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Abstract The hypothesis that cortical networks employ
the coordinated activity of groups of neurons, termed
assemblies, to process information is debated. Results
from multiple single-unit recordings are not conclusive
because of the dramatic undersampling of the system.
However, the local field potential (LFP) is a meso-
scopic signal reflecting synchronized network activity.
This raises the question whether the LFP can be em-
ployed to overcome the problem of undersampling.
In a recent study in the motor cortex of the awake
behaving monkey based on the locking of coincidences
to the LFP we determined a lower bound for the frac-
tion of spike coincidences originating from assembly
activation. This quantity together with the locking of
single spikes leads to a lower bound for the fraction
of spikes originating from any assembly activity. Here
we derive a statistical method to estimate the fraction
of spike synchrony caused by assemblies—not its lower
bound—from the spike data alone. A joint spike and
LFP surrogate data model demonstrates consistency
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of results and the sensitivity of the method. Combin-
ing spike and LFP signals, we obtain an estimate of
the fraction of spikes resulting from assemblies in the
experimental data.
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Network dynamics · Motor cortex

1 Introduction

A common hypothesis concerning the processing of
information by cortical networks involves the propaga-
tion of activity through synchronously firing groups of
neurons, termed assemblies (Hebb 1949). A hallmark
signature of an activated assembly is the repeated coin-
cident firing of neurons in relation to a specific stimulus
or behavioral demand resulting in coincidence counts
that exceed the chance level estimated from the firing
rates (Gerstein et al. 1989). Despite the inherent under-
sampling of state of the art multiple single-unit record-
ings, experimental studies indirectly substantiate the
assembly idea with findings of such behavior-related
significant synchronous spiking (e.g., Riehle et al. 1997;
Kilavik et al. 2009). Independently thereof, a signal on
the population level, like the mesoscopic local field po-
tential (LFP), typically exhibits temporally structured
oscillations commonly interpreted as correlated net-
work activity. Synaptic transmembrane currents have
been identified as the primary contributor to LFP gen-
eration (Mitzdorf 1985; Logothetis and Wandell 2004).
Counterintuitively, although synchronized membrane
potential oscillations of neurons in the vicinity (Katzner
et al. 2009) of the recording electrode show strong
correlations with the LFP (Poulet and Petersen 2008;
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Okun et al. 2010), these synchronized potentials do not
induce the same degree of coincident spiking between
the same neurons. Correlated spiking appears largely
independent of synchrony on the level of membrane
potentials (Tetzlaff et al. 2008; Poulet and Petersen
2008).

In a recent study (Denker et al. 2010) we were able to
demonstrate in data of the motor cortex of the awake
behaving monkey the missing link between significant
spike synchrony and the LFP. A conceptual model
enabled us to derive lower bounds for the fraction
of spike coincidences β originating from observed as-
sembly activity identified by periods containing excess
spike synchrony, and the fraction of spikes of neurons
γ caused by assembly activity whether observed or not.
The results were obtained by comparing the locking
of spike coincidences to the LFP in time periods with
significant synchrony to the locking outside of these
periods.

In the remainder of this section we first introduce
the Unitary Events analysis method (Section 1.1) used
to quantify significant excess spike synchrony. We then
review our earlier findings (Denker et al. 2010) on the
phase locking between spike-spike coincidences and
the LFP (Section 1.2) and the model-based interpre-
tation of the data (Section 1.3). In the present work
we remove the limitation to lower bounds of β and
γ by evaluating a stochastic model of the composi-
tion of spike coincidence counts. Section 2 introduces
the model and derives an estimator for β only based
on the configuration of spikes in the respective time
interval. In Section 3 we explain that the probability
of spikes γ to be part of an assembly—in contrast to
β—cannot be extracted from the spike trains alone.
However, equipped with the estimate of β we are in the
position to compute γ using the previously found rela-
tionships between the phase distributions of the spike-
LFP coupling (Section 1.3). The possibility to extract a
parameter that relates to macroscopic features of the
network dynamics illustrates the relevance of the LFP
as a population signal in addressing the undersampling
problem.

We demonstrate the consistency of the concept with
the help of a joint spike-LFP toy model. In the phys-
iological range, the parameters can reliably be deter-
mined and the lower bounds obtained from the phase
locking are compatible with the parameter estimates
yielded if the spike statistics is considered in addition.
Finally, we utilize our new tool to reanalyze the ex-
perimental data (Section 4) for β and γ . Although
highly simplified the toy model enables us to discuss
(Section 5) various aspects of the distribution of para-
meters obtained from the experimental data set.

1.1 Analysis of spike synchrony

In the following we briefly summarize the main re-
sults obtained in Denker et al. (2010) which serve
as a starting point for our analysis. In the first step
we analyzed simultaneously recorded single units from
monkey motor cortex (cf., e.g., Roux et al. 2006 and
Section 4.1 for details) for excess spike synchrony by
employing the Unitary Events analysis method (Grün
et al. 2002b; Grün 2009). The method compares the
empirically measured spike coincidences to the number
expected by chance given the neurons’ firing rates.
The expected number defines the mean of the Poisson
distribution realizing the null-hypothesis of statistical
independence. If the p-value of the empirically found
number of coincidences evaluated by comparison to
this distribution exceeds the significance level α, the
coincidences are considered significant and are termed
Unitary Events (UE). This analysis is performed in
a sliding window fashion (windows of 100 ms) to ac-
count for the dynamics of correlations and the non-
stationarities in the firing rates in time (cf. Riehle
et al. 1997 for details). Per sliding window data are
considered from the various trials, and typically only a
small fraction of the spikes in a window is coincident
(Grün et al. 2002b, 2010). Non-stationarity across trials
is accounted for by calculating the expected number of
coincidences as the sum of trial-by-trial expectancies
(Grün et al. 2003). Coincident spike events with a
temporal precision of up to 3 ms were collected by the
multiple-shift method to avoid artifacts due to binning
(Grün et al. 1999). As a result of this analysis we are
able to detect the dynamics of spike synchrony and
identify time intervals that exhibit UE, i.e. contain ex-
cess spike synchrony (compare Fig. 1(a), top). Non-UE
time periods contain coincidence spike events at chance
level only. Thus UEs indicate time windows where
the neurons under consideration exhibit coordinated
activity across trials. The (unknown) set of all neurons
within the network that generate this correlated activity
is termed the assembly.

1.2 Analysis of phase-locking

In the next step we investigated the relation of spikes
to the LFP. In particular, we were interested if spikes
in synchronous events, i.e., chance coincidences (CC)
or UE, have a different relation to the LFP than spikes
that are not involved in a coincidence, i.e. isolated
spikes (ISO). Therefore we classified each spike of a
data set into one of these three classes and analyzed the
classes separately (see Fig. 1(a) for an illustration; color
codes for ISO, CC, and UE are retained throughout
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Fig. 1 Strongest phase locking of spikes to the LFP occurs
during time periods of excess spike synchrony. (a) Sketch of the
analysis: the number of pairwise synchronous spikes (precision:
3 ms) between two neurons observed across many trials (here,
neurons 1 and 2, illustrated for one trial only) is evaluated in
sliding windows of T = 100 ms (top graph). Synchronous spikes
between the two neurons are classified as Unitary Events (UE;
red) in windows where the observed number of coincidences
exceeds a minimal number required to reach significance (dotted
line). The latter is computed based on the null-hypothesis of
independent firing considering the instantaneous firing rates. The
red shaded area marks the center positions of UE windows.
Windows not containing UE are classified as windows containing
chance coincidences (CC; cyan). Spikes that are not part of an
observed coincident event are classified as isolated spikes (ISO;
gray). UE periods reflect the presence of excess spike synchrony
caused by an assembly activated (green) repetitively across trials
in relation to a behaviorally relevant event. Here, the assembly
is sketched to consist of the observed neurons 1 and 2 and the
unobserved neurons 4 and 5. In contrast, during CC periods each
of the observed neurons may individually participate in other
assemblies within the network (e.g., here, neuron 1 participates in
an assembly that does not include neuron 2, and vice versa). The
instantaneous phase φ of the LFP (beta) oscillation is extracted
at spike times and pooled according to its classification as ISO
(φISO), CC (φCC), and UE (φUE). (b) Distributions of the LFP
phases at spike occurrences for the three sets ISO (left, gray,
n = 240,455), CC (middle, cyan, n = 44,867), and UE (right, red,
n = 12162) from monkey motor cortex (see Section 4.1). The
phase axes of the histograms span in total 1 period (2π) and
are divided in 25 bins; phase π corresponds to the trough of the
LFP oscillations. The black curve in the middle and right graph
represents the expected phase distribution of coincident spikes
assuming independent neurons. For comparison of the phase
distributions, we extracted their variances (middle: gray, of ISO;
right: cyan, of CC) by resampling from the set to the left with the
same number of spikes as in the current set; each band encloses
95% of the 1,000 resampled distributions at each phase bin

this article). Spike triggered averages (STA) of the
LFP revealed for all classes an oscillatory structure
at about 17 Hz with spikes occurring preferentially at
the decaying amplitude. However, the amplitude of
the STAs derived for the different spike classes were
strikingly different: consistent across the whole data set
the STA triggered on UE spikes exhibited the largest
amplitude, for CC spikes a smaller amplitude and for
ISO the smallest.

However, the STA analysis cannot uncover the rea-
son for the differences in STA amplitude, since it may
be due to differences in the LFP amplitudes or due
to different degrees of phase locking between spikes
and the LFP. In order to disentangle these aspects
we performed a phase-amplitude analysis of the LFP.
Using a Hilbert transform of the LFP we gained the
instantaneous phase and amplitude as time dependent
functions, and extracted the respective measures at
spike times (the detailed procedures will be explained
in Section 4.1). The phase distribution exhibits the
phase preferences by non-uniformity of the phase his-
tograms (see Fig. 1(b)), and we observe that UE spikes
express the strongest degree of phase locking, CC less
(at the predicted chance level) and even less for ISO.
A resampling procedure ensures that histograms are
compared with comparative numbers of spikes: The
phase histogram of CC (UE) is compared to resam-
pled versions of the ISO (CC) phase histogram, each
containing the same number of data points as the CC
(UE) histogram (bands in Fig. 1(b), middle and right
graph). The differences in phase locking were found to
be consistent across the whole population of recorded
neurons, and 68% of the neurons (n = 123 neuron
pairs; see Section 4.1 for details) exhibit a stronger
phase locking of UE than CC. In contrast we found
much smaller or even negligible differences of the LFP
amplitude measured as its envelope at spike times for
the different spike classes.

1.3 Interpretation and conceptual model

Our analysis of the relation of spikes to the LFP re-
vealed several unexpected results. Firstly, we found a
difference in the locking degree for spikes involved
in different categories of coincidences, i.e. UE vs CC.
Following the hypothesis that active assemblies are
expressed by coordinated spiking activity, UE coinci-
dences are interpreted as a signature of such active as-
semblies. In the following, we will define the assembly
as the set neurons exhibiting coordinated activity that
is reflected in the excess synchronous events during
UE periods. Our new finding on the phase locking of
UE spikes to the LFP leads to the interpretation that
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assembly activity occurs in a pulsed fashion, locked to
the LFP oscillation. The fact that spikes of chance coin-
cidences also occur phase locked seems contradictory.
However, their degree of locking is fully explained by
the (weak) locking of single spikes, which trivially leads
to an enhanced locking of such spikes if occurring coin-
cidently (cf., predictor in Fig. 1(b)). Thus the question is
rather, why isolated spikes outside UE periods exhibit
phase locking at all.

To get a better understanding of these puzzling ob-
servations, we developed a conceptual model which
consistently explains all our findings (Fig. 2(a)). A di-
rect conclusion of the experimental data, which show
that UE periods exhibit a better locking to the LFP
than CC periods, is that assembly spikes must be better
locked to the LFP than spikes not participating in an
assembly. Hence, one basic assumption of the model
is that spikes involved in assemblies exhibit locking to
the LFP while non-assembly spikes do not. According
to our findings that individual spike trains typically
contain a mixture of all spike categories (ISO, CC,
and UE), it is reasonable to assume that an individual
spike train is composed of assembly and non-assembly
spikes. Due to the severe undersampling of the system
caused by the limited number of recording electrodes,
it is highly likely that also ISO spikes contain assembly
spikes, but the corresponding partner neurons could
not be identified. Consequently, the phase histogram
of ISO must contain a mixture of unlocked and locked
spikes. Assuming a uniform phase distribution pn(φ)

for non-assembly spikes and an unknown non-uniform
phase distribution pa(φ) for assembly spikes, the phase
distribution of the ISO spikes pISO(φ) can be expressed
by a weighted combination of the two components:

pISO(φ) = (1 − γ )pn(φ) + γ pa(φ). (1)

Thus also ISO spikes show locking, and its strength is
determined by the factor γ .

CCs result from pairs of independent spike trains
that express coincidences by chance. Under the above
assumption that spike trains are composed of assem-
bly and non-assembly spikes, chance coincidences are
the result of combinations of different spike types:
unlocked–unlocked spikes, locked–unlocked spikes
(two possible combinations), and locked–locked spikes.
Thus, pCC(φ) is also expressed as a composition of
pn(φ) and pa(φ):

pCC(φ) = (1 − γ )2 pn(φ)

+ 2γ (1 − γ )pn(φ)pa(φ) + γ 2 p2
a(φ). (2)

In case of time periods that contain UEs, coinci-
dences resulting from an active assembly are present,
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Fig. 2 Conceptual model to explain the differences in spike-
LFP locking and definition of a suitable stochastic spike-LFP
model. (a) An individual spike train is assumed to be composed
of assembly spikes that exhibit locking to the LFP (non-uniform
phase distribution pa(φ), top right) and of non-assembly spikes
that do not lock to the LFP (uniform phase distribution pn(φ),
top left). Their respective occurrences within a spike train is
expressed by γ (and 1 − γ ) with γ indicating the overall prob-
ability that any spike of a neuron within the network is part
of the assembly process (which might go unobserved). CC are
composed of chance combinations of assembly and non-assembly
spikes, whereas an UE period has contributions of assembly
coincidences of fraction β and CC coincidences of fraction 1 − β.
The observed phase distributions for isolated spikes pISO(φ),
for chance coincidence spikes pCC(φ), and Unitary Event spikes
pUE(φ) are expressed as combinations of pn(φ) and pa(φ) by
the three respective equations. (b) Stochastic spike-LFP model
(details in Section 3.1) used to estimate parameters β and γ from
data. UE periods (shaded in red) are modeled as independent
spike trains of a given background rate, and excess coincidences
due to an additional process whose spikes are inserted into both
parallel spike trains (labeled by green letter ‘a’). The latter is
modeled as Poisson process with nc spikes. The background
processes of each neuron contain n1 − nc and n2 − nc spikes,
respectively. A fraction γ of the background spikes is also part
of an unobserved assembly, here selected randomly and also
marked with the green letter ‘a’. Labeled spikes exhibit locking
to the LFP according to pa(φ), non-labeled spikes do not lock
(uniform phase distribution pn(φ)). A CC period (shaded in
cyan) is realized as two independent Poisson processes with the
same spike counts n1 and n2 for neuron 1 and 2, and a fraction γ

of them marked as spikes of an unobserved assembly

but likely intermixed with chance coincidences that are
not related to this assembly. Thus, the phase distribu-
tion of UE is assumed to be composed of a contribution
of chance locking of a percentage of (1 − β), and to a
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percentage of β of assembly coincidences (see sketch in
Fig. 2(a)):

pUE(φ) = (1 − β) · [
(1 − γ )2 pn(φ)

+ γ (1 − γ )pn(φ)pa(φ) + γ 2 p2
a(φ)

]

+ βp2
a(φ). (3)

As a result, the enhanced locking of UE as compared
to CC is a consequence of the presence of assembly
coincidences i.e. β > 0.

2 Estimation of assembly activations
from spike statistics

In terms of spike coincidences, β is the ratio of the num-
ber of coincidences resulting from assembly activation
and the total number of coincidences in a given time
window

β = nc

nemp
. (4)

The task therefore is to construct an estimate of nc on
the basis of the known properties of the observed spike
trains. For two independently spiking neurons with n1

spikes in one spike train and n2 spikes in the other, the
probability to observe k coincidences in a time window
T is given by the hypergeometric distribution (Grün
et al. 2003)

Hn1, n2
Th

(k) (5)

where we introduced the shorthand

Th = T/h (6)

and h is the resolution of the discretized time axis. We
define H = 0 outside of [0, Th]. The expected number
of coincidences is

nexp = 1
Th

· n1n2. (7)

The expectation value (Eq. (7)) is just the probability
to observe a coincidence in a given bin (n1/Th) (n2/Th)

multiplied by the number of available time bins Th. In
the presence of nc deterministic coincidences, however,
only a reduced number of spikes of the two neurons is
available to form chance coincidences

nexp,c = nc + 1
Th − nc

· (n1 − nc) (n2 − nc) .

The construction of the respective spike trains is illus-
trated in Fig. 2(b). Let us now assume that we measure
the number of coincidences

〈
nemp

〉
averaged over many

repetitions of the experiment with exactly the same
values for nc, n1, n2. In this case we can equate the

empirical average with the expectation value
〈
nemp

〉 =
nexp,c. In this expression nc is the only unknown vari-
able. Hence, we can express nc in terms of n1, n2, and〈
nemp

〉
. Given only the triplet of a single realization(

n1, n2, nemp
)

we can still hope that the measured nemp

is typical and write

nemp = nc + 1
Th − nc

· (n1 − nc) (n2 − nc) . (8)

Multiplication with (Th − nc)

(Th − nc) nemp = (Th − nc) nc

+ (
n1n2 − ncn2 − ncn1 + n2

c

)

shows that the quadratic terms in nc cancel

−ncnemp − Thnc = −Thnemp − nc (n1 + n2) + n1n2

and collecting terms with nc gives

nc = Thnemp − n1n2

Th + nemp − (n1 + n2)
. (9)

Using Eq. (9) we can already compute β for all ex-
perimental UE periods with their individual triplets(
n1, n2, nemp

)
and obtain the distribution of β as well as

its mean βUE (see Section 4). Clearly Eq. (9) is an ap-
proximation, the expression is negative for small nemp,
in particular when no coincidence has been observed
(nemp = 0).

In order to capture coincidences with a temporal
jitter larger than the resolution of the data h, the
multiple-shift method (Grün et al. 1999) sums the co-
incidences over a range of s = 2b + 1 displacements
−b , . . . , +b of one spike train with respect to the other.
At each shift only some of the nc coincidences are
detected and a particular coincidence is by definition
only detected at a single displacement. Under the as-
sumption that in the s displacements the spike counts
n1and n2 are conserved, the relation (Eq. (8)) be-
tween nemp and nc holds if we replace the number of
spikes available for chance coincidences by sni − nc

and the number of available bins by sTh − nc. The
estimate of the number of coincidences originating
from assembly activation (Eq. (9)) then reads nc =(
sThnemp − s2n1n2

)
/
(
sTh + nemp − s (n1 + n2)

)
.

Next we consider a slightly more realistic model
with a variable number of assembly activations nc.
The purpose of the model is to help us to understand
the conditions under which we can reliably extract β.
In the absence of any knowledge about the process
generating the additional coincidences nc we assume
that each value consistent with the observed number
of coincidences is equally likely. Thus, each possible
value of nc occurs with probability 1/(nemp + 1). For a
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particular nc, however, the probability to be consistent
with the nemp observed coincidences is again given by
the hypergeometric distribution (Eq. (5))

Hn1−nc, n2−nc
Th−nc

(
nemp − nc

)
.

The probability that a particular nc underlies the obser-
vation therefore is

1
nemp + 1

Hn1−nc, n2−nc
Th−nc

(
nemp − nc

)

and the total probability to observe nemp coincidences
is
nemp∑

i=0

1
nemp + 1

Hn1−i, n2−i
Th−i

(
nemp − i

)
.

Consequently, the expected nc given the observed
triplet

(
n1,n2, nemp

)
is

nc =
nemp∑

i=0

i · 1
nemp+1H

n1−i, n2−i
Th−i

(
nemp − i

)

∑nemp

j=0
1

nemp+1H
n1− j, n2− j
Th− j

(
nemp − j

)

which reduces to

nc =
∑nemp

i=0 i · Hn1−i, n2−i
Th−i

(
nemp − i

)

∑nemp

i=0 Hn1−i, n2−i
Th−i

(
nemp − i

) . (10)

Note that the denominator is not unity as the sum ex-
tends over probabilities from different hypergeometric
distributions.

2.1 Correspondence of models of assembly activations

The intuitive approximation (Eq. (9)) is compatible
with the more detailed model result (Eq. (10)). To see
this, we first approximate the individual hypergeomet-
ric distributions in Eq. (10) by the one for the average
nc and extend the range of the sums to the maximum
value Th − nc:

nc =
∑Th−nc

i=0 i · Hn1−nc, n2−nc
Th−nc

(
nemp − i

)

∑Th−nc
i=0 Hn1−nc, n2−nc

Th−nc

(
nemp − i

) .

This reduces the denominator to unity. With the substi-
tution k = nemp − i this reads

nc =
nemp∑

k=nemp−(Th−nc)

(
nemp − k

) · Hn1−nc, n2−nc
Th−nc

(k) .

The sum only has contributions for k ≥ 0 and we again
extend the range to the maximum value

nc =
Th−nc∑

k=0

(
nemp − k

) · Hn1−nc, n2−nc
Th−nc

(k) .

This suggests a decomposition of the sum to

nc = nemp

Th−nc∑

k=0

Hn1−nc, n2−nc
Th−nc

(k)

−
Th−nc∑

k=0

k · Hn1−nc, n2−nc
Th−nc

(k)

where the first sum is unity and the latter term is the
expectation value of k. Hence,

nc = nemp · 1 − 1
Th − nc

· (n1 − nc) (n2 − nc)

which is Eq. (8) implying the intuitive result (Eq. (9)).

2.2 Accuracy of the count of assembly activations

Before we turn to the experimental data in Section 4
we need to assess the accuracy of our estimator of
nc. To this end we construct a surrogate data set with
parameters adapted to the experimental data. The data
are organized into 32 blocks containing an increasing
number of assembly activations from nc = 0 to 31.
A block is composed of M = 2,700 time windows,
consistent with the number of UE windows found in
the experimental data. A time window has a duration
(Eq. (6)) of Th = 5,000 at a resolution of h = 1 ms,
corresponding to the 100 ms segments of UE analysis
covering 50 trials. Each time window contains surrogate
spike trains of two neurons with totals of exactly n1 =
n2 = 100 spikes (corresponding to a rate of 20 Hz). In
each spike train the ni − nc non-assembly spikes are
uniformly distributed over the time window.

Figure 3(a) shows the distribution of injected co-
incidences nc in the data set organized by the total
number of coincidences in each window nemp. Here and
in the following only windows containing a significant
number of coincidences (nemp > nα) are analyzed (cf.
Section 1.1). The estimator (Eq. (9)) of nc assigns a
unique value to each value of nemp because the spike
counts are identical for all windows. Therefore at a
given nemp the estimate of nc is identical for each
window and thereby identical to the average over all
windows. In Fig. 3(b) we observe that the estimate well
describes the mean (red curve) of the actual distribu-
tion of nc at a particular nemp. The panel further demon-
strates that the approximative (Eq. (9)) and the exact
(Eq. (10)) estimator only start to deviate for nemp below
nα. Figure 3(c) uses the same representation as Fig. 3(a)
to illustrate the excellent correspondence between the
distribution of the actual β and the estimated values.
The total distribution of β (Fig. 3(d)) in the model is
asymmetrical because of the lack of a typical nc and the
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Fig. 3 Consistency and sensitivity of the estimation procedure
in surrogate data. (a) The actual distribution (gray shading) of
numbers of injected coincidences nc and its measured mean (red
curve) as a function of the empirical number nemp of coincidences
per time window. The simulated data is composed of blocks,
each involving a different number of injected coincidences nc =
0, 1, . . . 31. A total of 2,700 windows are simulated per block,
each with a total of exactly n = 100 spikes. Values extracted
for all significant (UE analysis, α = 0.05) windows per value of
nc are pooled and reordered according to nemp. The dotted line
represents the minimum number nα of coincidences needed for a
window to become significant. (b) Approximate (light gray) and
exact (dark gray) theoretical prediction of nc. For comparison,
the red curve shows the average nc (same curve as in panel
(a)). Since the total number of spikes per window is fixed the
expected number of coincidences and thus nα are constant, as
well as the estimated nc for a given nemp. (c) Distribution (gray
shading) and measured mean (red curve) of β = ncn−1

emp as a
function of nemp, depicted in analogy to panel (a). β assumes
only discrete values. The dark gray curve shows the result from
the exact theoretical prediction indicated by the dark gray curve
in panel (b). (d) Distribution of β (red bars) across all observed

values of nemp and the corresponding mean βUE (red line). The
green line shows that the lower bound β

φ

min calculated from the
simulated phase distributions is well below the mean for our
particular choice of pa(φ). (e) Comparison of theoretical (light
green, β̄) and estimated (dark green, β̃) values of β from the
UE analysis and corresponding estimates of γ (magenta) from
the phase distributions as a function of nc. Dashed curves show
the minimum β

φ

min and corresponding γ
φ

min. The shaded graph
indicates the probability for a time window created with given
nc to become significant in the UE analysis. The deviation of
estimates from their theoretical value for nc < nα (dotted line)
is an expected artifact due to the preselection of significant UE
periods. The average βUE from (d) yields a good estimate γ =
0.098 ≈ γ set (black cross on vertical axis). (f) Absolute error in
estimating βUE for nemp = nα + 1 (smallest possible nemp) for
different choices of the spike count n1 and n2 of the two neurons.
Counts correspond to firing rates between 5 Hz and 40 Hz. The
shading visualizes the absolute difference between βUE and the
theoretical prediction (red and gray curves in panel (c), taken at
the data point to the right of nα). (g) Absolute error

∣∣γ set − γ
∣∣ in

estimating the final result γ for different choices of n1 and n2

constant spike count. In conclusion, our measure is a
faithful estimator of the average β in the data.

3 Estimating the assembly participation probability
in a joint spike-LFP model

In the following section, we extend the simple spike
model defined in Section 2 to include a representation
of the LFP locking and verify numerically that the

results obtained in the previous section yield a reliable
estimate of our model parameters β and γ .

3.1 Combined spike-LFP model

First, we choose a parameter γ set as the assumed prob-
ability that any spike in the network is part of an assem-
bly activation, in agreement with our conceptual model.
In the following we simulate for each choice of nc the
set of M = 2,700 UE time windows as combinations
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of an injection process and a background process for
two neurons as described in Section 2.2. In addition,
CC time windows are generated only by a background
process with equal spike counts n1 = n2 = 100 (see
Fig. 2(b) for an illustration). Again, only significant UE
windows (nemp > nα) and non-significant CC windows
(nemp ≤ nα) are retained. To model the experimental
results, we assign a label ’a’ to all spikes that originate
from an assembly activation (Fig. 2(b)). By definition of
our assembly process, every spike that originates from
the injection process receives a label. In addition, a
random proportion γ set of spikes from the background
process is labeled (in both, UE and CC time windows).
In our simulations, the overall probability for a spike
to belong to an assembly is set to γ set = 0.1. Next,
we define two distributions pn(φ) and pa(φ), where
the latter has a larger modulation depth, which de-
scribe the locking of non-assembly and assembly spikes,
respectively (Fig. 2(a)). Here, pn(φ) is modeled as a
uniform distribution, whereas for pa(φ) the distribution
is modeled as a Gaussian as an approximation of a von
Mises distribution. The modulation of the Gaussian was
chosen to mimic that of the experimentally observed
distributions pCC(φ), and pUE(φ) (compare Figs. 1(b)
and 2(a)). Classification of spikes into the groups ISO
(taken here as the single spikes in CC windows), CC
and UE allows us to calculate the simulated phase
distributions pISO(φ), pCC(φ), and pUE(φ) as mixtures
of pn(φ) and pa(φ).

3.2 Estimating the minimal β from phase distributions

The setup allows us to follow the same analysis steps
that we will perform on the experimental data in the fol-
lowing section. From the conceptual model introduced
in Section 1.3, which is formally expressed in Eqs. (1–3),
we infer the lower bound β

φ

min of coincidences origi-
nating from assemblies during an observed UE period.
Substituting the measured population phase distribu-
tion of chance coincidences pCC(φ) of Eq. (2) into
Eq. (3) yields an expression relating the known phase
distribution pUE(φ) of UE coincidences to the parame-
ter β and the squared phase distribution of assembly
spikes p2

a(φ):

pUE(φ) = (1 − β) · pCC(φ) + β · p2
a(φ). (11)

By systematic variation of the parameter β we thus
obtain a corresponding phase distribution p2

a(φ) by
solving the equation separately for each bin of the
respective distributions. However, for small values of
β the assembly distribution p2

a(φ) must exhibit a strong
modulation to compensate for the large difference be-
tween pUE(φ) and (1 − β)pCC(φ). In the extreme case,

it can become necessary for a bin of p2
a(φ) to contain

negative values, ruling out that particular choice of
the parameter β. From this consideration, we define
β

φ

min as the lowest value of β that leads to a phase
distribution p2

a(φ) with non-negative entries. This lower
bound depends on the choice of the assembly phase dis-
tribution pa(φ) we initially introduced into our model:
the smaller the difference in locking between assembly
spikes pa(φ) and non-assembly spikes pn(φ), the lower
are the values that β

φ

min may assume. In Fig. 3(d) we
show that in our spike-LFP model we obtain a value for
β

φ

min well below the mean βUE extracted from the spike
analysis (Section 2). We note that when generating the
model data with a more strongly modulated Gaussian
to model pa(φ), the minimum β

φ

min approaches βUE

from below (not shown).

3.3 Estimation of γ from phase distributions

We are now prepared to extract the parameter γ from
the simulated phase distributions using the estimate
of βUE derived in Section 2. First, using β = βUE we
extract p2

a(φ) from Eq. (3) by solving the equation sep-
arately for each bin of p2

a(φ). Thus, pa(φ) is determined
independently of the distribution pn(φ) describing the
general entrainment of spikes to the LFP. Taking the
square root pa(φ), we renormalize the distribution to
unit area, and insert it in Eq.(1). By variation of the
parameter γ , we find the value γ φ,UE that minimizes
the sum of the absolute bin-by-bin differences between
the distribution pISO(φ) and the right side (1 − γ ) ·
pn(φ) + γ · pa(φ) of Eq. (1).

Using this method, we first analyze separately each
of the 32 blocks of data with a fixed number of injected
coincidences nc. Let β̃ and γ̃ be the estimated values of
βUE and γ φ,UE within a single block. In Fig. 3(e) β̃ and
γ̃ are compared to their theoretical means β̄ (calculated
as the mean of nc/nemp over all significant time windows
from one set of simulations with fixed nc) and γ set. The
estimates are in good agreement for datasets where
nc was set above the significance threshold nα . Below
this threshold, the number of injected coincidences, and
hence β̃ and γ̃ , is overestimated. Clearly, in this regime
contributing UE periods become significant only due
to an unusually high number of coincidences in the
background process. Therefore, the mean approxima-
tion (Eq. (9)) does no longer hold. In principle it is
possible to correct for the bias due to the selection of
significant periods, although it is not possible to arrive
at an expression in closed form for nc. Nevertheless, in
fact only a small fraction of windows that were created
with low values of nc actually become significant due
to such exceptionally high coincidences counts from
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the background (the shaded graph in Fig. 3(e) shows
the probability for a window to become significant for
given nc). Therefore, in practice, where the true nc is
unknown, only few windows enter the analysis when
nc is low. For this reason, the bias does not affect
the estimate when re-sorting the data according to the
observed nemp (Fig. 3(a)–(c)), and the original value of
γ set is well estimated as γ φ,UE = 0.098 from the com-
plete dataset spanning all nc (black cross in Fig. 3(e)).
Consistently, the lower bounds β

φ

min and γ
φ

min are a lower
bound on the respective estimates β̃ and γ̃ for all values
of nc.

To quantify whether our procedure works for other
values for the total spike counts n1 and n2 we introduce
two error measures. First, we note that our prediction
of β will be least accurate when the coincidence count
nemp is low. Thus, we numerically quantify the absolute
error of β for the smallest value of nemp to become
significant (Fig. 3(f)). Moreover, we quantify the ab-
solute error of our final estimate γ obtained from the
complete spike-LFP model (Fig. 3(g)). Both measures
indicate that the parameters are reliably extracted for
a wide range of activity levels in both neurons, even in
the case of large rate differences between the two. In
summary, these calibrations using a simple combined
spike-LFP model demonstrate that our method and the
approximation (Eq. (9)) are well suited to estimate the
parameter γ from the phase distributions in a dataset
with a realistic choice of parameters.

4 Analysis of experimental data

In this section we estimate the percentage of coincident
spike events reflecting assembly activity (model para-
meter β) and the percentage of spikes that are part
of an assembly activation (model parameter γ ) from
neuronal data of primary motor cortex of monkeys.

4.1 Experimental procedures

Two rhesus monkeys were trained to perform arm
movements in two different tasks involving an in-
structed delay. One of these tasks requires a self-
initiated movement after one of two preset delays,
while the other requires the discrimination between
two such delays. In this study we exclusively analyze
the delay activity during the preparatory period for
the upcoming arm movement. Only correct trials were
considered, in which the monkey responded within a
predefined time window and in which movements were
performed in the required movement direction. LFPs
and spikes were recorded simultaneously in primary

motor cortex using a multielectrode device of 2–4 elec-
trodes. Spikes of single neurons were detected by an
online sorting algorithm. The inter-electrode distance
was on the order of 400 μm. LFPs were sampled at a res-
olution of 250–500 Hz and hardware filtered (band pass,
1–100 Hz). In total, we analyzed 53 recording sessions,
which yielded 143 single neurons or 570 combinations
of neurons and behavioral conditions. Each of these
eight possible behavioral conditions is a combination
of the task during which the neuron was recorded, the
length of the delay (short or long), and the direction
of the arm movement (left or right). This selection
included only those neurons which exhibited an aver-
age firing rate of 5 Hz or more and exhibited at least
25 spikes in total. On average 33±11 (mean±standard
deviation) trials were recorded per experimental con-
dition. In analyses that combine spikes and LFP, each
neuron enters only once, and we never combined LFP
and spikes that were recorded on the same electrode
to exclude the possibility of spike artifacts in the signal.
We confirmed that simultaneously recorded LFPs are
highly synchronous in the frequency regimes of interest.
For experimental details see Roux et al. (2006).

The Unitary Events analysis was applied to all si-
multaneously recorded pairs of neurons recorded on
different electrodes thus totaling 123 pairs of neu-
rons. Data were analyzed separately for the possible
behavioral conditions and each experimental session.
Defining a neuron by the combination of its identity
and the behavioral condition (see above) during which
it was recorded, data from the same neuron may enter
a population average up to eight times. Based on the
results of the UE analyses each individual spike was
marked as either ISO, CC or UE (see Section 1.1
and Denker et al. (2010) for details). We observed
a dominant component of the β-band (in both mon-
keys around 17 Hz) in the LFP during the prepara-
tory period (see, e.g., Murthy and Fetz 1996a) and
therefore filtered the LFP accordingly before apply-
ing the Hilbert transform to extract its instantaneous
phase and amplitude (i.e. the envelope). LFPs of both
monkeys are filtered with a zero-phase 10–22 Hz band
pass filter (Butterworth, 8-pole). Finally, we derived
the phase histogram pooled over the whole population
for each class of spikes (see Fig. 1(b)). The histogram
was pooled after averaging, such that each spike en-
ters the distribution unweighted (as is required for our
analysis).

4.2 Estimating the minimal β from phase distributions

As described in Section 3.2, we derive the lower bound
of the percentage of coincidences originating from as-
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sembly activity β
φ

min. Again, we make use of the Eq. (11)
that relates the phase histogram of the UE to the model
parameter β. This equation contains two components
that we extract from the data, i.e. the phase distribution
of the UE spikes pUE(φ) and the phase distribution of
the CC spikes pCC(φ). We vary β in the interval [0, 1]
and retrieve the corresponding p2

a(φ). Four examples
are shown in Fig. 4 for different values of β. The first
two examples demonstrate how choosing a small value
of β may lead to distributions p2

a(φ) that have negative
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Fig. 4 Determination of β
φ

min from experimental data. The four
upper rows show the measured distributions pUE(φ) (left, red),
(1 − β) pCC(φ) (middle, cyan) and the resulting squared phase
distribution of assembly spikes p2

a(φ) (right, green) entering the
third equation in Fig. 2(a), i.e. Eq. (3) in the text, for four
different choices of β. The solid line in the bottom graph shows
the relationship between the choice of β and the resulting mod-
ulation depth of p2

a(φ) (difference between maximum and mini-
mum). The dark gray area indicates invalid choices of β where the
corresponding distribution p2

a(φ) has negative values (compare
green f illed areas of p2

a(φ) in the top two rows). Hence, the
minimum value for β is determined as β

φ

min = 0.24. The dashed
lines in the top graphs show the results for an analogous analysis
using fitted von Mises distributions for pCC(φ) and pUE(φ). The
minimum value for β is determined as β

φ

min,fit = 0.08 (see light
shaded gray in bottom graph)

entries and indicate a non-valid solution. From the
systematic variation of β we derive the value β

φ

min =
0.24 that just leads to non-negative entries in all bins
of p2

a(φ) (see Fig. 4, bottom). This result indicates that
at least about a fourth of the coincidences during a
UE period are reflections of the observed assembly. In
addition, we performed an analogous analysis using von
Mises distributions fitted to the experimental distribu-
tions pCC(φ) and pUE(φ) (dashed lines in Fig. 4). This
approach is very conservative because the fits neglect
the prominent systematic peaks present in the original
distributions. In this analysis, the minimum value for β

is determined as β
φ

min,fit = 0.08.

4.3 Estimate of βUE from coincidence counts

As introduced in Section 2 the parameter β can be
estimated by the comparison of the expected number
of coincidences nexp and the number of empirical coin-
cidences nemp. Figure 5(a) shows nemp as a function of
its respective nexp value for all analysis windows that
were detected to contain UE for all pairs and sessions.
Due to the selection of windows that contain UE,
the empirical coincidence counts are larger than the
minimal number of coincidences nα required to be sig-
nificant given the significance level α. nα does not have
a constant difference to nexp but increases non-linearly
as a function of nexp since the Poisson distribution used
for the evaluation of the significance becomes broader
for larger expected number of coincidences (see for
details in Grün et al. 2002a).

Based on Eq. (9) we estimate the number of co-
incidences resulting from the active assembly nc for
each nexp, nemp combination. We use a version of the
UE analysis that also allows to detect temporally im-
precise coincidences by employing the multiple-shift
method. This method detects coincidences of system-
atically shifted spike trains up to a predefined shift,
and sums the coincidence counts from all shifts. For the
UE evaluation, the expected number of coincidences
then has to be adjusted by a factor of 2s + 1 with s
being the maximal shift (cf. Section 1.1; for details see
Grün et al. 1999). Thus to estimate the number of co-
incidences nc that generically result from active assem-
blies, Eq. (9) was adjusted correspondingly (Section 2).
Figure 5(b) shows nc versus its corresponding nemp and
we find an average number of assembly coincidences of
nUE

c = 6.70.
Next, we can derive for each pair of (nc, nemp) an

estimate of the percentage of coincidences reflecting
assembly activity β (Fig. 5(c)). We find these values
peaked around a mean of βUE = 0.51 with a standard
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Fig. 5 Distribution of the estimated β and the resulting value
of βUE obtained from the data. (a) Scatter plot of the expected
number of coincidences nexp and the empirical number of co-
incidences nemp. Here and in the following panels, each dot
represents the values of one significant 100 ms time window
(UE analysis, α = 0.05), where each neuron exhibits a minimum
average rate of 5 Hz. The gray curve indicates the critical number
nα of coincidences to reach significance at a given nexp. The black
line shows the diagonal. Due to the preselection of datasets with
a minimum rate, no data points for small nexp are observed.
(b, c) Estimated values of nc (b) and β (c) as a function of the
empirical coincidence count nemp. The total distributions of nc

and β are shown on the right (black). The averages nUE
c = 6.70

and βUE = 0.51 are indicated by the light gray lines. The dark
gray line in (c) shows the lower bound β

φ

min for comparison

deviation of 0.123. The obtained distribution of β is
in good agreement with the minimum β

φ

min obtained
in Section 4.2, as β

φ

min lies well below the mean βUE

of the distribution of β as expected for an estimate
of a lower bound. Although β

φ

min in fact seems to be
a bound for the complete distribution of β, this must
not necessarily be the case: As a measure derived from
the population estimate of phase distributions, it can

only have predictive power on the population mean
βUE, but not the estimate β of single windows (compare
Fig. 3(d)).

4.4 Estimation of γ from phase distributions

Finally, we estimate the fraction γ of spikes in the
network that are part of an assembly activation (com-
pare Section 3.3). Again, by systematic variation of
the parameter γ in Eq. (1) we find the best fit be-
tween the measured pISO(φ) and the right side of the
equation (see Fig. 6). Here, the assembly distribution
pa(φ) is known from Fig. 5 by setting β = βUE, while
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the phase distribution of non-assembly spikes pn(φ)

is taken as the uniform distribution (see Section 5).
Taking all analysis steps together, the best fit is derived
for γ φ,UE = 0.22 indicating that on average 22% of the
spikes of any neuron in the network originate from
assembly activity (Fig. 6, bottom). To corroborate this
result, we obtain a similar value of γ φ,UE = 0.26 using
the same procedure described above to solve (Eq. (2)).

5 Discussion

Despite the complex mechanisms that contribute to
the formation of the local field potential, it is well
established that a primary contribution to the oscil-
latory LFP dynamics arises from the superposition of
synchronized, slow transmembrane currents of cells
close to the recording site (Mitzdorf 1985; Logothetis
and Wandell 2004). Nevertheless, how rhythmicity in
the LFP is linked to synchrony on the spiking level
has remained an open question (Poulet and Petersen
2008; Tetzlaff et al. 2008) due to the unspecificity of
the LFP signal and lack of a clear global oscillatory
spiking activity. Several authors have interpreted the
LFP as reflections of the specific synchronous synaptic
activity responsible for the coactivation of neurons in
the context of cell assemblies (Eckhorn et al. 1988;
Murthy and Fetz 1996b) which, in the simplest case,
time their activations to the network rhythm revealed
by the LFP (Singer 1999). Our recent experimental
findings (Denker et al. 2010) demonstrate that indeed
only assembly activity, which is identified as transient
periods of significant excess spike synchrony between
two neurons (UE analysis, Grün et al. 2002a, b), shows
an exceptional phase relationship to LFP oscillation
that exceeds expectation (Fig. 1(b)), thus confirming
the hypothesis.

This link provides a handle on characterizing the
spike synchronization dynamics in the context of the
network oscillations. Here, we introduced a simple
model that captures the main experimental findings on
the spike-LFP relationship in such a way that it includes
a parameter γ that measures the overall participa-
tion probability of individual spikes in an assembly—
independent of whether it is observed or not. However,
the estimation of this network parameter from the data
requires knowledge of a second model parameter β,
the expected relative number of (excess) coincidences
stemming from an active assembly (as opposed to
chance coincidences) during UE periods. Estimating
this number from the spike data alone and integrating it
into the conceptual model yields an average participa-
tion of single spikes to assembly activity of γ = 22%, a

parameter that describes precise spike synchronization
on the network level.

Our model assumes that the observed excess syn-
chrony is the result of the specific activation of the
observed neurons. An alternate hypothesis states that
spike synchronization is solely caused by fluctuations
of the spiking likelihoods due to the entrainment of
neurons to a common LFP oscillation. In this case, no
UEs would be observed due to the lack of a spike
coincidence count exceeding the expectation based on
the rate time course. Only if the analysis would unsuc-
cessfully correct for non-stationarities of the firing rates
false-positive detections of UE periods emerged. Con-
sequently, these false-positives would trivially correlate
with the LFP. To exclude this possibility, we repeated
the analysis presented in this study by replacing the
parametric distribution of coincidences used for eval-
uating the significance of observed coincidence counts
by numerically derived distributions based on surro-
gate data. The employed surrogate method (spike train
dithering, see Grün 2009) considers further statistical
features of the experimental spike trains (in particular
non-stationarity of rates on a short time scale and the
inter-spike interval distributions) while destroying pre-
cise spike coincidences. Simulations showed that this
method is more conservative (Louis et al. 2010) than
the analysis used here, but despite the decreased sensi-
tivity confirms the differences in the phase distributions
for ISO, CC, and UE. These findings are the essential
experimental foundation of our study.

The combination of measurements of synchrony on
the local and mesoscopic scales enables us to access
parameters of the network dynamics that remain hid-
den on the two individual levels of observation. The
nature of the estimation process via the population
phase distributions obtained from the LFP-spike lock-
ing requires a vast pooling of the experimental data in
different sessions and two different monkeys in order
to obtain a large sample of neurons as an appropriate
representation of the network activity in motor cortex.
The resulting value for γ must therefore be seen as
a coarse estimate of the degree of assembly activity.
Despite the finding that the parameter β shows a rather
narrow distribution (Fig. 5(c)), the extent to which an
individual neuron contributes to the assembly dynamics
will fluctuate around the network mean γ . By quan-
tifying the quantiles for 2 standard deviations of the
experimental distribution of β we find corresponding
γ values between γ = 0.14 and γ = 0.39 as an estimate
of the range of γ across neurons.

In understanding the underlying dynamical struc-
ture, more interesting than the precise value of γ itself
are two simple observations: first, γ < 1. Therefore,
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not all spikes are part of an assembly activation, and
some spikes must be attributed to a complementary
mechanism. Intuitively, this is clear from the obser-
vation that in individual UE periods, it is always the
falling phase of the LFP oscillation where increased
locking is observed. Second, γ > 0, specifically about
one fourth of all spikes must originate from assembly
activity (with a non-zero lower bound γ

φ

min). Thus, un-
der the assumptions of our model, the activation of as-
semblies is an ubiquitous phenomenon in the network,
providing compelling evidence for the presence of an
assembly coding scheme in addition to the correlation
of synchrony with behavior (Kilavik et al. 2009). In-
deed, we typically observe a fraction of about 26% of
neurons that show UEs during a given task. Therefore,
combined with the large value of γ this suggests that
typically any neuron is part of one or several assem-
blies. Nevertheless, information about the existence of
higher-order synchrony between neurons is required
for a further characterization of the assembly, such as
an estimate of the number of participating neurons.
Moreover, such an analysis could better disambiguate
whether spikes that do not originate from assembly
activation show an intrinsic degree of phase locking
that deviates from our model assumption of a uniform
pn(φ).

A crucial part of our analysis is the estimation of the
average relative amount of excess synchrony β during
UE periods directly from the synchrony analysis. By
design, all currently available methods to detect the
presence of an active assembly activation, such as the
UE analysis, rely on a significance test (Grün 2009).
Therefore, we must assume that the amount of excess
synchrony β is influenced by the explicit choice of the
significance level α used for the significance test: For a
very restrictive significance criterion, only UE periods
with very high excess synchrony nc will be detected,
resulting in higher values of β. Nevertheless, by choos-
ing the same α level for the phase locking analysis,
we will in turn also obtain a correspondingly more
modulated distribution for pUE(φ), reflecting that it
contains a higher proportion of assembly spikes. There-
fore, β yields a consistent phase distribution pa(φ) of
the assembly spikes independent of α.

The approximate formula (Eq. (9)) does not make
any assumptions on preselecting significant periods of
synchrony in the first place. However, we apply this
estimate specifically in periods that display a significant
surplus of synchrony, i.e. UE periods. If the number
of coincidences nc coming from the injection process
is small, significance is only reached with an unexcep-
tionally high amount of coincidences originating from
the background. Therefore, in our stochastic spike-LFP

model, in those very few trials that are significant for
a given small nc, the average background rate will be
underestimated and the average injection rate overes-
timated (Fig. 3(c)). However, restructuring the model
data to the realistic case where only nemp is measured
(pooling across the data sets with different nc) auto-
matically incorporates the low frequency of significant
windows with small nc. Therefore the overall estimate
of β is not significantly affected.

Our spike-LFP model (Section 3) is created in the
spirit of providing a simple abstraction of the exper-
imental findings in order to test the analysis under
controlled conditions (equal counts per spike train with
fixed injections). Due to this intentional lack of exper-
imental detail in the model, the distribution of β that
is obtained in the spike-LFP model naturally deviates
from the one found in the data (compare Figs. 3(d)
and 5). The model assumes an equal probability for
a large range of nc (number of injected coincidences).
In real data, nc likely follows a much more narrow
distribution that does not exploit this range, resulting
in lower values of β (compare Fig. 3(e)). Moreover,
we assumed fixed counts n1, n2 for all neurons in the
model. In reality, rates vary considerably across neu-
rons. Especially for higher rates, where a higher propor-
tion of coincidences can be assumed to originate from
the background, we would expect a tendency towards
lower β values.

In generating the spike-LFP model in Section 3 we
did not explicitly model an LFP oscillation to place
spikes at specific points of the field potential. In ex-
treme situations this might be an oversimplification,
where the constraints placed on the spikes due to
the LFP locking influence the probability to detect
coincidences. In our model, however, non-assembly
spikes are associated with a uniform phase distribution,
such that pn(φ) does not impose any constraints on
the spiking probability in time. The Poissonian spike
interval statistics of non-assembly spikes thus remain
unaffected. In contrast, the assembly spikes from the
background process must in principle be adjusted with
respect to a hypothetical LFP so that their phase distri-
bution matches the assumed the distribution pa(φ) of
assembly spikes. However, as pn(φ) is uniform, doing
so will only influence the probability of finding a co-
incidence between two spikes that are both assembly
spikes, i.e. that participate by chance in two different
assemblies at the same time. Nevertheless, the proba-
bility (γ set)2 = 0.01 of this to happen is negligibly small.
Finally, assembly spikes from the injection process
are synchronous by definition, and therefore remain
unaffected by the choice of pa(φ). Due to their small
number they can always be freely placed in the time
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window T in accordance with pa(φ). Taken together,
the simple model introduced in Fig. 2 to represent the
experimental findings in the context of the spike model
includes sufficient detail without the need to explicitly
model the actual positions of individual spikes with
respect to an artificial LFP.

The analysis we provide in this manuscript focuses
on estimating a global parameter that characterizes the
network dynamics. Given the overall consistency of our
conceptual assembly model, the results suggest that os-
cillations and assemblies are tightly coupled. However,
one may still speculate whether LFPs are in fact the
direct cause of the assembly process, or whether they
act as a supporting mechanism that coordinates syn-
chronized firing. Whichever the initial cause of the LFP
oscillation, a promising next step is to return to the level
of the single neuron and integrate our knowledge on
the dependence of spike synchrony on the LFP in order
to discriminate which of the spikes are likely candidates
to originate from the assembly process, and which are
not. Two pieces of information aid us in this task: first,
the knowledge of the observed UE phase distributions
in relation to the ISO and CC distributions determines
the likelihood of a single spike to be part of an assembly
activation. Second, the parameter γ is informative of
the relative number of spikes to assign to the assembly
dynamics. Indeed, a third parameter not discussed in
this manuscript is the dependence of spike synchrony
on the LFP amplitude (Denker et al. 2010). Evaluating
these three factors on a spike-by-spike basis, there is
reason to believe that analyzing the LFP in relation to
the spiking activity may well provide an independent in-
dicator to identify the probabilities with which recorded
neurons become transiently synchronized as part of an
assembly activation. Moreover, the pulsed activation
of assemblies triggered on the LFP oscillations cycle
suggested by the experimental data stimulates the idea
that maybe even assemblies, where only one neuron
is recorded, may be inferred from the phase locking
statistics in a probabilistic manner. Thus, incorporating
a mesoscopic signals may serve to overcome problems
related to the undersampling in multiple single-neuron
recordings. The success of the method presented here
not only corroborates the assembly hypothesis of neu-
ronal processing, but offers a promising vista on rein-
terpreting the dynamical implications of observed LFP
signals.

List of symbols

T Duration of each simulated time window
h Temporal resolution of spike trains

pn(φ) Phase distribution of spikes not participating
in an assembly

pa(φ) Phase distribution of spikes participating in
an assembly

pISO(φ) Measured phase distribution of ISO spikes
pCC(φ) Measured phase distribution of CCs
pUE(φ) Measured phase distribution of UEs
β Fraction of coincidences part of the observed

assembly during a UE period
γ Fraction of spikes in the network activated in

assemblies
β

φ

min Minimal value of β extracted from the phase
distributions alone

γ
φ

min Value of γ that corresponds to the lower
bound β

φ

min
βUE Average value of β obtained from the UE

analysis
γ φ,UE Final estimate of γ obtained from phase

distributions using βUE

α Significance level of the Unitary Event
analysis

nα Number of coincidences required to reach
significance at the α-level

ni Spike count of neuron i in a given window
across trials

nemp Empirical number of coincidences in a given
time window

nexp Expected number of coincidences in a given
time window based on the firing rates

nc Number of spikes part of the observed as-
sembly (i.e., number of injected coincidences
in the stochastic spike-LFP model)

M Number of windows simulated in the spike-
LFP model per choice of nc

γ set Predefined value of γ in the spike-LFP
model
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