put current to the dendritic compartment contains two
parts. One is due to the recurrent connections and the
other is an external current. That is, / = Inmpa + Lext-
Moreover we took . to be composed of a constant
term plus a zero mean stochastic part, i.e. lex(¥) = u +
o &(f), where the amplitude of the stochastic part (i.e.
o) was taken as 0.25 in all simulations of the model.
The equations describing this model are given in the
Electronic Supplementary Material but are in fact iden-
tical to the equations described in Koulakov et al.
(2002) that may be consulted instead. Note that we
are not including the weak connections between units
that were used in Koulakov et al. (2002) as we do
not need these to generate time-scale invariance. The
recurrent connections in this model result in a positive
feedback amplification and for the parameters values
we use (the same as those used in Koulakov et al. 2002)
there are two co-existing stable states: the spontaneous
state where all cells are silent (not firing) and the acti-
vated state where all cells are firing at a (more or less)
constant rate. Note that in this model the bistability is
a network effect whereas in the Morris-Lecar example
considered above the bistability was a single cell effect.

To investigate the scale invariance we run numerical
simulations of the model for four different values of
mean input current. With this model it is more cum-
bersome to derive an explicit relationship to Eq. (7)
and therefore to determine the input current that cor-
responds to a particular mean “response” time. We
estimated the “correct” mean inputs by simulations and
aimed at staying close to the intervals used in the other
implementations. Each unit is initiated in the sponta-
neous state and evolves until it has entered the spiking
state. As the criterion for having entered the spiking

state we used that all three cells fired a spike within
a time window of 100ms. The results are illustrated in
Fig. 9. For the shortest interval (1 s) there is a slight
deviation from the theoretical distribution (Fig. 9(a))
but with a 10 s interval, the distribution is practically
indistinguishable from the theoretical one (Fig. 9(b)).
That also this model is time-scale invariant is shown
in Fig. 9(c) where estimated “response” densities are
shown as functions of relative time. The CVs for the
simulated “response” distributions were 0.160, 0.166,
0.170, 0.175 for 1,2,5, and 10 s respectively. The slightly
worse fit to the theory for the shorter intervals as
compared to the other instantiations of the stop-watch
(compare the CVs to the ones stated above) can be
explained as follows. For the parameters we used
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Fig.9 “Response” distributions for the micro-circuit model. (a)-
(b) Numerically estimated “response” distributions (crosses) of
the time until 40 units have made a transition for two different
mean durations (and values of mean external input w). Solid lines
show the corresponding theoretical densities calculated from
Eq. (4). (@) Tap =1 s: p=4.324. (b) Tap = 11.1 s: pu = 4.2985.
(¢) Estimated “response” densities for four different values of
interval duration (and 1) as functions of relative time. The inputs
for 2 and 5 s were 4.3148 and 4.305 respectively. The noise
amplitude was o = 0.25 and values of all other parameter were
fixed and taken from Koulakov et al. (2002) and are also given in
the Electronic Supplementary Material. The estimates are based
on 8000 simulations for each value of the inputs
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(identical to those in Koulakov et al. 2002) it can hap-
pen that one cell fires a spike but the other two cells are
relatively hyperpolarized and the excitation received is
not enough to bring these to threshold. In other words,
that one cell fires an action potential it is not always
sufficient to make the system enter the activated state.
This implies that the distribution of activation times
of the units are slightly less exponential than in the
Morris-Lecar case. However, Fig. 9(c) clearly shows
that the micro-circuit version of the stop-watch is time-
scale invariant to a good approximation.

5 Learning to time intervals

To use the stop-watch to control behavior an organism
must be able to select the right activation probability
for a given interval duration. (In the implementation
given above this would correspond to selecting the
right level of mean input.) However, organisms typi-
cally do not have direct access to the interval dura-
tion(s) involved in a particular experimental situation.
Consequently, the right probability (or input) must be
found through learning. From the point of view of the
abstract stop-watch, learning would mean changing the
activation probabilities according to some rule to make
responding happen at an appropriate time. Here we
consider the simple situation that the organism (i.e.
model) only knows if it started responding too early
(e.g. before food is available) or too late (e.g. after food
is already available) on a particular trial. We will de-
scribe a simple learning rule that in this case preserves
the scale invariance. Learning will introduce a new
source of variance into the model that could potentially
disrupt the scale invariance. In all the analyzes so far
we assumed that the unit activation probability was
a constant (for a particular interval duration). If this
changes from trial to trial (due to learning) the overall
variability of the stop-watch will be increased, and we
must make sure that it increases in the right way.
Assume there are two target intervals of duration
T, and T, that should be learned. Assume further
that the corresponding target probabilities, p; and p,,
are such that E, (Tr.y) = Ty, and E,,,(Tf.y) = T for
some fraction f. For each target interval duration the
change in p due to learning should lead to a change
in E(T.p) that is proportional to E(7 f.j). This would
imply that the added variability would be proportional
to the mean, as required by the time-scale invariance.
Given the inverse relationship between interval dura-
tion and probability (Eq. (1)) it is straight forward to
device such a learning rule. Let #; denote the onset
of responding on the k-th trial, and let 0 < 8 <1 be
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a learning rate parameter. Then the following learning
rule will have the desired effect:

Pk it < T

_J1+8
Pk+1 = . 10
! Pk else (10)
1-8

In words: if responding starts too early, make p smaller
by a factor 1/(1 + B8), and if responding starts too late
make p larger by a factor 1/(1 — B). Given the inverse
relation between p and T this learning rule will change
the current expected time interval (corresponding to
the current p) in a proportional way. We evaluated
this learning rule in numerical simulations of the
stop-watch based on the one-dimensional dynamical
model (Eq. (7)). In the simulations the stop-watch had
to dynamically track changes in the interval duration
between 1, 5 and 10 s. To implement the learning
rule in this version of the stop-watch we changed the
mean inputs (1 in Eq. (7)) on each trial so that the

(a) 20

15 —

10 —

response time (s)

5 +———

0 — T T T T T T T T T T 1
0 1000 2000 3000 4000 5000 6000
trial number

b
( ) 008 T | T T
o - ‘..\‘ -
2 0.06 |- / \ —
[}
& - \ 4
B= 4 — —
s 0.0 i / \ i
e
B 002~ J \\\ ]
L 2 4
0 /. | s
0.5 1 L5 2

relative time

Fig. 10 Learning to time intervals. (a) Six-thousand “trials” of
a stop watch consisting of 50 units each modelled as Eq. (7).
For each trial, the time when 40 units became activated are
plotted (gray curve). The target durations (black lines) changed
between three levels (1, 5, and 10 s). Learning was implemented
as described in the main text and 8 = 0.05. The inset shows the
first transition from 1 to 10 s (i.e. centered at trial 2000) at higher
magnification. Tick marks in the inset are: x-axis 50 trials; and y-
axis 2 s. (b) Histograms of response times plotted as functions of
relative time for the three interval durations used in (a) (brown
1s, gray 5 s and black 10 s). Histograms were made from 10000
simulations for each interval duration
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activation probabilities changes consistently with
Eq. (10). This was achieved by using the approximation
given by Eq. (8). Figure 10 shows that the learning rule
indeed converges to the correct values and can thus be
used to dynamically trace changing interval durations.
The learning rate used in the figure, 8 = 0.05, was large
enough for the system to learn a new interval duration
in less than 50 trials (see inset in Fig. 10(a)) and small
enough to not increase the variability too much when
compared to the model without learning. Figure 10(b)
shows that the time-scale invariance is completely
preserved under this learning rule (and value of ).

6 Discussion

Time-scale invariance is a prominent property
of behavioral data collected in a wide range of
interval-timing tasks and in many different species
(e.g. Gibbon 1977; Lejeune and Wearden 2006;
Wearden and Lejeune 2008). We have studied a
minimal model (the stop-watch) of a device that
could be involved in the generation of such time-
scale invariant behavior. The stop-watch consists of
a number of bistable units and timing behavior is a
function of the number of units in the activated state.
Each unit starts in a spontaneous state and spends a
random amount of time in this state before becoming
activated. The distribution of these so-called activation-
times, and the way this distribution depends on the
duration of the time interval to be estimated, is the
key to scale invariance. We first analyzed an abstract
model where the activation times were modelled as
exponentially distributed random variables. Using
this formulation it is straightforward to demonstrate
scale invariance and derive simple expressions for
the mean (Eq. (1)), standard deviation (Eq. (2)), and
density function (Eq. (4)) for the time until a certain
fraction of units are activated. The scale invariance is
an intrinsic property of the stop-watch and is therefore
relatively insensitive to exactly how the state of the
stop-watch is used to control behavior. This was
illustrated by showing that two different “response
behaviors” triggered by the stop-watch were both scale
invariant (Figs. 2 and 3). We then described a generic
mechanism by which bistable units with exponential
activation times could potentially be obtained in the
nervous system. In particular, we suggest noise-induced
transitions from an equilibrium point (spontaneous
state) to another more stable state (activated state) as
a possible way to implement the abstract stop-watch
(Eq. (7)). This mechanism is generic in the sense of
being compatible with many different models of neural

activity. We illustrated this genericity by implementing
the mechanism in two different models: one at the
single cell level (Morris-Lecar model, Fig. 8), the other
at the cortical micro-circuit level (Fig. 9). We also note
that the suggested mechanism could be implemented in
models both at finer scales, e.g. purkinje cell dendrite
(Genet and Delord 2002) as well as coarser scales, e.g.
large recurrently connected cortical networks (Amit
and Brunel 1997; Hansel and Mato 2003). That is to
say, these models also have parameter regimes where
the relevant dynamics can be described by Eq. (7).
Given that the physiological mechanisms underlying
interval-timing are poorly understood at this point,
focusing on a generic mechanism that accounts for
behavioral data and is consistent with neurophysiology
is certainly justified. More specific and detailed models
will be called for once there is data with which to
constrain such models.

In the following we will discuss certain aspects of
the model and in particular how it can be extended
in various ways. We will then relate our work to pre-
vious modelling work and experimental findings and
speculate about how and where a stop-watch might be
implemented in the nervous system.

6.1 Criticism and extensions

The suggested mechanism of interval timing relies on
that one parameter in the model is changed as the
nominal interval duration is altered. In the abstract
model this parameter was the activation probability
(or rate) and in the neuronal model it was the mean
input to the units. Since it is well known that animals
can learn to adapt the inputs to single neurons on
the basis of the reinforcement history (e.g. Fetz 1969),
changing the activation probability by changing the
input is definitely biologically plausible. We also de-
scribed a simple learning rule (Eq. (10)) through which
the stop-watch can adapt the activation probability as
the nominal interval durations are changed, without
upsetting the scale invariance. However, this should
primarily be seen as a demonstration of that the stop-
watch can be used to track time-intervals dynamically.
In an implementation aiming at fitting real data it is
well possible that this learning rule needs to be aug-
mented. To preserve scale invariance, the learning-
induced change must be proportional to the activation
probability (Eq. (10)). For the neuronal stop-watch this
means that the relative change in the input will depend
non-linearly on the present state of the system. The
change must be smaller (in absolute terms) when the
system is timing intervals of long duration than when
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it is timing shorter intervals. One possible way that
this could be implemented locally is by making the
effect of an incoming spike depend on the state of
the system. In standard conductance-based models of
synaptic interactions this is exactly what happens: the
current that flows into (or out of) the cell depends on
the membrane potential. However, a detailed learning
mechanism compatible with the physiology still has to
be worked out.

We focused mainly on the simplest possible ver-
sions of the stop-watch. In most parts we assumed
that the units are independent of each other and that
once a unit is activated it will remain so for the rest
of the trial. Both these assumptions can be relaxed
without upsetting the scale invariance. One possible
extension that we have studied is to consider that the
units of the stop-watch are interconnected in a way
so that the activation probability will depend on the
number of units already activated. We demonstrated
that the abstract model is scale invariant if the units
interact multiplicativelty according to Eq. (6). In the
Electronic Supplementary Material we exemplify this
type of connectivity and state some analytical results. A
possible biological mechanism that could accommodate
the interactions described by Eq. (6) is some form of
synaptic plasticity. What is needed is that the strength
of the synapses between the units are modulated by the
interval duration. Such modulation would presumably
take place on a time-scale of minutes to hours. In
some behavioral experiments of interval timing this is
indeed the time-scale required for animals to adjust
their behavior to changes in the duration of the tar-
get interval (e.g. Ferster and Skinner 1957). Another,
more short-term, implementation of the multiplicative
scaling could come about through a balanced modula-
tion of the background inputs. Such modulations can
have a multiplicative effect on the output of neurons
(Chance et al. 2002). In the Electronic Supplementary
Material we also discuss an alternative, additive, way of
connecting the units. In this case exact scale invariance
does not hold anymore but as long as the interactions
are weak, scale invariance is still a good approximation.
Additive connectivity could for example be useful in
order to make the state of the stop-watch increase as
a more linear function of time and behave more like
a linear integrator. Indeed models of neuronal integra-
tors consisting of networks of bistable units have been
suggested previously (Koulakov et al. 2002; Okamoto
et al. 2007). We have considered that the activation
probabilities are much larger than those of returning to
the spontaneous state. There is some evidence support-
ing the validity of this assumption in the case where the
stop-watch units would be bistable cells. Indeed, there
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are cells in the enthorinal cortex that can be switched
from a silent (spontaneous) state to a state of persistent
spiking which can last for very long time periods (e.g.
Egorov et al. 2002; Tahvildari et al. 2007). However,
one could also consider the case where the units can
return to the spontaneous state after they have become
activated. Such systems can also be used to estimate
interval durations in a similar manner to the stop-watch
we have studied, but are not as tractable analytically
nor are they necessarily more realistic. Note that in the
examples we studied, units can actually switch back to
the spontaneous state. However, for the parameters we
used this is very unlikely to occur. There is still another
aspect in which the model could be generalized. We
have considered exponential activation times for the
individual units. This leads to tractable calculations
and a generic implementation. However, for time-scale
invariance, exponential distributions are not strictly
necessary. In fact, any distribution which is time-scale
invariant would work equally well.

In the implementations of the stop-watch we as-
sumed that each unit receives additive, uncorrelated,
and normally distributed noise. However, a weak tem-
poral correlation of the noise does not affect the scale
invariance (see Electronic Supplementary Material),
nor do reasonable deviations from normality. We note
that for a neuron that receives input through a large
number of temporally independent synaptic events, the
total input can indeed be approximated by a constant
mean plus normally distributed noise with a temporal
correlation that depends on the synaptic time constants
(e.g. Renart et al. 2003, Section 15.2.5). Noisy inputs
that are correlated between units would not affect the
time-scale invariance but could imply that Eqs. (1)-
(3) do not hold. Indeed, the effect of correlated noise
is similar to that of decreasing the total number of
units. We have furthermore implicitly assumed that the
mean input can be changed independently of the noise.
However, this assumption is not crucial for the time-
scale invariance. What is crucial is that the activation
rates changes monotonously as a function of the mean
input, something that is likely to hold for most systems.
Indeed, if the input is modeled as a large number of
Poisson spike trains (as above) with a common rate v
the “standard” approximation of the resulting current
received by the post-synaptic cell is a normally distrib-
uted random variable where the mean and variance
scales proportionally with v (e.g. Renart et al. 2003,
Section 15.2). This means that changing the mean input
by changing the rate of the incoming spike trains would
also change the variance of the white noise process. In
this case u in Eq. (7) would change proportionally to v
and the noise amplitude ¢ would change proportionally
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to /v. Both of these changes would affect the transition
times in the same direction. We also note that selective
changes of the noise amplitude (without changes of the
mean) could also be used as a mechanism to control the
activation times of the units. This could for example be
achieved by a simultaneous increase in both excitatory
and inhibitory inputs.

In Section 3.2 we argued that the time-scale in-
variance was independent of the particular read-out
mechanism. However, this is strictly true only under the
assumption that the read-out mechanism have direct
access to the true state of the stop-watch. If the outputs
of the stop-watch units are noisy, the read-out mecha-
nism would, in general, not be able to directly access
the state of the stop-watch. Rather, it would have to
infer this state from the noisy outputs. It is possible that
the noise added in this inference process could make
the ‘response timing’ deviate from scale invariance.
In Electronic Supplementary Material we study one
example of such noisy outputs. In particular, we take
the two states of the stop-watch units to correspond to
Poisson ‘spike trains’ with two different rates. We show
that the ‘response times’ of a read-out unit that receives
the sum of these outputs are still approximately time-
scale invariant. This holds true even if the difference in
the output rates is as small as 5 Hz. From this we can
conclude that noisy outputs from the stop-watch do not
necessarily destroy the scale invariance.

In summary, the times-scale invariance is not crit-
ically dependent on any of the assumptions we have
made about the units but would for example also hold
for interacting units receiving temporally and spatially
correlated inputs.

6.2 Relation to previous modeling and experimental
work

The idea of using abstract bistable units with random
activation times to estimate the duration of time in-
tervals was first introduced by Miall (1993). Miller
and Wang (2006) have suggested an implementation of
this original idea which is in several aspects similar to
the model we present. In particular, their model uses
units with exponentially distributed activation rates to
achieve scale-invariant behavior and the biological im-
plementation they have in mind is also of the noise-
driven saddle-node type. We have studied such models
from a more general point of view, and demonstrated
that time-scale invariance is a generic feature of such
models. Our work is in this sense a generalization and
extension of the model proposed by Miller and Wang.
Fukai and Okamoto and co-workers have in-
vestigated different realizations of the ideas above

(Okamoto and Fukai 2001; Kitano et al. 2003; Okamoto
et al. 2007). Their models are different from our in
architecture, in the way time and in particular intervals
of different durations are encoded and in assumptions
related to the underlying neurobiology. Their more
formal models cannot be (or have not been) analyzed
by elementary methods and hence the mechanism be-
hind scale invariance is not clear. Further the relations
between their more formal and more neurobiological
models are not explicit and hence the range of time-
intervals where scale invariance is supported in the
more neurobiological models is not known.

Time is an important variable in most experiments
with behaving animals but only relatively few studies
have directly looked at the neural correlates of interval
timing (Niki and Watanabe 1979; Kojima et al. 1981;
Matell et al. 2003; Leon and Shadlen 2003; Roux et al.
2003; Sakurai et al. 2004; Kalenscher et al. 2006; Oshio
et al. 2006; Renoult et al. 2006; Chiba et al. 2008;
Lebedev et al. 2008). A common finding in many of
these studies is that of specific neural activity that pre-
cedes the response. Such activity has been reported in
monkey (Niki and Watanabe 1979; Kojima et al. 1981)
and pigeon prefrontal cortex (Kalenscher et al. 2006) as
well as in motor and premotor cortices (Lebedev et al.
2008). This activity is often monotonously increasing
or decreasing with time (so-called climbing activity),
with the rate of increase (or decrease) being dependent
on the time-interval duration (Kalenscher et al. 2006;
Lebedev et al. 2008). Such duration dependent climbing
activity has also been found in other tasks involving
delay periods of different durations, for example in
monkey prefrontal (Kojima and Goldman-Rakic 1982;
Brody et al. 2003), and inferotemporal (Reutimann
et al. 2004) cortices, as well as rat thalamus (Komura
et al. 2001). Another common finding in timing tasks
is neurons that have a, more-or-less symmetric, bump
of activity with the peak coinciding with a time point
of potential response initiation (monkey motor (Roux
et al. 2003; Renoult et al. 2006) and parietal (Leon
and Shadlen 2003) cortices; rat striatum (Matell et al.
2003)). This activity is similar to the climbing activity
in that it builds up to a maximum that more-or-less
coincides with a potential response. Moreover, Renoult
et al. (2006) show that this activity can be scale in-
variant. The correlation between interval duration and
neuronal activity that these studies have shown could
indicate that these neurons are directly involved in the
temporal control of behavior. However, this interpre-
tation is complicated by the fact that monkeys, at least,
can perform some interval timing tasks with parts of the
prefrontal cortex lesioned (Manning 1973; Rosenkilde
et al. 1981).
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The stop-watch we have described is in perfect
agreement with these experimental studies: the state
of the stop-watch is monotonously increasing with time
with a rate that depends on the interval duration (e.g.
Fig. 1(c)). To account for the experimental findings we
just need to postulate that the neurons with climbing
activity are receiving inputs from the stop-watch, po-
tentially located elsewhere. This gives a parsimonious
explanation of the fact that similar type of climbing
activity is found in different brain areas and that this
activity might not be necessary for all interval timing
tasks. Alternatively the climbing activity could be gen-
erated intrinsically by single cells (Durstewitz 2003) or
by the local network (Reutimann et al. 2004). These
alternative explanations are of course not mutually
exclusive as more than one timing mechanism could
be at play at the same time. We note however that
it is not clear if these models of climbing activity
support scale invariance over a wide range of time
intervals.

6.3 Where in the brain could a stop-watch
be implemented

We will now discuss some evidence indicating that the
basal ganglia could be a place where the stop-watch
is implemented. Although there are several different
brain regions known to be involved in various aspects
of timing (see Ivry 1996; Mauk and Buonomano 2004
for reviews) there is converging evidence indicating
that the basal ganglia are crucially involved in ‘interval-
timing’ tasks. In particular, using both pharmacological
and lesions studies in animals and functional imaging
in humans, Meck and co-workers have demonstrated a
critical role of the basal ganglia in interval timing (see
Meck 1996; Buhusi and Meck 2005; Meck et al. 2008
for review). In particular, an intact striatum seems to
be necessary for rats to exhibit timing behavior (Meck
2006). That the basal ganglia are involved in interval
timing fits well with that this is a set of brain regions
that has been relatively well preserved during evolution
(Smeets et al. 2000). Interestingly, the membrane po-
tentials of cells in both ventral striatum (e.g. Wilson
1993) and dorsal (O’Donnell and Grace 1995) striatum
are known to be bistable. The switching between the
states seems to be random (Stern et al. 1997, Fig. 3),
and the mean duration spent in each state is input
dependent (Wilson and Kawaguchi 1996, Fig. 3). This
indicates that striatum is one location where the stop-
watch could potentially be implemented. Moreover,
dopamine can modulate the excitability of the two ac-
tivity states of striatal neurons (Hernandez-Lopez et al.
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1997; West and Grace 2002) and presumably change
the probability of switching between them (Nicola et al.
2000). Since dopamine is strongly implicated in the
reward mechanisms of the nervous system (Schultz
1998) this dopamine dependence suggests a mechanism
through which the activation rates could be modified in
the stop-watch, and hence enable the timing of intervals
of different duration. This argument is speculative but
can be taken as a demonstration of that the neural
mechanisms needed to implement the stop-watch seem
to be available in a region heavily implicated in interval
timing. The stop-watch can therefore be said to be
biologically plausible. Whether something like the stop-
watch is really used in interval timing must of course be
investigated experimentally.

The basal ganglia is a key player in another model
of interval timing: the striatal beat frequency model
(Matell and Meck 2004). According to this model, the
striatal cells act as coincidence detectors of oscillatory
inputs from the frontal cortex. By making the cortical
cells oscillate with slightly different frequencies long
time intervals (much longer than the period of the
oscillators) can be encoded by using the phase dif-
ference of different oscillators (also an idea originally
suggested by Chris Miall (1989)). Through dopamine-
induced plasticity, the duration of different intervals
can be learned. This model is consistent with a large
body of experimental findings. However, direct exper-
imental evidence at the neuronal level, which is con-
sistent with this model but not others, is lacking. It
would also be important to verify that the striatal beat-
frequency model can be implemented in a biophysically
realistic model. The stop-watch and the striatal beat
frequency model are similar in that they both propose
a device (perhaps located in the striatum) that uses
inputs coming from other brain regions to encode time
intervals. However, the mechanisms through which this
is done are very different. The stop-watch makes a
strong prediction with respect to the activation times
of the individual units: these must be random from trial
to trial. The striatal beat frequency model, on the other
hand, predicts that the between-trial variability in re-
sponding should be small. This could perhaps indicate
an experimental way of discriminating between the two
models.

In conclusion, we have suggested a simple model
of a device that could be used to produce time-scale
invariant behavior and shown how this model could be
implemented in a range of neuronal models. We believe
that the combination of being both simple and generic
makes the suggested model an interesting possibility to
consider for a plausible neuronal interval timer.
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Appendix
The abstract stop-watch

The abstract stop-watch consists of M units that can
be in two states: spontaneous and activated. The units
switch from the spontaneous to the activated state at
random times (called activation times). In the discrete-
time case the switching is governed by a fixed proba-
bility p of switching per unit time and the activation
times will have a geometric distribution with parameter
p- In the continuous-time case the activation times are
exponentially distributed with rate parameter p. For
small p the exponential distribution is an excellent
approximation of the geometric distribution (e.g. Feller
1968). The primary use of the discrete-time version
is to make the stop-watch more intuitive (Fig. 1). All
analysis is done with the continuous-time version. In
this case the number of units in the spontaneous state
as a function of time is a stochastic process known as
a linear death process (see for example Taylor and
Karlin 1998). Even if this is a well understood stochastic
process the results we are using do not seem to be
available in standard sources and we therefore give the
derivations here.

The distribution of the number of units in a certain state

Since the time point each unit switches to the activated
state is an exponential random variable (denoted U;)
it follows that the probability that it switches in the
interval from O to ¢ is given by 1 — e~ ?’. Given that the
units are identical and independent the probability of
having x units in the activated state at time ¢ is given by
the following binomial distribution

PriX () = x} déf a(f) = (14)(1 _ efpt)X(efpt)(fo).

(11)

This follows from considering the state of each unit the
outcome of a Bernoulli trial with probability 1 — e’
of “success” and e ?' of “failure”. For an alternative
derivation see Taylor and Karlin (1998).

The distribution of Ty

Let Tf.p be the time the process enters the state of f -
M units activated. That is

Try= mlin{X(t) = f- M}.

We will now derive the probability density function
of Ty.y. First note that the number of units in the
activated state is a monotonously increasing function of
time. Furthermore, the probability that two units will
enter the activated state at exactly the same time is
zero. This implies that to enter the state characterized
by having f - M units activated is only possible through
the state f- M — 1. Next we will approximate the prob-
ability of entering state f- M in the interval from ¢ to
t + At where At is a time interval small enough that we
can ignore the event of having more than one transition

during the interval. Then it follows that the state at
time t must be f- M — 1 o ¢ and this has probability
ay(t) of occurring (from Eq. (11)). The probability of
having exactly one of the remaining units switching to

the activated state during the next At is given by
c(Af) = (M — ¢p)(1 — e PAl e PAIM=[-M)

Note that ¢ does not depend on ¢. Taylor expanding this
expression in At gives

c=(M—¢)pAt+h.ot,

where h.o.t. denotes terms of order (Af)? or higher.
Then we can approximate the probability that the sys-
tem enters state f - M before time T by

K
PriTim < T}~ Zaq)(ti)[p(M — ¢)At +h.o.t].
i=1
where K is the number of intervals of length At that fits

in [0, T] and ¢; is the mid-point of interval i. In the limit
of K — oo (and At — 0) we get

T
PriTey <T)=pM — qb)/o ay(t)dt. (12)
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This is an equality since the higher order terms dis-
appear in the limit and the approximations made to
start with become exact. Thus, Eq. (12) implies that the
probability density function of T'y.y is given by

M
grm(®) = pM - ¢)< ¢>(1 —e )P (e M),
which is identical to Eq. (4) above.

First two moments of T .y

The mean and the variance of T't.3 can in principle be
obtained from integrating the density function Eq. (4).
This, however is tedious and we can proceed through a
more intuitive route. Let Y} be the interval between the
occurrence of the kth and the (k + 1)th switch to the ac-
tivated state. This interval will have the distribution of
the minimum of M — k exponential random variables
all having the same rate parameter. This distribution
is in fact also an exponential but with rate parameter
p(M — k). (To see this, consider the joint probability of
that no unit has become activated at time ¢ and use that
the activation times are exponentially distributed and
independent.) Moreover, for different ks the variables
Y} are independent. The expected value of Ty is
just the sum of the expected values of Y for k =

0,1,..., f- M —1, orin other words
1TE
E(Try) = — —_—.
f p k2=(; M-k

The same reasoning gives the expression for the vari-
ance of Ty

1

M— |
2 Githr

k=0

1 I
V(Tm) = —
f p2

from which we get the standard deviation by taking the
square root.

Optimal value of f

In this section we want to determine the fraction of
units f in the activated state so that the CV is as small
as possible. The CV is given by

\/L M- f—1 1

CV = M2 k=0 (1 — k) M)? .
1 yM -l 1
M=k=0 1 kM
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If we introduce a new variable x = k/ M we can approx-
imate the above sums by integrals. This gives

ify dx
M0 (1 —x)2 def

dx = c(y),
fO 1—x
where y is a variable that ranges from 0 to 1. This
expression shows that when M is large (so that the
approximation is good) the CV scales as /1/M.

Next, we want to find the minimum of this function
(i.e. ¢(y)) in the interval [0,1). To do this we take
the derivative with respect to y and set the resulting
expression equal to zero. This gives

_y
log(1 —y)

CV ~

+0.5=0.

Solving this equation numerically we get that y =
0.7968. To approximate the sums with integrals, we
need that M is reasonably large. However, we have ver-
ified numerically that the minima of the CV is attained
close to 0.8 for small M as well.

The neuronal stop-watch

In the neuronal version of the stop-watch we assume
that each unit is described by a bistable system where
the spontaneous state corresponds to an equilibrium
point. We further assume that the stability of this state
can be controlled by changing the input to the system
and moreover that there is a level of input beyond
which this state is no longer stable. A generic model
of this situation is then given by Eq. (7). Indeed, by
changing the variable to y = Bx in this equation we get

dy = dt(Bu + y*) + Vdtpo&(1)

which is the so-called normal-form of a saddle-node
bifurcation driven by white noise (for an introduction
to bifurcation theory and normal-forms see Strogtaz
(1994)). This model is generic in the sense that it ap-
proximates any system of the above type where the
change of stability is associated with one zero eigen-
value (see Guckenheimer and Holmes 1983, Section 3.4
for a more exact statement). What this means in non-
technical terms is that given a system with the above
characteristics, Eq. (7) can be used to describe the
dynamics of this system close to the point where the
spontaneous state is no longer stable. Since this is ex-
actly the regime we are interested in, Eq. (7) is indeed
the correct model to use. In Fig. 8 we showed that the
Morris-Lecar model is very well approximated by this
equation.
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Numerical simulations

To integrate Eq. (7), as well as the Morris-Lecar and
micro-circuit models with noisy inputs we use Heun'’s
method (Greiner et al. 1988), with step size 0.02 for
Eq. (7) and 0.002 for the Morris-Lecar and micro-circuit
models.

In all numerical solutions of Eq. (7) we start the
solution at the stable equilibrium and use a threshold
x > 2 to detect when the system has escaped from
the spontaneous state. Using another (larger) threshold
value would not affect the results since once the sys-
tem has left the spontaneous state it will very rapidly
diverge to +-o0.

The first passage times

The first passage time is a random variable that de-
scribes the time when the state-variable in Eq. (7)
reaches a given level for the first time. There are no
closed-form expressions in terms of elementary func-
tions for the passage time distribution nor for its ex-
pected value. If we let U(x) = —ux — (8/3)x* be the
“energy function” then the mean first passage time as
a function of initial condition xy is given by (Pontryagin
et al. 1933/1989, Eq. (24)):

2 b -2U y 2U
m(xg) = ;/ exp{ Uz(y) }/ exp{ GEZ) } dzdy.

(13)

(See Karlin and Taylor (1981, Section 15.3) for a
more recent account). In this expression b denotes the
threshold level. We solved this equation numerically
with xo = —/|u|/B and b = 2 using Romberg integra-
tion (Press et al. 1992). We used the inverse of the mean
first passage time as the activation probability for the
neuronal stop-watch.

The approximation given by Eq. (8) was first derived
in Kramers (1940), a recent and accessible account is
given in Van Kampen (2007, Section XIII.2).

To get the distribution of passage times we solved
numerically the Fokker-Planck equation (also called
Kolmogorov forward equation) associated with Eq. (7).
This equation reads:

IP(x, 1) D 5 fazP(x, f)
Y —8x([u+ﬁx 1P(x, 1) + TR

. (14)

We used the so-called backward time centered space
discretization method to solve this equation and used a
step-size of 0.02 for both time and space variables. The

first passage density is given by the so-called probability
flux

29pP
J(t,x) = (u+ B P(t, x) — % 9 ;; %)

)

at the right boundary (Van Kampen 2007). To solve for
this numerically we evaluated the flux at a point close
to but not quite at the boundary since the discontinuity
at the boundary often leads to small oscillations in the
solution there.

An intuitive argument for why the first passage time
distributions will be exponential as | x| increases is given
next. As || increases (or o decreases) the deterministic
part of Eq. (7) will have increasingly stronger influence
over the dynamics. This means that if the system is
initiated somewhere to the right of the unstable equi-
librium it will after a short amount of time be in a
quasi-equilibrium state. That is, P in Eq. (14) which
will be a narrowly peaked function centered at the
stable equilibrium point. It is not a true equilibrium
distribution because eventually all the probability will
escape from the domain. For large values of || this
quasi-equilibrium will be established much faster than
the mean escape time. This implies that the probability
of escaping becomes independent of initial condition.
Since the process is Markovian by assumption, this in-
dependence of initial condition implies that the escape
times are also Markovian (since the system is uniquely
characterized by the state variable). If the escape times
are Markovian the distribution must be exponential.

The Morris-Lecar model

We follow the formulation of the Morris-Lecar model
given in Izhikevich (2007). In this work it is referred
to as the ‘persistent sodium plus potassium model’ with
a high-threshold Ix. The parameters are the same as
those stated in Izhikevich’s book (in the legend to
Fig. 4.1) but we state them here as well for easy ref-
erence: £ = —80, Ena = 50, Ex = —90, g1 = 8, gna =
20 8K = 10, T, = 0165, myp = —20, nip = —25, mj =
15, ny = 5. Here the Es are equilibrium potentials, the
gs conductances and t, a time constant. The noise
amplitude of the input current was o> = 0.06%.

For these values of the parameters the system
(with o = 0) undergoes a saddle-node bifurcation for
an input current of [, = 4.5129 for which V =V, =
—60.933. In the vicinity of this point the system can
be approximated by the following one-dimensional
equation

av
- = 1.0073(1 — Ip) + 0.1901(V — V)%
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If we add white noise with variance o2 to the input
current in the Morris-Lecar model we get the following
reduced model

dv
e 1.0073(1 — Iy) + 0.1901(V — V},)? + 1.00730°£(t)

which is formally equivalent to Eq. (7) in Section 4. The
reduction of the Morris Lecar model to the form of
Eq. (7) was made through a so-called center manifold
reduction for a saddle node bifurcation, a standard
procedure (e.g. Kuznetsov 2004). In fact, a simplified
reduction of this very model is performed in Izhikevich
(2007, Section 6.1.1) to which the reader is referred
for more details. Note however that the exact corre-
spondence between the models can only be obtained
through the center manifold reduction (or something
equivalent) of the full system.
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