Skip to main content
Log in

Local non-linear interactions in the visual cortex may reflect global decorrelation

  • Published:
Journal of Computational Neuroscience Aims and scope Submit manuscript

Abstract

The classical receptive field in the primary visual cortex have been successfully explained by sparse activation of relatively independent units, whose tuning properties reflect the statistical dependencies in the natural environment. Robust surround modulation, emerging from stimulation beyond the classical receptive field, has been associated with increase of lifetime sparseness in the V1, but the system-wide modulation of response strength have currently no theoretical explanation. We measured fMRI responses from human visual cortex and quantified the contextual modulation with a decorrelation coefficient (d), derived from a subtractive normalization model. All active cortical areas demonstrated local non-linear summation of responses, which were in line with hypothesis of global decorrelation of voxels responses. In addition, we found sensitivity to surrounding stimulus structure across the ventral stream, and large-scale sensitivity to the number of simultaneous objects. Response sparseness across voxel population increased consistently with larger stimuli. These data suggest that contextual modulation for a stimulus event reflect optimization of the code and perhaps increase in energy efficiency throughout the ventral stream hierarchy. Our model provides a novel prediction that average suppression of response amplitude for simultaneous stimuli across the cortical network is a monotonic function of similarity of response strengths in the network when the stimuli are presented alone.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Angelucci, A., & Bressloff, P. C. (2006). Contribution of feedforward, lateral and feedback connections to the classical receptive field center and extra-classical receptive field surround of primate V1 neurons. Progress in Brain Research, 154, 93–120.

    Article  PubMed  Google Scholar 

  • Angelucci, A., Levitt, J. B., Walton, E. J., Hupé, J. M., Bullier, J., & Lund, J. S. (2002). Circuits for local and global signal integration in primary visual cortex. The Journal of Neuroscience, 22, 8633–8646.

    CAS  PubMed  Google Scholar 

  • Atick, J. J., & Redlich, A. N. (1990). Towards a theory of early visual processing. Neural Computation, 2, 308–320.

    Article  Google Scholar 

  • Attwell, D., & Laughlin, S. B. (2001). An energy budget for signaling in the grey matter of the brain. Journal of Cerebral Blood Flow and Metabolism, 21, 1133–1145.

    CAS  PubMed  Google Scholar 

  • Averbeck, B. B., Latham, P. E., & Pouget, A. (2006). Neural correlations, population coding and computation. Nature Reviews. Neuroscience, 7, 358–366.

    Article  CAS  PubMed  Google Scholar 

  • Baddeley, R., Abbott, L. F., Booth, M. C., Sengpiel, F., Freeman, T., Wakeman, E. A., et al. (1997). Responses of neurons in primary and inferior temporal visual cortices to natural scenes. Proc Biol Sci, 264, 1775–1783.

    Article  CAS  PubMed  Google Scholar 

  • Barlow, H. (1961). Possible principles underlying the transformation of sensory messages. In W. Rosenblith (Ed.), Sensory communication (pp. 217–234). Cambridge: MIT Press.

    Google Scholar 

  • Barlow, H. B. (1989). Unsupervised learning. Neural Computation, 1, 295–311.

    Article  Google Scholar 

  • Barlow, H., & Földiák, P. (1989). Adaptation and decorrelation in the cortex. In R. Durbin, C. Miall, & G. Mitchison (Eds.), The computing neuron (pp. 54–72). Boston: Addison-Wesley Longman Publishing Co., Inc.

    Google Scholar 

  • Bishop, P. O., Coombs, J. S., & Henry, G. H. (1971). Interaction effects of visual contours on the discharge frequency of simple striate neurones. Journal de Physiologie, 219, 659–687.

    CAS  Google Scholar 

  • Cavanaugh, J. R., Bair, W., & Movshon, J. A. (2002). Nature and interaction of signals from the receptive field center and surround in macaque V1 neurons. Journal of Neurophysiology, 88, 2530–2546.

    Article  PubMed  Google Scholar 

  • Chen, Y., Geisler, W. S., & Seidemann, E. (2006). Optimal decoding of correlated neural population responses in the primate visual cortex. Nature Neuroscience, 9, 1412–1420.

    Article  CAS  PubMed  Google Scholar 

  • Chisum, H. J., Mooser, F., & Fitzpatrick, D. (2003). Emergent properties of layer 2/3 neurons reflect the collinear arrangement of horizontal connections in tree shrew visual cortex. The Journal of Neuroscience, 23, 2947–2960.

    CAS  PubMed  Google Scholar 

  • Dale, A. M., Fischl, B., & Sereno, M. I. (1999). Cortical surface-based analysis. I. Segmentation and surface reconstruction. Neuroimage, 9, 179–194.

    Article  CAS  PubMed  Google Scholar 

  • Dan, Y., Atick, J. J., & Reid, R. C. (1996). Efficient coding of natural scenes in the lateral geniculate nucleus: experimental test of a computational theory. The Journal of Neuroscience, 16, 3351–3362.

    CAS  PubMed  Google Scholar 

  • DeAngelis, G. C., Freeman, R. D., & Ohzawa, I. (1994). Length and width tuning of neurons in the cat’s primary visual cortex. Journal of Neurophysiology, 71, 347–374.

    CAS  PubMed  Google Scholar 

  • Ecker, A. S., Berens, P., Keliris, G. A., Bethge, M., Logothetis, N. K., & Tolias, A. S. (2010). Decorrelated neuronal firing in cortical microcircuits. Science, 327, 584–587.

    Article  CAS  PubMed  Google Scholar 

  • Ejima, Y., & Takahashi, S. (1985). Apparent contrast of a sinusoidal grating in the simultaneous presence of peripheral gratings. Vision Research, 25, 1223–1232.

    Article  CAS  PubMed  Google Scholar 

  • Fairhall, A. L., Lewen, G. D., Bialek, W., & de Ruyter Van Steveninck, R. R. (2001). Efficiency and ambiguity in an adaptive neural code. Nature, 412, 787–792.

    Article  CAS  PubMed  Google Scholar 

  • Felleman, D. J., & Van Essen, D. C. (1991). Distributed hierarchical processing in the primate cerebral cortex. Cerebral Cortex, 1, 1–47.

    Article  CAS  PubMed  Google Scholar 

  • Franco, L., Rolls, E. T., Aggelopoulos, N. C., & Jerez, J. M. (2007). Neuronal selectivity, population sparseness, and ergodicity in the inferior temporal visual cortex. Biological Cybernetics, 96, 547–560.

    Article  PubMed  Google Scholar 

  • Földiák, P. (2003). Sparse coding in the primate cortex. In M. A. Arbib (Ed.), The handbook of brain theory and neural networks (pp. 1064–1067). Cambridge: The MIT Press.

    Google Scholar 

  • Gawne, T. J., & Richmond, B. J. (1993). How independent are the messages carried by adjacent inferior temporal cortical neurons? The Journal of Neuroscience, 13, 2758–2771.

    CAS  PubMed  Google Scholar 

  • Geisler, W. S., Perry, J. S., Super, B. J., & Gallogly, D. P. (2001). Edge co-occurrence in natural images predicts contour grouping performance. Vision Research, 41, 711–724.

    Article  CAS  PubMed  Google Scholar 

  • Goense, J. B., & Logothetis, N. K. (2008). Neurophysiology of the BOLD fMRI signal in awake monkeys. Current Biology, 18, 631–640.

    Article  CAS  PubMed  Google Scholar 

  • Grinvald, A., Lieke, E. E., Frostig, R. D., & Hildesheim, R. (1994). Cortical point-spread function and long-range lateral interactions revealed by real-time optical imaging of macaque monkey primary visual cortex. The Journal of Neuroscience, 14, 2545–2568.

    CAS  PubMed  Google Scholar 

  • Guo, K., Robertson, R. G., Mahmoodi, S., & Young, M. P. (2005). Centre-surround interactions in response to natural scene stimulation in the primary visual cortex. The European Journal of Neuroscience, 21, 536–548.

    Article  PubMed  Google Scholar 

  • Harrison, L. M., Stephan, K. E., Rees, G., & Friston, K. J. (2007). Extra-classical receptive field effects measured in striate cortex with fMRI. Neuroimage, 34, 1199–1208.

    Article  CAS  PubMed  Google Scholar 

  • Haxby, J. V., Gobbini, M. I., Furey, M. L., Ishai, A., Schouten, J. L., & Pietrini, P. (2001). Distributed and overlapping representations of faces and objects in ventral temporal cortex. Science, 293, 2425–2430.

    Article  CAS  PubMed  Google Scholar 

  • Heeger, D. J. (1992). Normalization of cell responses in cat striate cortex. Visual Neuroscience, 9, 181–197.

    Article  CAS  PubMed  Google Scholar 

  • Hegdé, J., & Van Essen, D. C. (2000). Selectivity for complex shapes in primate visual area V2. Journal of Neuroscience, 20, RC61.

    PubMed  Google Scholar 

  • Henriksson, L., Hyvärinen, A., & Vanni, S. (2009). Representation of cross-frequency spatial phase relationships in human visual cortex. The Journal of Neuroscience, 29, 14342–14351.

    Article  CAS  PubMed  Google Scholar 

  • Hyvärinen, A., & Hoyer, P. O. (2001). A two-layer sparse coding model learns simple and complex cell receptive fields and topography from natural images. Vision Research, 41, 2413–2423.

    Article  PubMed  Google Scholar 

  • Hyvärinen, A., Hurri, J., & Hoyer, P. O. (2009). Natural image statistics: A Probabilistic approach to early computational vision. London: Springer.

    Google Scholar 

  • Ichida, J. M., Schwabe, L., Bressloff, P. C., & Angelucci, A. (2007). Response facilitation from the “suppressive” receptive field surround of macaque V1 neurons. Journal of Neurophysiology, 98, 2168–2181.

    Article  PubMed  Google Scholar 

  • Kapadia, M. K., Ito, M., Gilbert, C. D., & Westheimer, G. (1995). Improvement in visual sensitivity by changes in local context: parallel studies in human observers and in V1 of alert monkeys. Neuron, 15, 843–856.

    Article  CAS  PubMed  Google Scholar 

  • Kastner, S., De Weerd, P., Desimone, R., & Ungerleider, L. G. (1998). Mechanisms of directed attention in the human extrastriate cortex as revealed by functional MRI. Science, 282, 108–111.

    Article  CAS  PubMed  Google Scholar 

  • Kastner, S., De Weerd, P., Pinsk, M. A., Elizondo, M. I., Desimone, R., & Ungerleider, L. G. (2001). Modulation of sensory suppression: implications for receptive field sizes in the human visual cortex. Journal of Neurophysiology, 86, 1398–1411.

    CAS  PubMed  Google Scholar 

  • Kay, K. N., Naselaris, T., Prenger, R. J., & Gallant, J. L. (2008). Identifying natural images from human brain activity. Nature, 452, 352–355.

    Article  CAS  PubMed  Google Scholar 

  • Kinoshita, M., Gilbert, C. D., & Das, A. (2009). Optical imaging of contextual interactions in V1 of the behaving monkey. Journal of Neurophysiology, 102, 1930–1944.

    Article  PubMed  Google Scholar 

  • Knierim, J. J., & Van Essen, D. C. (1992). Neuronal responses to static texture patters in area V1 of the alert macaque monkey. Journal of Neurophysiology, 67, 961–980.

    CAS  PubMed  Google Scholar 

  • Kouh, M., & Poggio, T. (2008). A canonical neural circuit for cortical nonlinear operations. Neural Computation, 20, 1427–1451.

    Article  PubMed  Google Scholar 

  • Larsson, J., Landy, M. S., & Heeger, D. J. (2006). Orientation-selective adaptation to first- and second-order patterns in human visual cortex. Journal of Neurophysiology, 95, 862–881.

    Article  PubMed  Google Scholar 

  • Latham, P. E., & Nirenberg, S. (2005). Synergy, redundancy, and independence in population codes, revisited. The Journal of Neuroscience, 25, 5195–5206.

    Article  CAS  PubMed  Google Scholar 

  • Laughlin, S. B., & Sejnowski, T. J. (2003). Communication in neuronal networks. Science, 301, 1870–1874.

    Article  CAS  PubMed  Google Scholar 

  • Levitt, J. B., & Lund, J. S. (1997). Contrast dependence of contextual effects in primate visual cortex. Nature, 387, 73–76.

    Article  CAS  PubMed  Google Scholar 

  • Levy, W. B., & Baxter, R. A. (1996). Energy efficient neural codes. Neural Computation, 8, 531–543.

    Article  CAS  PubMed  Google Scholar 

  • Logothetis, N. K., Pauls, J., Augath, M., Trinath, T., & Oeltermann, A. (2001). Neurophysiological investigation of the basis of the fMRI signal. Nature, 412, 150–157.

    Article  CAS  PubMed  Google Scholar 

  • Maffei, L., & Fiorentini, A. (1976). The unresponsive regions of visual cortical receptive fields. Vision Research, 16, 1131–1139.

    Article  CAS  PubMed  Google Scholar 

  • Miller, E. K., Gochin, P. M., & Gross, C. G. (1993). Suppression of visual responses of neurons in inferior temporal cortex of the awake macaque by addition of a second stimulus. Brain Research, 616, 25–29.

    Article  CAS  PubMed  Google Scholar 

  • Missal, M., Vogels, R., Li, C. Y., & Orban, G. A. (1999). Shape interactions in macaque inferior temporal neurons. Journal of Neurophysiology, 82, 131–142.

    CAS  PubMed  Google Scholar 

  • Murayama, Y., Bießmann, F., Meinecke, F. C., Muller, K. R., Augath, M., Oeltermann, A., et al. (2010). Relationship between neural and hemodynamic signals during spontaneous activity studied with temporal kernel CCA Magn Reson Imaging. http://dx.doi.org/10.1016/j.mri.2009.12.016

  • Nurminen, L., Kilpeläinen, M., Laurinen, P., & Vanni, S. (2009). Area summation in human visual system: psychophysics, fMRI, and modeling. Journal of Neurophysiology, 102, 2900–2909.

    Article  PubMed  Google Scholar 

  • Olshausen, B. A., & Field, D. J. (1996). Emergence of simple-cell receptive field properties by learning a sparse code for natural images. Nature, 381, 607–609.

    Article  CAS  PubMed  Google Scholar 

  • Olshausen, B. A., & Field, D. J. (2004). Sparse coding of sensory inputs. Current Opinion in Neurobiology, 14, 481–487.

    Article  CAS  PubMed  Google Scholar 

  • Ozeki, H., Finn, I. M., Schaffer, E. S., Miller, K. D., & Ferster, D. (2009). Inhibitory stabilization of the cortical network underlies visual surround suppression. Neuron, 62, 578–592.

    Article  CAS  PubMed  Google Scholar 

  • Pihlaja, M., Henriksson, L., James, A. C., & Vanni, S. (2008). Quantitative multifocal fMRI shows active suppression in human V1. Human Brain Mapping, 29, 1001–1014.

    Article  PubMed  Google Scholar 

  • Polat, U., & Sagi, D. (1993). Lateral interactions between spatial channels: suppression and facilitation revealed by lateral masking experiments. Vision Research, 33, 993–999.

    Article  CAS  PubMed  Google Scholar 

  • Polat, U., Mizobe, K., Pettet, M. W., Kasamatsu, T., & Norcia, A. M. (1998). Collinear stimuli regulate visual responses depending on cell’s contrast threshold. Nature, 391, 580–584.

    Article  CAS  PubMed  Google Scholar 

  • Rao, R. P., & Ballard, D. H. (1999). Predictive coding in the visual cortex: a functional interpretation of some extra-classical receptive-field effects. Nature Neuroscience, 2, 79–87.

    Article  CAS  PubMed  Google Scholar 

  • Renart, A., de la Rocha, J., Bartho, P., Hollender, L., Parga, N., Reyes, A., et al. (2010). The asynchronous state in cortical circuits. Science, 327, 587–590.

    Article  CAS  PubMed  Google Scholar 

  • Sayres, R., & Grill-Spector, K. (2008). Relating retinotopic and object-selective responses in human lateral occipital cortex. Journal of Neurophysiology, 100, 249–267.

    Article  PubMed  Google Scholar 

  • Sceniak, M. P., Ringach, D. L., Hawken, M. J., & Shapley, R. (1999). Contrast’s effect on spatial summation by macaque V1 neurons. Nature Neuroscience, 2, 733–739.

    Article  CAS  PubMed  Google Scholar 

  • Sceniak, M. P., Hawken, M. J., & Shapley, R. (2001). Visual spatial characterization of macaque V1 neurons. Journal of Neurophysiology, 85, 1873–1887.

    CAS  PubMed  Google Scholar 

  • Schwabe, L., & Obermayer, K. (2005). Adaptivity of tuning functions in a generic recurrent network model of a cortical hypercolumn. The Journal of Neuroscience, 25, 3323–3332.

    Article  CAS  PubMed  Google Scholar 

  • Schwabe, L., Obermayer, K., Angelucci, A., & Bressloff, P. C. (2006). The role of feedback in shaping the extra-classical receptive field of cortical neurons: a recurrent network model. The Journal of Neuroscience, 26, 9117–9129.

    Article  CAS  PubMed  Google Scholar 

  • Schwabe, L., Ichida, J. M., Shushruth, S., Mangapathy, P., & Angelucci, A. (2010). Contrast-dependence of surround suppression in Macaque V1: Experimental testing of a recurrent network model. Neuroimage. http://dx.doi.org/10.1016/j.neuroimage.2010.01.032

  • Schwartz, O., Sejnowski, T. J., & Dayan, P. (2006). Soft mixer assignment in a hierarchical generative model of natural scene statistics. Neural Computation, 18, 2680–2718.

    Article  PubMed  Google Scholar 

  • Schwartz, O., Sejnowski, T. J., & Dayan, P. (2009). Perceptual organization in the tilt illusion. Journal of Vision, 9(19), 1–20.

    PubMed  Google Scholar 

  • Seghier, M., Dojat, M., Delon-Martin, C., Rubin, C., Warnking, J., Segebarth, C., et al. (2000). Moving illusory contours activate primary visual cortex: an fMRI study. Cerebral Cortex, 10, 663–670.

    Article  CAS  PubMed  Google Scholar 

  • Shadlen, M. N., & Newsome, W. T. (1994). Noise, neural codes and cortical organization. Current Opinion in Neurobiology, 4, 569–579.

    Article  CAS  PubMed  Google Scholar 

  • Shannon, C. E. (1948). A Mathematical theory of communication. The Bell System Technical Journal, 27, 379–423.

    Google Scholar 

  • Sharpee, T. O., & Victor, J. D. (2009). Contextual modulation of V1 receptive fields depends on their spatial symmetry. Journal of Computational Neuroscience, 26, 203–218.

    Article  PubMed  Google Scholar 

  • Shmuel, A., Chaimow, D., Raddatz, G., Ugurbil, K., & Yacoub, E. (2010). Mechanisms underlying decoding at 7 T: Ocular dominance columns, broad structures, and macroscopic blood vessels in V1 convey information on the stimulated eye. Neuroimage, 49, 1943–1948.

    Article  Google Scholar 

  • Shulman, R. G., Hyder, F., & Rothman, D. L. (2001). Cerebral energetics and the glycogen shunt: neurochemical basis of functional imaging. Proceedings of the National Academy of Sciences of the United States of America, 98, 6417–6422.

    Article  CAS  PubMed  Google Scholar 

  • Simoncelli, E. P., & Olshausen, B. A. (2001). Natural image statistics and neural representation. Annual Review of Neuroscience, 24, 1193–1216.

    Article  CAS  PubMed  Google Scholar 

  • Spratling, M. W. (2010). Predictive coding as a model of response properties in cortical area v1. The Journal of Neuroscience, 30, 3531–3543.

    Article  CAS  PubMed  Google Scholar 

  • Sundberg, K. A., Mitchell, J. F., & Reynolds, J. H. (2009). Spatial attention modulates center-surround interactions in macaque visual area v4. Neuron, 61, 952–963.

    Article  CAS  PubMed  Google Scholar 

  • Tajima, S., Watanabe, M., Imai, C., Ueno, K., Asamizuya, T., Sun, P., et al. (2010). Opposing effects of contextual surround in human early visual cortex revealed by functional magnetic resonance imaging with continuously modulated visual stimuli. The Journal of Neuroscience, 30, 3264–3270.

    Article  CAS  PubMed  Google Scholar 

  • Tsodyks, M. V., Skaggs, W. E., Sejnowski, T. J., & McNaughton, B. L. (1997). Paradoxical effects of external modulation of inhibitory interneurons. The Journal of Neuroscience, 17, 4382–4388.

    CAS  PubMed  Google Scholar 

  • Vanni, S., Dojat, M., Warnking, J., Delon-Martin, C., Segebarth, C., & Bullier, J. (2004). Timing of interactions across the visual field in the human cortex. Neuroimage, 21, 818–828.

    Article  CAS  PubMed  Google Scholar 

  • Williams, A. L., Singh, K. D., & Smith, A. T. (2003). Surround modulation measured with functional MRI in the human visual cortex. Journal of Neurophysiology, 89, 525–533.

    Article  PubMed  Google Scholar 

  • Willmore, B., & Tolhurst, D. J. (2001). Characterizing the sparseness of neural codes. Network, 12, 255–270.

    CAS  PubMed  Google Scholar 

  • Vinje, W. E., & Gallant, J. L. (2000). Sparse coding and decorrelation in primary visual cortex during natural vision. Science, 287, 1273–1276.

    Article  CAS  PubMed  Google Scholar 

  • Vinje, W. E., & Gallant, J. L. (2002). Natural stimulation of the nonclassical receptive field increases information transmission efficiency in V1. The Journal of Neuroscience, 22, 2904–2915.

    CAS  PubMed  Google Scholar 

  • Xing, J., & Heeger, D. J. (2001). Measurement and modeling of center-surround suppression and enhancement. Vision Research, 41, 571–583.

    Article  CAS  PubMed  Google Scholar 

  • Zenger-Landolt, B., & Heeger, D. J. (2003). Response suppression in v1 agrees with psychophysics of surround masking. The Journal of Neuroscience, 23, 6884–6893.

    CAS  PubMed  Google Scholar 

  • Zoccolan, D., Cox, D. D., & DiCarlo, J. J. (2005). Multiple object response normalization in monkey inferotemporal cortex. The Journal of Neuroscience, 25, 8150–8164.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Jarmo Hurri for help in stimulus preparation, mathematics and comments on the manuscript. Marita Kattelus, Lauri Nurminen and Linda Henriksson helped in the measurements, and Linda Henriksson, Lauri Nurminen and Juha Silvanto gave insightful comments on the manuscript. Interpretation of the results have been discussed with Alessandra Angelucci, Jussi Saarinen and Aapo Hyvärinen. Mika Seppä and Lauri Parkkonen helped with mathematics. This study has been supported by the Academy of Finland grant numbers 210347, 124698, 111817, and national centre of excellence-program 2006–2011.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Simo Vanni.

Additional information

Action Editor: Jonathan David Victor

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material

(PDF 1173 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vanni, S., Rosenström, T. Local non-linear interactions in the visual cortex may reflect global decorrelation. J Comput Neurosci 30, 109–124 (2011). https://doi.org/10.1007/s10827-010-0239-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10827-010-0239-2

Keywords

Navigation