Skip to main content
Log in

Calibration of the head direction network: a role for symmetric angular head velocity cells

  • Published:
Journal of Computational Neuroscience Aims and scope Submit manuscript

Abstract

Continuous attractor networks require calibration. Computational models of the head direction (HD) system of the rat usually assume that the connections that maintain HD neuron activity are pre-wired and static. Ongoing activity in these models relies on precise continuous attractor dynamics. It is currently unknown how such connections could be so precisely wired, and how accurate calibration is maintained in the face of ongoing noise and perturbation. Our adaptive attractor model of the HD system that uses symmetric angular head velocity (AHV) cells as a training signal shows that the HD system can learn to support stable firing patterns from poorly-performing, unstable starting conditions. The proposed calibration mechanism suggests a requirement for symmetric AHV cells, the existence of which has previously been unexplained, and predicts that symmetric and asymmetric AHV cells should be distinctly different (in morphology, synaptic targets and/or methods of action on postsynaptic HD cells) due to their distinctly different functions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Notes

  1. The authors wish to thank an anonymous reviewer for suggesting this interpretation of the calibration algorithm.

  2. This experiment assumes that slow rotation of the visual environment induces a slow rotation of head direction representation. The alternative outcome, that the animal simply becomes disoriented, could possibly be avoided by using prominent visual cues and an extended training period, prior to testing, during which there is no cue rotation.

References

  • Baddeley, R. (1997). Responses of neurons in primary and inferior temporal visual cortices to natural scenes. Proceedings: Biological Sciences, 264(1389), 1775–1783.

    Article  CAS  PubMed  Google Scholar 

  • Caporale, N., & Dan, Y. (2008). Spike timing-dependent plasticity: A hebbian learning rule. Annual Review of Neuroscience, 31, 25–46.

    Article  CAS  PubMed  Google Scholar 

  • Cohen-Cory, S. (2002). The developing synapse: Construction and modulation of synaptic structures and circuits. Science, 298(5594), 770.

    Article  CAS  PubMed  Google Scholar 

  • Dickson, B. J. (2002). Molecular mechanisms of axon guidance. Science, 298(5600), 1959–1964.

    Article  CAS  PubMed  Google Scholar 

  • Engert, F., & Bonhoeffer, T. (1997). Synapse specificity of long-term potentiation breaks down at short distances. Nature, 388(6639), 279–284.

    Article  CAS  PubMed  Google Scholar 

  • Feng, J., & Li, G. (2003). The relationship between neuronal calcium concentration and firing rate during stochastic synaptic inputs. Journal of Theoretical Biology, 223(3), 367–375.

    Article  CAS  PubMed  Google Scholar 

  • Georgopoulos, A. P., Schwartz, A. B., et al. (1986). Neuronal population coding of movement direction. Science, 233(4771), 1416–1419.

    Article  CAS  PubMed  Google Scholar 

  • Goodridge, J. P., & Touretzky, D. S. (2000). Modeling attractor deformation in the rodent head-direction system. Journal of Neurophysiology, 83(6), 3402–3410.

    CAS  PubMed  Google Scholar 

  • Hafting, T., Fyhn, M., et al. (2005). Microstructure of a spatial map in the entorhinal cortex. Nature, 436, 801–806.

    Article  CAS  PubMed  Google Scholar 

  • Hahnloser, R. H. R. (2003). Emergence of neural integration in the head-direction system by visual supervision. Neuroscience, 120(3), 877–891.

    Article  CAS  PubMed  Google Scholar 

  • O’Keefe, J., & Dostrovsky, J. (1971). The hippocampus as a spatial map. Preliminary evidence from unit activity in the freely-moving rat. Brain research, 34(1), 171.

    Article  PubMed  Google Scholar 

  • Redish, A. D., Elga, A. N., et al. (1996). A coupled attractor model of the rodent head direction system. Network: Computation in Neural Systems, 7(4), 671–685.

    Article  Google Scholar 

  • Royer, S., & Pare, D. (2003). Conservation of total synaptic weight through balanced synaptic depression and potentiation. Nature, 422(6931), 518–522.

    Article  CAS  PubMed  Google Scholar 

  • Scott, E. K., & Luo, L. (2001). How do dendrites take their shape? Nature Neuroscience, 4, 359–365.

    Article  CAS  PubMed  Google Scholar 

  • Sharp, P. E., Blair, H. T., et al. (2001). The anatomical and computational basis of the rat head-direction cell signal. Trends in Neurosciences, 24(5), 289–294.

    Article  CAS  PubMed  Google Scholar 

  • Skaggs, W. E., Knierim, J. J., et al. (1995). A model of the neural basis of the rat’s sense of direction. Advances in Neural Information Processing Systems, 7, 51–58.

    Google Scholar 

  • Song, P., & Wang, X. J. (2005). Angular path integration by moving hill of activity: A spiking neuron model without recurrent excitation of the head-direction system. Journal of Neuroscience, 25(4), 1002–1014.

    Article  CAS  PubMed  Google Scholar 

  • Stein, R. B. (1967). The frequency of nerve action potentials generated by applied currents. Proceedings of the Royal Society of London - Series B, Biological Sciences (1934–1990), 167(1006), 64–86.

    Article  CAS  Google Scholar 

  • Stringer, S. M., Trappenberg, T. P., et al. (2002). Self-organizing continuous attractor networks and path integration: One-dimensional models of head direction cells. Network: Computation in Neural Systems, 13(2), 217–242.

    CAS  Google Scholar 

  • Suzuki, H., Thiele, T. R., et al. (2008). Functional asymmetry in Caenorhabditis elegans taste neurons and its computational role in chemotaxis. Nature, 454(7200), 114.

    Article  CAS  PubMed  Google Scholar 

  • Taube, J. S. (2007). The head direction signal: Origins and sensory-motor integration. Annual Review of Neuroscience, 30, 181–207.

    Article  CAS  PubMed  Google Scholar 

  • Taube, J. S., & Bassett, J. P. (2003). Persistent neural activity in head direction cells. Cerebral Cortex, 13(11), 1162–1172.

    Article  PubMed  Google Scholar 

  • Taube, J. S., Muller, R. U., et al. (1990). Head-direction cells recorded from the postsubiculum in freely moving rats. I. Description and quantitative analysis. Journal of Neuroscience, 10(2), 420–435.

    CAS  PubMed  Google Scholar 

  • Turrigiano, G. G., & Nelson, S. B. (2004). Homeostatic plasticity in the developing nervous system. Nature Reviews Neuroscience, 5(2), 97–107.

    Article  CAS  PubMed  Google Scholar 

  • Wang, X. J. (1999). Synaptic basis of cortical persistent activity: The importance of NMDA receptors to working memory. Journal of Neuroscience, 19(21), 9587–9603.

    CAS  PubMed  Google Scholar 

  • Xie, X., Hahnloser, R. H. R., et al. (2002). Double-ring network model of the head-direction system. Physical Review E, 66(4), 41902(1–9).

    Article  Google Scholar 

  • Zhang, K. (1996). Representation of spatial orientation by the intrinsic dynamics of the head-direction cell ensemble: A theory. Journal of Neuroscience, 16(6), 2112–2126.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors wish to thank two anonymous reviewers for suggestions which greatly improved the quality of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter Stratton.

Additional information

Action Editor: Barry Richmond

Rights and permissions

Reprints and permissions

About this article

Cite this article

Stratton, P., Wyeth, G. & Wiles, J. Calibration of the head direction network: a role for symmetric angular head velocity cells. J Comput Neurosci 28, 527–538 (2010). https://doi.org/10.1007/s10827-010-0234-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10827-010-0234-7

Keywords

Navigation