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Abstract

Directed information theory deals with communication channels with feedback. When applied

to networks, a natural extension based on causal conditioning is needed. We show here that

measures built from directed information theory in networks can be used to assess Granger causality

graphs of stochastic processes. We show that directed information theory includes measures such

as the transfer entropy, and that it is the adequate information theoretic framework needed for

neuroscience applications, such as connectivity inference problems.

PACS numbers:

∗Electronic address: bidou.amblard@gipsa-lab.inpg.fr
†Electronic address: olivier.michel@gipsa-lab.inpg.fr

1

http://arxiv.org/abs/1002.1446v1
mailto:bidou.amblard@gipsa-lab.inpg.fr
mailto:olivier.michel@gipsa-lab.inpg.fr


I. INTRODUCTION

Modeling and estimating connectivity is a key question often raised in neuroscience.

Understanding connectivity is fundamental in order to decipher how neural networks process

information. Deriving a definition for connectivity turns out to be a problem. In [46], three

types of connectivities are described: structural or anatomical connectivity describes the

physical links between parts of the brain; functional connectivity describes links between

parts of the brain that jointly react in some circumstances (the joint reaction is reflected by

measures such as correlation or mutual information); effective connectivity is an attempt to

add to functional connectivity the notion of direction in the information flow. Once a point

of view is adopted, the inference problem i.e. estimating the connectivity from data, gives

rise to numerous difficulties. For instance, in measuring effective connectivity, the different

scales of observation of the brain (associated with different means of observation) lead to

time series that may have very different natures and properties, and thus may lead to rather

different conclusions. When studying, for example, networks of neurons cultured in vitro

and recorded by Micro-Electrode Arrays, the recorded signals will usually be described as a

mixture of point processes and continuously valued processes. Depending on the nature of

the experiment, the correlation structure of the signals may depict short or long memory,

leading to different processing schemes. Furthermore, approaches will be in general highly

nonlinear. Going to a much broader scale, fMRI measurements are well modeled by Gaussian

processes but with long range memory. These facts lead to the conclusion that there is no

universal method for inferring a graph from multiple measurements that will reflect the

connectivity of the brain. However, general principles may be designed and adapted to each

situation. It is the goal of this short paper to offer such a general framework—one that relies

on information theory and causality principles.

Dependence analysis will provide the main tools for inferring connectivity. Such tools

range from correlation and partial correlation to mutual information and causality mea-

sures. Many of the most popular tools are non directional, e.g. correlation or partial

correlation, and mutual information measures. These measures have been extensively used

in neuroscience (e.g. [1, 24, 29], to cite but a few).

Alternately, some authors have defined directional measures. Some of these generalize

partial correlation to partial directed coherence in order to have efficient second-order statis-
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tical methods [15, 26]. Other methods and measures have been developed using information

theoretic tools [23, 37, 42, 43]. Among these measures, the most popular one, the transfer

entropy, is often cited in neuroscience. It has been applied, for example, in [33] to measure

information flow in sensorimotor networks. Transfer entropy relies, by construction, on bi-

variate analysis. One attempt to generalize it to multivariate analysis has been suggested

in [16]. Although not designed for solving neurosciences problem, this method uses a very

interesting and pragmatic approach. We will discuss this in the last section.

A different class of approaches relies on work by Wiener and Granger on causality.

Granger causality considers that a signal xt causes a signal yt if the prediction of yt is

increased when taking into account the past of xt. This approach is appealing but gives rise

to many questions, philosophical as well as technical [17, 19, 20, 39, 41]. Several levels of

definition for Granger causality exist. If the definition based on linear prediction is adopted,

operational approaches exist to assess causality between signals. These approaches and

some ‘linear-in-the-parameters’ nonlinear extensions have been applied in neuroscience (e.g.

[14, 44, 45]). Interestingly, applying Granger causality definitions within a linear modeling

framework turns out to introduce measures mostly used in correlation based approaches

(directed partial coherence). This opens a way to unify the different point of views.

The goal of the paper is to propose a possible unification between Granger causality and

information theory. This is made possible by recoursing to the framework of directed infor-

mation theory

’Directed information theory’ has its roots in Marko’s work; Marko was a German etholo-

gist who studied communication between monkeys in the 1970’s [34]. Marko remarked that

standard information theory was not adequate in the context he studied, since feedback

was not taken into account by symmetrical quantities such as the mutual information. He

thus introduced directed information measures elaborated from Markov modeling of com-

munication signals. His findings were later (re)formalized by Massey in 1990, developed by

Kramers, Tatikonda and some others in the late 1990’s, and more recently [28, 35, 47–49].

All these results and developments may be referred to as directed information theory, and

culminates in the study of communication theory through channels with feedback. Here, we

do not consider the problem of communication in its full generality, but rather we consider

directed information theory to assess directional dependencies between multiple time series.

The paper is organized as follows: Granger causality graphs, as defined by the work in
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[11, 13], are introduced in the next section. Then, we present the essentials of directed infor-

mation theory, with emphasis on the notion of causal conditioning. Causal conditioning is

fundamental to assess directional dependence between multiple time series. While extend-

ing these tools for stochastic processes, we will highlight the relationships between transfer

entropy and directed information theory [2, 6]. Section IV is dedicated to establishing the

link between Granger causality graphs and directed information theory. This is one of the

main points made in this paper. Although the paper remains deliberately at the conceptual

level, some practical aspects such as estimation issues or testing are discussed in the last

section.

II. GRANGER CAUSALITY GRAPHS

Graphical modeling is a powerful statistical method to model the dependence structure

of multivariate random variables [30, 52]. Graphical models have been extended to random

processes in the nineties [8, 10, 12] and the learning of graphical models have subsequently

been studied, e.g. [5, 10, 13]. It is worth noting that one of the first applications was

dedicated to neuroscience [12]. In [13], the concept of (linear) causality graph is introduced.

Such a graph is a mixed graph in which nodes may be connected by directed edges as well

as undirected edges. Each connection is defined using the concept of Granger causality,

restricted to linear models. Later, [11] generalized the definition of connection using the

unrestricted Granger causality definition, i.e. based on probability measures.

A. Granger causality

In this section we briefly review the basics concerning Granger causality between two time

series. Granger causality is based upon prediction theory. Let xt and yt be two stochastic

processes indexed by Z, the set of relative integers. Let xn:t be the vector composed of all

the samples of x from time n up to time t, or xn:t = (xn, xn+1, . . . , xt−1, xt). n may be equal

to 1 in which case x1:t represents the whole past and the present of process x at time t.

We set to t = 1 the origin of time for the sake of mathematical convenience. Once all the

measures are defined, we implicitly let the time origin going to −∞.

Let capital letters denote multivariate processes, Xt = (x1,t, . . . , xN,t). As above, Xn:t
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will denote the collection of all the samples of the multivariate time series from time n up

to time t.

Basically, a signal xt will be said to ’Granger cause’ a signal yt if the prediction of yt

is improved when considering not only its own past but also the past of xt. Thus a first

definition can be given using (conditional) probability measures P of the processes: xt does

not cause yt if and only if P (yt|y1:t−1, x1:t−1) = P (yt|y1:t−1). In other words, xt does not

cause yt if yt is, conditionally to its own past, independent from the past of xt; the chain

x1:t−1 → y1:t−1 → yt is a Markov chain.

This definition may be satisfactory only if other observations are not taken into account.

Actually, it has been quoted by Granger that adding new observations may change the

causality relation between two processes, i.e.

P (yt|y1:t−1, x1:t−1) 6= P (yt|y1:t−1)

6=⇒

P (yt|y1:t−1, x1:t−1, Z1:t) 6= P (yt|y1:t−1, Z1:t). (1)

The dependence relationship between two times series x and y is not guaranteed to be con-

served when extra observations are taken into account. This means that Granger causality

can only be considered as a property relative to the available information set.

A very simple example to illustrate this can easily be constructed. Let xt = azt−1 + εt,

yt = bxt−1 + ϕt and zt = cyt−1 + ηt be three processes constructed from three independent

processes ε, ϕ, η. Then P (xt|x1:t−1, y1:t−1) 6= P (xt|x1:t−1) whereas P (xt|x1:t−1, y1:t−1, z1:t) =

P (xt|x1:t−1, z1:t). From this example, we may conclude that a relationship exists between y

and x if z is not taken into account. If the observation of the third signal z is considered as

well, no direct link from y to x is exhibited, as all dependencies between y and x appear to

be related to the presence of z; including z in the analysis, y is found to not Granger cause

x.

Granger causality is thus mainly due to the influence of the past of a process onto the

present of another process. Geweke [17] introduced the definition of instantaneous coupling.

If the dynamical noises εt, ϕt, ηt in the preceding example are assumed to be white but no

longer independent processes, there is a coupling between xt, yt and zt which is instantaneous

(Eichler uses the word contemporaneous). Thus two types of influence have to be defined.

Let xt and yt be two stochastic processes, and Zt a third multivariate process which does
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not contain x nor y as components.

1. xt does not cause yt relatively to Zt ⇐⇒ P (yt|y1:t−1, x1:t−1, Z1:t) = P (yt|y1:t−1, Z1:t),

∀t > 1

2. xt does not instantaneously cause yt relatively to Zt ⇐⇒ P (yt|y1:t−1, x1:t, Z1:t) =

P (yt|y1:t−1, x1:t−1, Z1:t), ∀t > 1.

The absence of a causal relation from xt to yt corresponds to the independence between the

present of y and the past of x, conditionally to the past of y and the extra information (Z1:t).

Further, the lack of instantaneous causality is symmetrical with respect to x and y, since it

simply states that x and y at time t are independent conditionally on their joint past and

on the past of Z.

These definitions enable us to construct a graph from a multivariate time series as follows

[11, 13]. Each time series is associated to a node. Two types of edges may exist between

two nodes. A directed edge from node x to node y will mean that x Granger causes y with

respect to the remaining time series, and an undirected edge between x and y will mean

that x instantaneously causes y with respect to the other observed time series, stacked in Z.

The undirected nature of the latter edge is a consequence of the symmetry of instantaneous

causality. Precisely, let Xt be an M-dimensional time series, whose components are denoted

as xi,t, i = 1, . . . ,M . Let (V,Ed, Eu) be the associated mixed graph, where V is the vertex or

node set, Ed is the set of directed edges and Eu is the set of undirected edges. The cardinal

of V is M . The vertices in V are labelled by i = 1, . . . ,M , and vertex i will correspond to

process xi unambiguously. Then, the edge sets are defined via

1. ∀i ∈ V, j ∈ V, (i, j) 6∈ Ed ⇐⇒ xi,t does not cause xj,t relatively to X\{xi, xj}t)

2. ∀i ∈ V, j ∈ V, (i, j) 6∈ Eu ⇐⇒ xi,t does not instantaneously cause xj,t relatively to

X\{xi, xj}t

where X\{xi, xj}t is the (M −2)-dimensional process constructed from Xt by deleting com-

ponents i and j. (V,Ed, Eu) defines a Granger Causality graph.
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III. DIRECTED INFORMATION THEORY

This section reviews the essential tools from directed information theory, but not from

a communication theory point of view. Our purpose is instead to recast some results and

definitions within the framework of dependence analysis between stochastic processes. The

link between directed information measures and Granger causality graph will be developed

in the next paragraph.

A. Directional dependence between two stochastic processes

For the sake of readability, this paragraph focuses upon studying the relations that may

occur between two processes only, namely x and y. The role played by the existence of other

observed process, outlined previously, and the importance of accounting for such ’extra

information’ is deferred to a later discussion.

From a probabilistic point of view, this dependence structure is encoded in the joint

probability measures P (xn1
, . . . xnN

; yn1
, . . . ynN

) for all N and all times n1, . . . , n2 in Z. To

introduce the different definitions, we restrict the presentation to the dependence between

vectors constructed from the time series, i.e. x1:t. The extension to stochastic processes

is discussed in section IIIC. Furthermore, we assume in the sequel that the measures are

absolutely continuous with respect to Lebesgues measure, and we will work with probability

density functions.

If there is no dependence structure, or if the processes are independent, it is well known

that the joint probability density functions factorize into p(xn1
, . . . xnN

) × p(yn1
, . . . ynN

).

Consider the Kullback-Leibler divergence DKL(f ||g) = Ef [log f(x)/g(x)], where Ef [.] is the

expectation operator (or ensemble average) with respect to the probability density function

f . The Kullback-Leibler divergence provides a measure of information when wrongly assum-

ing a random variable as distributed from g when it is in fact distributed from f . Choosing

for f the joint probability density function between two processes, and for g the product of

the marginals then leads to a measure of independence, the well-known mutual information

I(x1:t; y1:t) = E

[

log
p(x1:t; y1:t)

p(x1:t)p(y1:t)

]

. (2)

Mutual information is a positive quantity (which is a property inherited from the Kullback-

Leibler divergence) and is zero if and only if the two processes are independent [9, 40].
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However it suffers from being symmetrical with respect to x and y and consequently it is

useless when it comes to measuring directionality in the dependence structure.

This symmetrical behavior appears to be closely related to the symmetry of the factoriza-

tion of the joint probability density function p(x1:t; y1:t) = p(x1:t)p(y1:t) under the hypothesis

that the processes are independent. Alternately, the following factorization is introduced:

p(x1:t; y1:t) = ←−p (x1:t|y1:t)
−→p (y1:t|x1:t) (3)

←−p (x1:t|y1:t) =

t
∏

i=1

p(xi|x1:i−1, y1:i−1) (4)

−→p (y1:t|x1:t) =
t

∏

i=1

p(yi|x1:i, y1:i−1). (5)

If we consider the link between x and y as a channel with input x and output y, the term

−→p (y1:t|x1:t) describes the feedforward link whereas ←−p (x1:t|y1:t) describes the feedback term.

In the absence of feedback in the channel the input x at time t does not depend on the past

of the output up to time t− 1, and the feedback factor reduces to ←−p (x1:t|y1:t) = p(x1:t).

Mutual information is a divergence measure between the actual joint probability density

function and its factorized equivalent expression when independence holds. In order to

assess directionality, Massey suggests to compare the joint probability to the alternative

factorization ←−p (x1:t|y1:t)p(y1:t), which correspond to a situation of no influence of x onto

y but of the existence of feedback from y to x. A very simple example is given by xt =

αxt−1 + βyt−1 + vt and yt = γyt−1 + wt where vt and wt are white noises independent from

each other.

The directed information is defined as

I(x1:t → y1:t) = E

[

log
p(x1:t; y1:t)

←−p (x1:t|y1:t)p(y1:t)

]

. (6)

Comparing this definition with equation (2) it is observed that the difference lies in the

term p(x1:t) which is replaced here by the term ←−p (x1:t|y1:t). This shows that the directed

information and mutual information will be equal when there is no feedback. The main

properties of the directed information are now summarised. In the sequel, the delay operator

D : xt −→ xt−1 is denoted as Dxt for a signal and Dx1:t = (0, x1, . . . , xt−1) = (0, x1:t−1)

for a vector. Different proofs of the results presented hereafter exist, the simplest of which

relies on the use of Kullback-Leibler divergence properties. For detailed proofs, refer to

[2, 28, 35, 48]. The properties are as follows.
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1. The directed information is positive.

2. The directed information is smaller than, or equal to the mutual information.

3. Equality between the directed information and the mutual information occurs if and

only if there is no feedback.

4. The directed information decomposes as

I(x1:t → y1:t) + I(Dy1:t → x1:t) = I(x1:t; y1:t) (7)

The first three points are fundamental from a communication point of view. Point 2 and 3

mean that mutual information overestimates the quantity of information flowing from one

signal to another. This has been used by information theorists to provide closer bounds for

the capacity of a channel with feedback. The third point ensures that directed information

theory leads to the usual theory if there is no feedback. The last point is important as

it shows how the information shared by two stochastic processes is decomposed into the

sum of information flowing in opposite directions. A similar decomposition will be found

in the sequel, in the framework of causal conditioning. The purpose of the next section is

to provide appropriate definitions for causal conditioning and to open new perspectives for

directed information.

B. Causal conditioning, causal conditional directed information

An alternative formulation for directed information may be easily obtained:

I(x1:t → y1:t) =

t
∑

i=1

I
(

x1:i; yi
∣

∣y1:i−1

)

, (8)

where I(x; y|z) is the conditional mutual information between x and y given z. Directed

information may also be expressed as a function of Shannon entropies as

I(x1:t → y1:t) = H(y1:t)−

t
∑

i=1

H
(

yi
∣

∣x1:i, y1:i−1

)

. (9)

This expression should be compared to the expression of mutual information below

I(x1:t; y1:t) = H(y1:t)−
t

∑

i=1

H
(

yi
∣

∣x1:t, y1:i−1

)

. (10)
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It appears that the only difference lies in the time horizon over which the conditioning is

performed in the conditional entropy. For the mutual information, conditioning is performed

for each time over the whole observation of x. For the directed information, conditioning

for the term at time i is performed from the time origin up to time i. Kramers suggested

referring to this conditioning as ’causal conditioning’. We keep the same name but propose

a slightly different presentation for it. Causal conditional entropy is defined as

H(y1:t||x1:t) = −E [log−→p (y1:t|x1:t)] . (11)

It quantifies the information that remains when observing y once x has been causally ob-

served. The directed information is then recovered by subtracting the latter quantity from

the entropy of y:

I(x1:t → y1:t) = H(y1:t)−H(y1:t||x1:t). (12)

Causal conditioning and usual conditioning can be mixed. Kramers proposes the follow-

ing rule: when reading from left to right, the first type of conditioning is applied. Thus,

according to this rule, we define

H(y1:t
∣

∣x1:t

∣

∣

∣

∣z1:t) = H(y1:t, x1:t

∣

∣

∣

∣z1:t)−H(x1:t

∣

∣

∣

∣z1:t) (13)

H(y1:t
∣

∣

∣

∣x1:t

∣

∣z1:t) =
t

∑

i=1

H(yi|y1:i−1, x1:i, z1:t) (14)

These two definitions highlight a non commutative property between classical and causal

conditioning. In eq. (13), the definition is similar to the definition of usual conditional

entropy as the difference between the joint entropy of x and y and the entropy of x alone.

In eq. (14), the conditioning on z is global (compared to the conditioning on x which is

causal). In that sense, in this definition, the conditioning variable z is not necessarily a

signal synchronous to signals x and y. Instead, eq. (13) does not make sense if zt is not

synchronous with xt and yt.

Finally, a causal conditional directed information can be defined. Mimicking the definition

of conditional mutual information ( I(x; y|z) = H(y|z) − H(y|x, z) ), causal conditional

directed information is defined as

I(x1:t → y1:t
∣

∣

∣

∣z1:t) = H(y1:t
∣

∣

∣

∣z1:t)−H(y1:t||x1:t, z1:t)

=
t

∑

i=1

I
(

x1:i; yi
∣

∣y1:i−1, z1:i
)

. (15)
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This quantity will be of crucial importance when dealing with multivariate time series.

Furthermore, it appears in the sum of two directed information quantities flowing in opposite

directions. Actually, it can be shown that

I(x1:t → y1:t) + I(y1:t → x1:t) = I(x1:t; y1:t)

+ I(x1:t → y1:t||Dx1:t). (16)

In this expression, the term I(x1:t → y1:t||Dx1:t) is named instantaneous exchange informa-

tion and can be written as

I(x1:t → y1:t||Dx1:t) =
t

∑

i=1

I
(

x1:i; yi
∣

∣y1:i−1, x1:i−1

)

(17)

=

t
∑

i=1

I
(

xi; yi
∣

∣y1:i−1, x1:i−1

)

. (18)

The last equation is obtained since x1:i|x1:i−1 = xi|x1:i−1. Furthermore, this equation il-

lustrates that the instantaneous information exchange is symmetrical in the signals x and

y.

The importance of instantaneous information exchange appears also in the following

decomposition of the causal conditional directed information. Recall the following chain

rule for the conditional mutual information [9]

I(x, y; z|w) = I(x; z|w) + I(y; z|w, x). (19)

Applying it to I
(

x1:i; yi
∣

∣y1:i−1, z1:i
)

leads to

I(x1:t → y1:t||z1:t) =

t
∑

i=1

(

I
(

x1:i−1; yi
∣

∣y1:i−1, z1:i
)

(20)

+ I
(

xi; yi
∣

∣x1:i−1, y1:i−1, z1:i
))

= I(Dx1:t → y1:t||z1:t)

+ I(x1:t → y1:t||Dx1:t, z1:t).

Here, the second term is the instantaneous information exchange causally conditioned by

the third time series z. Likewise, the decomposition holds for the directed information

I(x1:t → y1:t||z1:t) = I(Dx1:t → y1:t||z1:t)

+I(x1:t → y1:t||Dx1:t, z1:t). (21)

11



C. Rates for stationary processes

All definitions introduced above make sense for processes that evolve within a finite di-

mensional phase space. Extending these definitions to the study of stochastic processes

requires some care. Actually the information related quantities (such as entropy) are exten-

sive. If a stochastic process visits a phase space whose dimension increases with t, informa-

tion quantities often diverge linearly as a function of time. Thus it makes sense to introduce

information rates, as defined below; these definition extend the classical rates found in the

literature:

I∞(x; y) = lim
t→+∞

1

t
I(x1:t; y1:t) (22)

I∞(x→ y) = lim
t→+∞

1

t
I(x1:t → y1:t) (23)

I∞(x→ y||z) = lim
t→+∞

1

t
I(x1:t → y1:t||z1:t). (24)

All limits are assumed to exist, and the previous quantities are named mutual information

rate, directed information rate and causal conditional directed information rate, respectively.

A fundamental result allows a simpler expression of the rates when the processes are jointly

stationary. When dealing with discrete valued processes (and with slightly more involvement,

continuous random processes), one can establish that, assuming stationarity, the directed

information rates can be written as

I∞(x→ y) = lim
t→+∞

I(x1:t; yt|y1:t−1) (25)

I∞(x→ y||z) = lim
t→+∞

I(x1:t; yt|y1:t−1, z1:t). (26)

A proof of the first equality may be found in [28]; a proof for the second equality can

be derived by following the same lines. Extending these equalities to continuous random

processes relies upon the tools developed in [21, 22, 40]. These equalities extend the famous

result for the entropy rate

lim
t→+∞

1

t
H(x1:t) = lim

t→+∞
H(xt|x1:t−1). (27)

12



Interestingly, applying the preceding results to the decomposition of the directed information

in eq. (21) leads to

I∞(x→ y) = lim
t→+∞

I(x1:t−1; yt|y1:t−1)

+ lim
t→+∞

I(xt; yt|x1:t−1, y1:t−1) (28)

= I∞(Dx→ y) + I∞(x→ y||Dx), (29)

where I∞(x → y||Dx) is the instantaneous information exchange rate. The other term is

the limit of I(x1:t−1; yt|y1:t−1), which is a particular instance of Schreiber’s transfer entropy

[25, 43]. We thus name I∞(Dx1:t−1 → y) the transfer entropy rate. This result, already

mentioned in [2], allows to recast all results and approaches found in the literature within a

unique and simplified framework. Further, it highlights the fact that stationarity is implic-

itly present in Schreiber’s intuition, and that instantaneous information exchange between

processes is lacking in his work. The decomposition can be easily done for the conditional

rates, and leads to

I∞(x→ y||z) = I∞(Dx→ y||z) + I∞(x→ y||Dx, z). (30)

This provides an implicit definition of conditional transfer entropy rate and conditional in-

stantaneous information exchange rate. Furthermore, let us mention that in all the preceding

discussion, the conditioning process z can be a multivariate process. We are now ready to

link directed information theory and Granger causality graphs.

IV. CAUSAL INFORMATION MEASURES TO INFER GRANGER CAUSALITY

GRAPHS

When confronted with a multidimensional time series, a fundamental question is to study

its dependence structure. The approach investigated here consists of inferring a graphical

model underlying the process that is able to account for causal relationships. A good candi-

date for such a model is a Granger causality graph [11]. Let Xt be the random multivariate

process of interest, and x1, x2 two of its components. Recall that in a Granger causality

graph that models a multivariate process Xt, the absence of a directed edge from nodes x1
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to node x2 is equivalent to the conditional independence expressed by

P (x2,t|x1,1:t−1, x2,1:t−1, X\{x1, x2}1:t) =

P (x2,t|x2,1:t−1, X\{x1, x2}1:t). (31)

Similarly, the absence of an undirected edge expresses the equality

P (x2,t|x1,1:t, x2,1:t−1, X\{x1, x2}1:t) =

P (x2,t|x1,1:t−1x2,1:t−1, X\{x1, x2}1:t). (32)

In these expressions X\{x1, x2} stands for the multivariate process X without components

x1 and x2.

The problem of inferring a graph from the observed data can then be viewed as a problem

of assessing Granger causality between ordered pair of nodes, say x and y. This is done

relative to the remaining nodes of the graph that form the additional observed process

X\{x1, x2}.

In view of the previous definitions, we need measures to assess conditional independence

on the past and conditional independence between present samples. Such measures were

defined in the previous sections, within an information theoretic framework. We can now

state the main results of the paper:

Let (V,Ed, Eu) be the Granger causality graph of a multivariate process Xt. Then

1. ∀i ∈ V, j ∈ V, (i, j) 6∈ Ed ⇐⇒ I∞(Dxi → xj ||X\{xi, xj}) = 0

2. ∀i ∈ V, j ∈ V, (i, j) 6∈ Eu ⇐⇒ I∞(xi → xj ||Dxi, X\{xi, xj}) = 0.

To state it differently, we have the two following assertions:

• Conditional transfer entropy rate is a well adapted measure in order to assess Granger

causality between two nodes with respect to the remaining available set of observations.

• Conditional instantaneous information exchange rate quantifies the instantaneous

causality between two nodes relative to the other observed time series (recalling that

each node of the graph accounts for a time series).

As a corollary, we can state that there is no edge (directed or undirected) between two nodes

i and j if and only if the causal conditional directed information rate I∞(x→ y||X\{xi, xj}))

is equal to zero.
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These assertions were proven in a previous work for the simpler case of Gaussian processes

[2, 3]. In [6] for the case of bivariate Gaussian processes, the author establishes that transfer

entropy can be used to assess Granger causality. However, instantaneous causality is not

mentioned by these authors. A sketch of a proof for the general case is given below.

Firstly, let x and y be two processes such that x does not cause y relative to a third

multivariate process X (which does not contain x nor y). Testing Granger causality relies

upon a Markov chain dependence model x1:t−1 → y1:t−1 → yt where all dependence is

considered conditioned on X1:t. According to the assumption ‘x does not cause y’, we have

I(x1:t−1; yt|y1:t−1, X1:t) = 0. Therefore, the sum of such terms in equation (20) equals zero

as well. This allows us to assert that for processes that are not ‘Granger causally’ related,

the conditional transfer entropy rate is zero.

Conversely, if the rate is zero, since it is defined as the limit of a sum of positive terms,

each individual terms is necessarily equal to zero. Then since conditional independence

is equivalent to the nullity of the corresponding conditional mutual information, we may

conclude that the processes are not ’Granger causally’ related.

The second assertion is shown in the same way.

V. DISCUSSION

In this paper, we establish that Granger causality graphs can be obtained using directed

information measures. The emphasis was put on adapted tools for investigating Granger

causal relationships, namely the conditional transfer entropy rate and the conditional instan-

taneous information exchange rate. Interestingly, the sum of these two measures constitutes

the causal conditional directed information rate.

We illustrated that directed information theory may be thought as a fundamental ex-

tension of information theory, especially in the case of neuroscience applications. Actually,

feedback is a fundamental ingredient for modeling and studying of the brain structures at

all scales. Directed information, as it is presented here, is shown to be an effective tool to

assess connectivity in the brain. It will have fundamental applications in understanding the

processing of information and/or coding information in the brain.

Although these results are satisfactory from a theoretical point of view, some difficulties

remain when it comes to develop practical estimators for the different information related
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quantities introduced so far. The remainder is devoted to discussing some practical imple-

mentation issues related to the inference of a Granger causality graph.

Firstly, we have to assume ergodicity and stationarity of the signals if we want to estimate

the information rates from a single realization of the multivariate process. The stationarity

assumption further simplifies the analysis, since this assumption simplifies the definition

of information rates. In the case of real neural data, the stationarity property is usually

satisfied over certain time scales only (it is thus highly context dependent). Regarding

ergodicity, this assumption is required, as otherwise time averaging cannot replace ensemble

averages, which may lead to severe practical difficulties for evaluating statistical quantities.

Secondly, rates are defined as limits and in general cannot be evaluated. It is thus usual

to introduce a finite length observation window, over which the information measures are

evaluated. However, this approach replaces limits by finite size samples and does not not

warrant that the initial conditions are forgotten; it may introduce some systematic bias in

the analysis, as illustrated for example in [2] for the case of information flows between the

components of two dimensional AR(1) processes. Once the limitation to finite size samples

has been accepted, the estimation of conditional mutual information quantities required has

to be performed. Many estimators can be applied. Although we will not describe here

the wealth of mutual information literature (interested readers may find interesting reviews

in [7, 23, 38], and references therein, it is worth mentioning recent promising works on

the use of k-nearest neighbors to estimate entropies and (conditional) mutual information

[16, 27, 29, 32, 51]. One of the most attractive features of these techniques lies in the

fact that they are almost free of parameters like bin sizes or kernel widths. This allows

to tackle a wide variety of situations, ranging from continuous valued processes to point

processes, as illustrated in [50]. However, some drawbacks include the computational burden

and the absence of theoretical results for the rate of convergence. Nevertheless, extensive

Monte-Carlo simulations have proved the good behavior of these estimators in moderate

dimensions (up to 5 or 6) [4, 16, 29]. Let us also mention an ingenious trick explained

in [16] which consists for the conditional mutual information I(x; y|z) in conditioning by

the time samples of z that share as much information as possible with x. This allows to

effectively reduce the dimension. Another rarely considered difficulty lies in the different

natures and properties encountered in neural data. As outlined in the introduction, neural

data may behave as point processes, exhibit some long range dependencies and are often non-

16



stationary. These properties (and lack of properties) make the estimation issue very difficult,

and the estimation of information measures, despite a lot of beautiful works, remains a

challenging field of research. In this respect prospective works may concern the use of

approximate measures based on Gram-Charlier or Edgeworth expansion of the densities

[36].

The second issue met in practice is the detection issue: assuming that some information

rate related measure estimate is available, it must be decided whether an edge exists or

not within the graph. This is a classical problem of statistical testing theory for which the

empirical information rate serves as a test statistics. Theoretically, if it is zero, no edge is

placed between the nodes of interest. As the measure will practically not be zero we have

to choose a threshold over which the measure is decided to be significantly non zero. The

most popular approach to solve this problem is due to Neyman and Pearson, and consists

of optimizing the test under the constraint that false positive decision errors (making the

wrong decision that an edge exists) remain below some constant chosen value, referred to

as the test ’significance level’.

Of course the level is a probability, and evaluating its value requires a knowledge of the

probability density function of the estimated information rate (serving as the test statistics

here) under the null hypothesis. Since the test statistics used is a very complicated nonlinear

transform of the data, this probability measure is hardly known. But the thresholds to apply

can be evaluated by using bootstrapping strategies, surrogate data or random permutations

[18]. This is of course only possible at the expense of an increase in computational load.

Finally, the last problem at hand is that of multiple testing that must be correctly handled.

It is known that when multiple testing is performed, as is the case when deciding the presence

of edges between multiple pairs of nodes, controlling the level of the test is not easy [31].
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