Skip to main content

Advertisement

Log in

Mathematical modeling and parameter estimation of axonal cargo transport

  • Published:
Journal of Computational Neuroscience Aims and scope Submit manuscript

Abstract

A systems approach was developed and implemented to simulate and analyze motor-assisted axonal transport in nervous system. The methodology employs a Galerkin based linear finite element solver of a system of three coupled partial differential equations governing axonal diffusion-reaction-advection with an efficient optimization algorithm and an experimental time-space series to extract physio-chemical and biological information from experiments and to analyze the dynamics of molecular motor protein-assisted axonal transport. Our simulations were successfully applied and compared to a synthetic dataset based on measured motility parameters as well as experimental data of microtubule-associated protein MAP1A transport in mouse retinal ganglion cells (Nixon et al. 1990) and light neurofilament subunit transport within the optic nerve (Jung and Shea 1999). Parameter sensitivity analysis was performed to quantify the dependence of the dynamics of axonal transport on model parameters. Based on sensitivity analysis, we recommend a sampling strategy for future experiments that would produce the most sensitive and informative data. Our synergistic approach has excellent potential for efficiently probing our understanding of mechanisms of motor-mediated axonal transport in the nervous system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Abramovitch, M., & Stegun, I. A. (1965). Handbook of mathematical functions. Fourth Printing. Applied Math. Ser. 55, U. S. Government Printing Office, Washington DC, 1965.

  • Bard, Y. (1974). Nonlinear parameter estimation. New York: Academic.

    Google Scholar 

  • Beck, J. V., & Arnold, K. J. (1977). Parameter estimation in science and engineering. New York: John Wiley.

    Google Scholar 

  • Blum, J. J., & Reed, M. C. (1989). A model for slow axonal transport and its application to neurofilamentous neuropathies. Cell Motility and the Cytoskel, 12(1), 53–65.

    Article  CAS  Google Scholar 

  • Brooks, E. A. (1999). Probabilistic methods for a linear reaction-hyperbolic system with constant coefficients. The Annals of Applied Probability, 9(3), 719–731.

    Article  Google Scholar 

  • Brown, A., Wang, L., & Jung, P. (2005). Stochastic simulation of neurofilament transport in axon: The “stop-and-go” hypothsis. Molecular Biology of the Cell, 14, 4243–4255.

    Article  Google Scholar 

  • Chevalier-Larsen, E., & Holzbaur, E. L. (2006). Axonal transport and neurodegenerative disease. Biochimica et Biophysica Acta, 1762, 1094–1108.

    CAS  PubMed  Google Scholar 

  • Craciun, G., Brown, A., & Friedman, A. (2005). A dynamical system model of neurofilament transport in axons. Theoretical Biology, 237(3), 316–322.

    Article  Google Scholar 

  • Crank, J., & Nicolson, P. (1947). A practical method for numerical evaluation of solutions of partial differential equations of the heat conduction type. Proceedings of the Cambridge Philosophical Society, 43, 50–67.

    Article  Google Scholar 

  • Daniel, C., & Wood, F. S. (1971). Fitting equations to data. New York: Wiley-Interscience.

    Google Scholar 

  • Dillman, J. F., Dabney, L. P., & Pfister, K. (1996). Cytoplasmic dynein is associated with slow axonal transport. The Proceedings of the National Academy of Sciences of the United States of America. 93:141–144.

    Google Scholar 

  • Friedman, A., & Craciun, G. (2005). A model of intracellular transport of particles in an axon. Mathematical Biology, 51(2), 217–246.

    Article  Google Scholar 

  • Goldstein, L. S., & Yang, Z. (2000). Microtubule-based transport systems in neurons: the roles of kinesins and dyneins. Annual Review of Neuroscience, 23, 39–71.

    Article  CAS  PubMed  Google Scholar 

  • Golub, G. H., & van Loan, C. F. (1983). Matrix computations. Baltimore: Johns Hopkins University Press.

    Google Scholar 

  • Gunawan, R., Cao, Y., Petzold, L., & Doyle, F. J., III. (2005). Sensitivity analysis of discrete stochastic systems. Biophysical Journal, 88(4), 2530–2540.

    Article  CAS  PubMed  Google Scholar 

  • Gunawardena, S., & Goldstein, L. S. (2004). Cargo-carrying motor vehicles on the neuronal highway: transport pathways and neurodegenerative disease. Journal of Neurobiology, 58(2), 258–271.

    Article  CAS  PubMed  Google Scholar 

  • Haghnia, M., Cavalli, V., Shah, S. B., Schimmelpfeng, K., Brusch, R., Yang, G., et al. (2007). Dynactin is required for coordinated bidirectional motility, but not for dynein membrane attachment. Molecular Biology of the Cell, 18, 2081–2089.

    Article  CAS  PubMed  Google Scholar 

  • Hirokawa, N., & Takemura, R. (2004). Molecular motors in neuronal development, intracellular transport and diseases. Current Opinion in Neurobiology, 14(564), 573.

    Google Scholar 

  • Jung, C., & Shea, T. B. (1999). Regulation of neurofilament axonal transport by phosphorylation in optic axons in situ. Cell Motility and the Cytoskeleton, 42, 230–240.

    Article  CAS  PubMed  Google Scholar 

  • Kuznetsov, A. V. (2007). Analytical solution of equations governing molecular-motor-assisted transport of intracellular particles. International Communications in Heat and Mass Transfer, 34, 391–398.

    Article  CAS  Google Scholar 

  • Levenberg, K. (1944). A method for the solution of a certain non-linear problems in least squares. Quarterly of Applied Mathematics, 2, 164–168.

    Google Scholar 

  • Marquardt, D. W. (1963). An algorithm for least squares estimation of nonlinear parameters. SIAM Journal on Applied Mathematics, 11, 431–441.

    Article  Google Scholar 

  • McCuen, R. H. (1985). Statistical methods for engineers. Upper Saddle River: Prentice Hall.

    Google Scholar 

  • Moré, J. J. (1978). The Levenberg-Marquardt algorithm: Implementation and theory. In Watson, G.A. (Ed.): Lecture notes in mathematics, vol. 630. Springer Verlag.

  • Morris, R. L., & Hollenbeck, P. J. (1993). The regulation of bidirectional mitochondrial transport is coordinated with axonal outgrowth. Journal of Cell Science, 104(Pt 3), 917–927.

    PubMed  Google Scholar 

  • Neuman, S. P. (1975). Galerkin approach to saturated-unsaturated flow in porous media. In Gallagher, R.H. et al. (Eds.): Finite element in fluids, vol. 1. J. Wiley: New York.

  • Nixon, R. A., Fischer, I., & Lewis, S. E. (1990). Synthesis, axonal transport, and turnover of the high molecular weight microtubule-associated protein MAP1A in mouse retinal ganglion cells: tubulin and MAP1A display distinct transport kinetics. Journal of Cell Biology, 110(2), 437–448.

    Article  CAS  PubMed  Google Scholar 

  • Nixon, R. A., & Logvinenko, K. B. (1986). Multiple fates of newly synthesized neurofilament proteins: evidence for a stationary neurofilament network distributed nonuniformly along axons of retina ganglion cell neurons. Journal of Cell Biology, 102, 647–659.

    Article  CAS  PubMed  Google Scholar 

  • Osborne, M. R. (1976). Nonlinear least squares-the Levenberg-Marquardt revisited. The Journal of Australian Mathematical Society, Ser. B19, 343–357.

    Article  Google Scholar 

  • Plyasunov, S., & Arkin, A. P. (2007). Efficient stochastic sensitivity analysis of discrete event systems. Journal of Computational Physics, 221(2), 724–738.

    Article  Google Scholar 

  • Raimondeau, S., Aghalayam, P., Mhadeshwar, A. B., & Vlachos, D. G. (2003). Parameter optimization in molecular models: application to surface kinetics. Industrial & Engineering Chemistry Research, 42, 1174–1183.

    Article  CAS  Google Scholar 

  • Sadegh Zadeh K. (2006). Multi-scale inverse modeling in biological mass transport processes. PhD thesis. University of Maryland, Fischell Department of Bioengineering.

  • Sadegh Zadeh, K. (2008). Parameter estimation in flow through partially saturated porous materials. Journal of Computational Physics, 227(24), 10243–10262.

    Article  Google Scholar 

  • Sadegh Zadeh, K. (2009). Multi-objective optimization in variably saturated fluid flow. Journal of Computational and Applied Mathematics, 223(2), 801–819.

    Article  Google Scholar 

  • Sadegh Zadeh, K., & Montas, H. J. (2010). A class of exact solutions for biomacromolecule diffusion–reaction in live cells. Journal of Theoretical Biology. doi:10.1016/j.jtbi.2010.03.028.

  • Sadegh Zadeh, K., Montas, H. J., & Shirmohammadi, A. (2006). Identification of biomolecule mass transport and binding rate parameters in living cells by inverse modeling. Theoretical Biology and Medical Modeling, 3, 36. doi:10.1186/1742-4682-3-36.

    Article  Google Scholar 

  • Sadegh Zadeh, K., Elman, H. C., Montas, H. J., & Shirmohammadi, A. (2007). A finite element model for protein transport in-vivo. Biomedical Engineering Online, 6, 24. doi:10.1186/1475-925X-6-24.

    Article  PubMed  Google Scholar 

  • Savitzky, A., & Golay, M. J. E. (1964). Smoothing and differentiation of data by simplified least squares procedures. Analytical Chemistry, 36, 1627–1639.

    Article  CAS  Google Scholar 

  • Seber, G. A. F., & Wild, C. J. (2004). Nonlinear regression. New York: Wiley.

    Google Scholar 

  • Shah, S., Yang, G., Danuser, G., & Goldstein, L. S. B. (2006). Axonal transport: imaging and modeling of a neuronal process, in Proc. Nobel Symposium 131: Controlled Nanoscale Motion in Biological and Artificial Systems. Lecture Notes in Physics, 711, 65–84. Springer-Verlag.

  • Smith, D. A., & Simmons, R. M. (2001). Models of motor-assisted transport of intracellular particles. Biophysical Journal, 80, 45–68.

    Article  CAS  PubMed  Google Scholar 

  • Wang, L., & Brown, A. (2001). Rapid intermittent movement of axonal neurofilaments observed by fluorescence photobleaching. Molecular Biology of the Cell, 12, 3257–3267.

    CAS  PubMed  Google Scholar 

  • Zak, D. E., Gonye, G. E., Schwaber, J. S., & Doyle, F. J., III. (2003). Importance of input perturbations and stochastic gene expression in the reverse engineering of genetic regulatory networks: insights from an identifiability analysis of an in silico network. Genome Research, 13, 2396–2405.

    Article  CAS  PubMed  Google Scholar 

  • Zienkiewicz, O. C. (1967). Finite element methods in structural and continuum mechanics. London: McGraw-Hill.

Download references

Acknowledgements

We gratefully acknowledge Dr. Thomas Shea and Dr. Ralph Nixon for granting us permission to fit their original data with our model. We also acknowledge our peer reviewers, who contributed to a substantially improved manuscript.

Statement of Software Sharing

Code specific to this study is the intellectual property of KSZ and will be released commercially. A related version of the code that may be readily modified is available for public use at http://hdl.handle.net/1903/4123 (pages 284-291).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sameer B. Shah.

Additional information

Action Editor: Upinder Singh Bhalla

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sadegh Zadeh, K., Shah, S.B. Mathematical modeling and parameter estimation of axonal cargo transport. J Comput Neurosci 28, 495–507 (2010). https://doi.org/10.1007/s10827-010-0232-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10827-010-0232-9

Keywords

Navigation