Skip to main content
Log in

Asymmetric electrotonic coupling between the soma and dendrites alters the bistable firing behaviour of reduced models

  • Published:
Journal of Computational Neuroscience Aims and scope Submit manuscript

Abstract

The goal of the study was to investigate the influence of asymmetric coupling, between the soma and dendrites, on the nonlinear dynamic behaviour of a two-compartment model. We used a recently published method for generating reduced two-compartment models that retain the asymmetric coupling of anatomically reconstructed motor neurons. The passive input-output relationship of the asymmetrically coupled model was analytically compared to the symmetrically coupled case. Predictions based on the analytic comparison were tested using numerical simulations. The simulations evaluated the nonlinear dynamics of the models as a function of coupling parameters. Analytical results showed that the input resistance at the dendrite of the asymmetric model was directly related to the degree of coupling asymmetry. In contrast, a comparable symmetric model had identical input resistances at both the soma and dendrite regardless of coupling strength. These findings lead to predictions that variations in dendritic excitability, subsequent to changes in input resistance, might change the current threshold and onset timing of the plateau potential generated in the dendrite. Since the plateau potential underlies bistable firing, these results further predicted that asymmetric coupling might alter nonlinear (i.e. bistable) firing patterns. The numerical simulations supported analytical predictions, showing that the fully bistable firing pattern of the asymmetric model depended on the degree of coupling asymmetry and its correlated dendritic excitability. The physiological property of asymmetric coupling plays an important role in generating and stabilizing the bistability of motor neurons by interacting with the excitability of dendritic branches.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Ballou, E. W., Smith, W. B., et al. (2006). Measuring dendritic distribution of membrane proteins. Journal of Neuroscience Methods, 156(1–2), 257–266.

    Article  PubMed  CAS  Google Scholar 

  • Bennett, D. J., Hultborn, H., et al. (1998). Synaptic activation of plateaus in hindlimb motoneurons of decerebrate cats. Journal of Neurophysiology, 80(4), 2023–2037.

    PubMed  CAS  Google Scholar 

  • Bennett, D. J., Li, Y., et al. (2001). Plateau potentials in sacrocaudal motoneurons of chronic spinal rats, recorded in vitro. Journal of Neurophysiology, 86(4), 1955–1971.

    PubMed  CAS  Google Scholar 

  • Booth, V., & Rinzel, J. (1995). A minimal, compartmental model for a dendritic origin of bistability of motoneuron firing patterns. Journal of Computational Neuroscience, 2(4), 299–312.

    Article  PubMed  CAS  Google Scholar 

  • Booth, V., Rinzel, J., et al. (1997). Compartmental model of vertebrate motoneurons for Ca2+-dependent spiking and plateau potentials under pharmacological treatment. Journal of Neurophysiology, 78(6), 3371–3385.

    PubMed  CAS  Google Scholar 

  • Brunel, N. (2003). Dynamics and plasticity of stimulus-selective persistent activity in cortical network models. Cerebral Cortex, 13(11), 1151–1161.

    Article  PubMed  Google Scholar 

  • Bui, T. V., Ter-Mikaelian, M., et al. (2006). Computational estimation of the distribution of L-type Ca(2+) channels in motoneurons based on variable threshold of activation of persistent inward currents. Journal of Neurophysiology, 95(1), 225–241.

    Article  PubMed  CAS  Google Scholar 

  • Carlin, K. P., Jiang, Z., et al. (2000). Characterization of calcium currents in functionally mature mouse spinal motoneurons. The European Journal of Neuroscience, 12(5), 1624–1634.

    Article  PubMed  CAS  Google Scholar 

  • Carlin, K. P., Jones, K. E., et al. (2000). Dendritic L-type calcium currents in mouse spinal motoneurons: implications for bistability. The European Journal of Neuroscience, 12(5), 1635–1646.

    Article  PubMed  CAS  Google Scholar 

  • Carlin, K. P., Bui, T. V., et al. (2009). Staircase currents in motoneurons: insight into the spatial arrangement of calcium channels in the dendritic tree. The Journal of Neuroscience, 29(16), 5343–5353.

    Article  PubMed  CAS  Google Scholar 

  • Carnevale, N. T., & Johnston, D. (1982). Electrophysiological characterization of remote chemical synapses. Journal of Neurophysiology, 47(4), 606–621.

    PubMed  CAS  Google Scholar 

  • Cotel, F., Antri, M., et al. (2009). Identified ankle extensor and flexor motoneurons display different firing profiles in the neonatal rat. The Journal of Neuroscience, 29(9), 2748–2753.

    Article  PubMed  CAS  Google Scholar 

  • Cullheim, S., Fleshman, J. W., et al. (1987a). Membrane area and dendritic structure in type-identified triceps surae alpha motoneurons. The Journal of Comparative Neurology, 255(1), 68–81.

    Article  PubMed  CAS  Google Scholar 

  • Cullheim, S., Fleshman, J. W., et al. (1987b). Three-dimensional architecture of dendritic trees in type-identified alpha-motoneurons. The Journal of Comparative Neurology, 255(1), 82–96.

    Article  PubMed  CAS  Google Scholar 

  • Dechter, R. (2003). Constraint processing (p. 481). San Francisco: Morgan Kaufmann Publishers.

    Google Scholar 

  • Doiron, B., Laing, C., et al. (2002). Ghostbursting: a novel neuronal burst mechanism. Journal of Computational Neuroscience, 12(1), 5–25.

    Article  PubMed  Google Scholar 

  • Donohue, D. E., & Ascoli, G. A. (2008). A comparative computer simulation of dendritic morphology. PLoS Computational Biology, 4(5), e1000089.

    Article  PubMed  Google Scholar 

  • Egorov, A. V., Hamam, B. N., et al. (2002). Graded persistent activity in entorhinal cortex neurons. Nature, 420(6912), 173–178.

    Article  PubMed  CAS  Google Scholar 

  • Eken, T., & Kiehn, O. (1989). Bistable firing properties of soleus motor units in unrestrained rats. Acta Physiologica Scandinavica, 136(3), 383–394.

    Article  PubMed  CAS  Google Scholar 

  • Elbasiouny, S. M., Bennett, D. J., et al. (2005). Simulation of dendritic CaV1.3 channels in cat lumbar motoneurons: spatial distribution. Journal of Neurophysiology, 94(6), 3961–3974.

    Article  PubMed  CAS  Google Scholar 

  • Grande, G., Bui, T. V., et al. (2007). Estimates of the location of L-type Ca2+ channels in motoneurons of different size: a computational study. Journal of Neurophysiology, 97, 4023–4035.

    Article  PubMed  Google Scholar 

  • Gutman, A. (1991). Bistability of dendrites. International Journal of Neural Systems, 1, 291–304.

    Article  Google Scholar 

  • Hausser, M., Spruston, N., et al. (2000). Diversity and dynamics of dendritic signaling. Science, 290(5492), 739–744.

    Article  PubMed  CAS  Google Scholar 

  • Heckman, C. J., Lee, R. H., et al. (2003). Hyperexcitable dendrites in motoneurons and their neuromodulatory control during motor behavior. Trends in Neurosciences, 26(12), 688–695.

    Article  PubMed  CAS  Google Scholar 

  • Holmes, W. R., & Rall, W. (1992). Estimating the electrotonic structure of neurons with compartmental models. Journal of Neurophysiology, 68(4), 1438–1452.

    PubMed  CAS  Google Scholar 

  • Hounsgaard, J., & Mintz, I. (1988). Calcium conductance and firing properties of spinal motoneurones in the turtle. The Journal of Physiology, 398, 591–603.

    PubMed  CAS  Google Scholar 

  • Hounsgaard, J., & Kiehn, O. (1989). Serotonin-induced bistability of turtle motoneurones caused by a nifedipine-sensitive calcium plateau potential. The Journal of Physiology, 414, 265–282.

    PubMed  CAS  Google Scholar 

  • Hounsgaard, J., & Kiehn, O. (1993). Calcium spikes and calcium plateaux evoked by differential polarization in dendrites of turtle motoneurones in vitro. The Journal of Physiology, 468, 245–259.

    PubMed  CAS  Google Scholar 

  • Hounsgaard, J., Hultborn, H., et al. (1988). Bistability of alpha-motoneurones in the decerebrate cat and in the acute spinal cat after intravenous 5-hydroxytryptophan. The Journal of Physiology, 405, 345–367.

    PubMed  CAS  Google Scholar 

  • Jaffe, D. B., & Carnevale, N. T. (1999). Passive normalization of synaptic integration influenced by dendritic architecture. Journal of Neurophysiology, 82(6), 3268–3285.

    PubMed  CAS  Google Scholar 

  • Jones, K. E., Carlin, K. P., Rempel, J., et al. (2000). Simulation techniques for localising and identifying the kinetics of calcium channels in dendritic neurons. Neurocomputing, 32, 173–180.

    Article  Google Scholar 

  • Katz, B., & Miledi, R. (1963). A Study of Spontaneous Miniature Potentials in Spinal Motoneurones. Journal de Physiologie, 168, 389–422.

    CAS  Google Scholar 

  • Kiehn, O. (1991). Plateau potentials and active integration in the ‘final common pathway’ for motor behaviour. Trends in Neurosciences, 14(2), 68–73.

    Article  PubMed  CAS  Google Scholar 

  • Kiehn, O., & Eken, T. (1997). Prolonged firing in motor units: evidence of plateau potentials in human motoneurons? Journal of Neurophysiology, 78(6), 3061–3068.

    PubMed  CAS  Google Scholar 

  • Kim, H., Major, L. A., et al. (2009). Derivation of cable parameters for a reduced model that retains asymmetric voltage attenuation of reconstructed spinal motor neuron dendrites. Journal of Computational Neuroscience, 27(3), 321–336.

    Article  PubMed  Google Scholar 

  • Larkum, M. E., Rioult, M. G., et al. (1996). Propagation of action potentials in the dendrites of neurons from rat spinal cord slice cultures. Journal of Neurophysiology, 75(1), 154–170.

    PubMed  CAS  Google Scholar 

  • Larkum, M. E., Zhu, J. J., et al. (1999). A new cellular mechanism for coupling inputs arriving at different cortical layers. Nature, 398(6725), 338–341.

    Article  PubMed  CAS  Google Scholar 

  • Lee, R. H., & Heckman, C. J. (1996). Influence of voltage-sensitive dendritic conductances on bistable firing and effective synaptic current in cat spinal motoneurons in vivo. Journal of Neurophysiology, 76(3), 2107–2110.

    PubMed  CAS  Google Scholar 

  • Lee, R. H., & Heckman, C. J. (1998a). Bistability in spinal motoneurons in vivo: systematic variations in rhythmic firing patterns. Journal of Neurophysiology, 80(2), 572–582.

    PubMed  CAS  Google Scholar 

  • Lee, R. H., & Heckman, C. J. (1998b). Bistability in spinal motoneurons in vivo: systematic variations in persistent inward currents. Journal of Neurophysiology, 80(2), 583–593.

    PubMed  CAS  Google Scholar 

  • Lee, R. H., & Heckman, C. J. (1999). Paradoxical effect of QX-314 on persistent inward currents and bistable behavior in spinal motoneurons in vivo. Journal of Neurophysiology, 82(5), 2518–2527.

    PubMed  CAS  Google Scholar 

  • Lee, R. H., & Heckman, C. J. (2000). Adjustable amplification of synaptic input in the dendrites of spinal motoneurons in vivo. The Journal of Neuroscience, 20(17), 6734–6740.

    PubMed  CAS  Google Scholar 

  • Li, Y., & Bennett, D. J. (2003). Persistent sodium and calcium currents cause plateau potentials in motoneurons of chronic spinal rats. Journal of Neurophysiology, 90(2), 857–869.

    Article  PubMed  CAS  Google Scholar 

  • Li, W. C., Soffe, S. R., et al. (2006). Persistent responses to brief stimuli: feedback excitation among brainstem neurons. The Journal of Neuroscience, 26(15), 4026–4035.

    Article  PubMed  CAS  Google Scholar 

  • Llinas, R., & Sugimori, M. (1980). Electrophysiological properties of in vivo Purkinje cell somata in mammalian cerebellar slices. Journal de Physiologie, 305, 171–195.

    CAS  Google Scholar 

  • Mainen, Z. F., & Sejnowski, T. J. (1996). Influence of dendritic structure on firing pattern in model neocortical neurons. Nature, 382(6589), 363–366.

    Article  PubMed  CAS  Google Scholar 

  • Major, G., Evans, J. D., et al. (1993). Solutions for transients in arbitrarily branching cables: I. Voltage recording with a somatic shunt. Biophysical Journal, 65(1), 423–449.

    Article  PubMed  CAS  Google Scholar 

  • Morris, C., & Lecar, H. (1981). Voltage oscillations in the barnacle giant muscle fiber. Biophysical Journal, 35(1), 193–213.

    Article  PubMed  CAS  Google Scholar 

  • Pinsky, P. F., & Rinzel, J. (1994). Intrinsic and network rhythmogenesis in a reduced Traub model for CA3 neurons. Journal of Computational Neuroscience, 1(1–2), 39–60.

    Article  PubMed  CAS  Google Scholar 

  • Rall, W., & Rinzel, J. (1973). Branch input resistance and steady attenuation for input to one branch of a dendritic neuron model. Biophysical Journal, 13(7), 648–687.

    Article  PubMed  CAS  Google Scholar 

  • Rinzel, J., & Ermentrout, B. (1998). Analysis of neural excitability and oscillations. In C. Koch & I. Segev (Eds.), Methods in neuronal modeling: From ions to networks (pp. 251–291). Cambridge, MA: MIT Press.

  • Rinzel, J., & Rall, W. (1974). Transient response in a dendritic neuron model for current injected at one branch. Biophysical Journal, 14(10), 759–790.

    Article  PubMed  CAS  Google Scholar 

  • Schwindt, P. C., & Crill, W. E. (1980). Properties of a persistent inward current in normal and TEA-injected motoneurons. Journal of Neurophysiology, 43(6), 1700–1724.

    PubMed  CAS  Google Scholar 

  • Simon, M., Perrier, J. F., et al. (2003). Subcellular distribution of L-type Ca2+ channels responsible for plateau potentials in motoneurons from the lumbar spinal cord of the turtle. The European Journal of Neuroscience, 18(2), 258–266.

    Article  PubMed  Google Scholar 

  • Steriade, M. (1999). Coherent oscillations and short-term plasticity in corticothalamic networks. Trends in Neurosciences, 22(8), 337–345.

    Article  PubMed  CAS  Google Scholar 

  • Stuart, G., Spruston, N., et al. (1997). Action potential initiation and backpropagation in neurons of the mammalian CNS. Trends in Neurosciences, 20(3), 125–131.

    Article  PubMed  CAS  Google Scholar 

  • Thurbon, D., Luscher, H. R., et al. (1998). Passive electrical properties of ventral horn neurons in rat spinal cord slices. Journal of Neurophysiology, 80(1), 2485–2502.

    PubMed  CAS  Google Scholar 

  • Tsai, K. Y., Carnevale, N. T., et al. (1994). Efficient mapping from neuroanatomical to electrotonic space. Network: Computation in Neural Systems, 5(1), 21–46.

    Article  Google Scholar 

  • Zengel, J. E., Reid, S. A., et al. (1985). Membrane electrical properties and prediction of motor-unit type of medial gastrocnemius motoneurons in the cat. Journal of Neurophysiology, 53(5), 1323–1344.

    PubMed  CAS  Google Scholar 

Download references

Acknowledgements

The study was supported by the Natural Sciences and Engineering Research Council of Canada [NSERC] with salary support for KEJ from the Alberta Heritage Foundation for Medical Research [AHFMR].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hojeong Kim.

Additional information

Action Editor: Charles Wilson

Appendix

Appendix

The system equations of the asymmetric two-compartment model in Fig. 1 were derived based on the previous dimensionless reduced model (Booth and Rinzel 1995), in which Morris-Lecar membrane excitability (Morris and Lecar 1981) was employed to produce bistable firing patterns.

The membrane potential at the somatic compartment, V S (t):

$$ {C_m}\mathop {{{V_S}}}\limits^\bullet = - {G_{Na}}{m_{S\infty }}\left( {{V_S} - {E_{Na}}} \right) - {G_{K,S}}{n_S}\left( {{V_S} - {E_K}} \right) - {G_{m,S}}\left( {{V_S} - {E_{Leak}}} \right) - \frac{{{G_C}}}{p}\left( {{V_S} - {V_D}} \right) + {I_S} $$
(14)
$$ {m_{S\infty }}\left( {{V_S}} \right) = 0.5\left[ {1 + \tanh \left\{ {\left( {{V_S} - {v_{1S}}} \right)/{v_{2S}}} \right\}} \right] $$
(15)
$$ \mathop {{{n_S}}}\limits^\bullet = {\phi_S}\left\{ {{n_{S\infty }}\left( {{V_S}} \right) - {n_S}} \right\}/{\tau_S}\left( {{V_S}} \right) $$
(16)

where \( {n_{S\infty }}\left( {{V_S}} \right) = 0.5\left[ {1 + \tanh \left\{ {\left( {{V_S} - {v_{3S}}} \right)/{v_{4S}}} \right\}} \right] \) and \( {\tau_S}\left( {{V_S}} \right) = \left[ {\cosh \left\{ {\left( {{V_S} - {v_{3S}}} \right)/\left( {2{v_{4S}}} \right)} \right\}} \right]{^{ - 1}} \)

The membrane potential at the dendritic compartment, V D (t):

$$ {C_m}\mathop {{{V_D}}}\limits^\bullet = - {G_{Ca}}{m_{D\infty }}\left( {{V_D} - {E_{Ca}}} \right) - {G_{K,D}}{n_D}\left( {{V_D} - {E_K}} \right) - {G_{m,D}}\left( {{V_D} - {E_{Leak}}} \right) - \frac{{{G_C}}}{{1 - p}}\left( {{V_D} - {V_S}} \right) $$
(17)
$$ {m_{D\infty }}\left( {{V_D}} \right) = 0.5\left[ {1 + \tanh \left\{ {\left( {{V_D} - {v_{1D}}} \right)/{v_{2D}}} \right\}} \right] $$
(18)
$$ \mathop {{{n_D}}}\limits^\bullet = {\phi_D}\left\{ {{n_{D\infty }}\left( {{V_D}} \right) - {n_D}} \right\}/{\tau_D}\left( {{V_D}} \right), $$
(19)

where \( {n_{D\infty }}\left( {{V_D}} \right) = 0.5\left[ {1 + \tanh \left\{ {\left( {{V_D} - {v_{3D}}} \right)/{v_{4D}}} \right\}} \right] \) and \( {\tau_D}\left( {{V_D}} \right) = \left[ {\cosh \left\{ {\left( {{V_D} - {v_{3D}}} \right)/\left( {2{v_{4D}}} \right)} \right\}} \right]{^{ - 1}} \)

Regular firing was mediated by lumped inward (G Na ∙m S∞ ) and outward (G K,S ∙n S ) conductances at the somatic compartment. Similarly the activation of plateau potential was regulated by lumped inward (G Ca ∙m D∞ ) and outward (G K,D ∙n D ) conductances at the dendritic compartment. Definitions and standard values of membrane parameters in the system equations were provided in Table 1.

Glossary

DDVA

Direction Dependant Voltage Attenuation

ASD

voltage Attenuation factor from Soma to Dendrites

ADS

voltage Attenuation factor from Dendrites to Soma

PIC

Persistent Inward Current

CI

Characteristic Index

TTP

Time To onset of Plateau potential

TES

Time to End of Somatic spiking

DSF

Difference in Spiking Frequency

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kim, H., Jones, K.E. Asymmetric electrotonic coupling between the soma and dendrites alters the bistable firing behaviour of reduced models. J Comput Neurosci 30, 659–674 (2011). https://doi.org/10.1007/s10827-010-0284-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10827-010-0284-x

Keywords

Navigation