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Abstract In this paper, we highlight the topological
properties of leader neurons whose existence is an
experimental fact. Several experimental studies show
the existence of leader neurons in population bursts
of activity in 2D living neural networks (Eytan and
Marom, J Neurosci 26(33):8465–8476, 2006; Eckmann
et al., New J Phys 10(015011), 2008). A leader neuron
is defined as a neuron which fires at the beginning of a
burst (respectively network spike) more often than we
expect by chance considering its mean firing rate. This
means that leader neurons have some burst triggering
power beyond a chance-level statistical effect. In this
study, we characterize these leader neuron properties.
This naturally leads us to simulate neural 2D networks.
To build our simulations, we choose the leaky integrate
and fire (lIF) neuron model (Gerstner and Kistler 2002;
Cessac, J Math Biol 56(3):311–345, 2008), which allows
fast simulations (Izhikevich, IEEE Trans Neural Netw
15(5):1063–1070, 2004; Gerstner and Naud, Science
326:379–380, 2009). The dynamics of our lIF model
has got stable leader neurons in the burst population
that we simulate. These leader neurons are excitatory
neurons and have a low membrane potential firing
threshold. Except for these two first properties, the
conditions required for a neuron to be a leader neuron
are difficult to identify and seem to depend on sev-
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eral parameters involved in the simulations themselves.
However, a detailed linear analysis shows a trend of
the properties required for a neuron to be a leader
neuron. Our main finding is: A leader neuron sends
signals to many excitatory neurons as well as to few
inhibitory neurons and a leader neuron receives only
signals from few other excitatory neurons. Our lin-
ear analysis exhibits five essential properties of leader
neurons each with different relative importance. This
means that considering a given neural network with
a fixed mean number of connections per neuron, our
analysis gives us a way of predicting which neuron is a
good leader neuron and which is not. Our prediction
formula correctly assesses leadership for at least ninety
percent of neurons.

Keywords Simulation · Model · Neuron · Burst ·
Leader · Integrate and fire

1 Introduction

Disassociated in vitro rat brain neuron cultures show,
under a variety of experimental contexts, a sponta-
neous electrical activity. This activity manifests itself
by a rapid succession of ignitions of a large fraction
of neurons named collective bursts (or network spikes)
(Tscherter et al. 2001; Maeda et al. 1995; Droge et al.
1986; Wagenaar et al. 2006a). This bursting activ-
ity can be measured, for example, by multi-electrode
array methods (Eytan and Marom 2006; Eckmann
et al. 2008; Wagenaar et al. 2006b) or by fluorescence
(Soriano et al. 2008). The study of the initiators of
these bursts is one of the conceptual problems under-
lying the spontaneous electrical activity. As Eytan and
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Marom (2006) said, “cognitive processes depend on
the synchronization of the electrical activity within and
between neuronal assemblies. In vivo measurements
show that the size of individual assemblies depends on
their function and varies considerably, but the timescale
of the assembly activation is in the range of 0.1–0.2 s
and is primarily independent of the assembly size.” In
this paper, the in vitro experiments we model permit us
to characterize the process underlying the timescale of
synchronization. Precisely, we focus on the initiators of
bursts by regarding their topology of connectivity.

Regarding the initiators of bursts, the Eytan and
Marom study (Eytan and Marom 2006) showed that
some “first to fire” cells exist. Later (Eckmann et al.
2008), through a detailed analysis of data obtained
by the multi-electrode array methods, established that
some cells are triggering bursts beyond a simple sta-
tistical effect of being the first. These particular cells
are called leaders. The analysis (Eckmann et al. 2008)
indicates that the long term dynamics of the leaders is
relatively robust, evolving with a half-life of about one
day. Eckmann et al. (2008) also shows that these leaders
are not only the main initiators of bursts, but, the burst
itself carries traces (or hints) indicating which of the
leaders has initiated the burst. In this respect, one can
view the culture as an amplifier of the signal emitted by
the leaders.

It is clear that the scenario described above calls for
a theoretical explanation. One of the ways pursued is
the one of (bootstrap) percolation in random networks
(Eckmann and Tlusty 2009) which gives insights into
the spread of the initial ignition and distinguishes be-
tween localized and de-localized spreading. In this pic-
ture, the burst itself is viewed as the “giant component”
of the percolation process, and this picture is verified
from many different angles (Soriano et al. 2008).

In this paper, we address the delicate question of
what makes a neuron a leader. Is it stimulation? Ac-
tivity threshold? Special connectivity properties of the
network? The natural way of reaching this aim theo-
retically is to simulate a random neural network. Our
results show that leadership results from of a com-
bination of several natural parameters of the neuron
which can be quantified by a simple relation. We obtain
these results by a simple model of a randomly con-
nected network with the usual leaky integrate and fire
(Gerstner and Kistler 2002) mechanism for ignition of
neurons. This well known model (Cessac 2008) is tested
in numerical event-based simulations that provide, in
principle, unbiased simulations (Cessac et al. 2008).
This model only takes into account simple properties of
neurons (integrate and fire) (Izhikevich 2004; Gerstner
and Naud 2009) but it suffices to reproduce basically all

the findings of Eckmann et al. (2008). Thus we trade
realism for conceptual simplicity, but in this kind of
investigations the complexity comes from the neural
network as a whole and not from the neuron model.

The results of our simulations can be presented as
follows: to each neuron one can assign a leadership
score and neurons with the highest scores are leaders. It
turns out that leaders can be characterized as being ex-
citatory neurons and having a low membrane potential
firing threshold. Apart from these two first properties,
the conditions required for a neuron to be a leader
are difficult to identify and depend on several parame-
ters involved in the simulations themselves. The main
finding of this paper is a formula for the leadership
score that exhibits five essential properties for leaders
with relative importance. This formula gives a very
good statistical prediction. Therefore, we can conclude
that leadership is a random effect, and that leaders
are formed naturally from a balanced combination of
inputs, outputs, their local neighborhood and their own
properties. Basically a leader sends a signal to a lot
of excitatory neurons as well as to a few inhibitory
neurons and a leader receives only a few signals from
other excitatory neurons.

2 The simulations

In this section we explain how we construct our leaky
integrate and fire simulations and which parameters we
use.

2.1 Building the simulations

A single neuron is already a complex biological object.
But, basically, neurons are electrically excitable cells
that are composed of a soma (cell body), a dendritic
tree and an axon. Dendrites and axons connect to each
other (through synapses) to create a neural network.
While the 2D topology of the in vitro dissociated cul-
tures (Eckmann et al. 2008) is not known, we can still
construct models with parameters taken from the many
experimentally known properties of neuronal cultures
(Eckmann et al. 2007). In this paper, we choose a
geometry and some rules that produce the rule of con-
nections between neurons (Zbinden 2010) or construct
a random neural network with a fixed mean number of
connections per neuron.

Our simulations are built as follows. First we con-
struct a matrix of synaptic weights W that represents
a random neural network of N ∈ IN neurons where
N is a parameter and

√
N ∈ IN as so we can consider

that the neurons are placed on a grid {(x, y) ∈ IN2|
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Fig. 1 A 3 × 4 neurons rectangle. Each neuron is a circle with a
radius r ∈ IR+ (dendrites), in this figure r < 1. The axon of one of
the neurons is drawn. We see that this neuron is connected to the
neuron on the left of the bottom row. Note that the axon direction
is given by θ ∈ [0, 2π). Note also that if r ≥ 1, unlike in this figure,
then we automatically have nearest neighbor connections

x, y ≤ √
N} ⊂ IR2 with periodic boundary conditions.

In the Euclidean geometry of IR2, we consider that
every neuron n (n = 1, 2, . . . , N) is a circle of radius
r ∈ IR+ (equivalent to the spatial extension of the den-
drites). Each axon has a length � ∈ IR+, approximately
Gaussian distributed (with probability density function

close1 to f (�, L) = 1
λ
√

2π
e− (�−L)2

2λ2 where L ∈ IR+ is the

mean axon length and λ = 1
3 min(L − 1, 2

3

√
N − L) is

the standard deviation (and 1 < L < 2
3

√
N)). In our

simulations, the neuron spatial parameters are the den-
drite size r and the mean axon length L. To every axon,
we also associate a direction (respectively an angle) θ ∈
[0, 2π) uniformly distributed (with probability density
function g(θ) = 1

2π
). Figure 1 illustrates the network

geometry.
To construct the matrix W ∈ MN(IR), we proceed as

follows: If the axon (with finite length �, without width
and angle θ (respectively direction)) of the neuron m
(m = 1, . . . , N) intersects the circle (dendrites) of the
neuron n �= m (n = 1, . . . , N) then the connection ex-
ists (i.e., Wnm �= 0), otherwise Wnm = 0. The biological
knowledge tells us that the connections between neu-
rons is oriented (electrical impulses move from axons
to dendrites). Thus we have a non-symmetric matrix of
synaptic weights W representing the neural network.

1Negative axon lengths are not allowed and we impose a maxi-
mum length of 2

3

√
N for each axon. With this last condition, no

axon can cover all the network in any direction. The rationale
for this choice is that, in the experiments (Eckmann et al. 2008),
probably no axon covers all the test tube in any given direction.

A fix parameter w ∈ IR+ named the synaptic weight
is the value we give to Wnm when the connection exists
(i.e., Wnm �= 0). Note that, in reality, some neurons are
inhibitors. For these, we use a negative synaptic weight
−w ∈ IR−. In our simulations the proportion r ∈ [0, 1]
of inhibitory neurons is also a parameter.

To simplify the terminology, if Wnm �= 0, we will say
that the neuron n is the son of the neuron m and the
neuron m is the father of the neuron n. One given
neuron can have more than one father and more than
one son. Of course, a given neuron can be both, father
and son of another neuron.

Roughly, the matrix of synaptic weights represent
a random network even if this particular network is
not a network in which the probability of connections
between all pairs of neurons is equal.2 Here since
the considered experiments (Eytan and Marom 2006;
Eckmann et al. 2008) are 2D one, we propose a 2D
geometry to construct neural networks. Precisely, in the
experiments, the network is built from dissociated neu-
rons, then the connectivity is determined by a spatial
search process during the network growth, which is for
all practical purposes a random network. This is the
basic reason for the network geometry that we propose.
Clearly, once more is known about the experimental
topology, differences between the model we propose
and the experiments could appear.

In general, the word “random graph” is reserved for
certain classes of graphs, with a probability measure on
them. For example, the class GN,p describes the set of
graphs with N nodes and each possible link chosen to
exist with probability p. The class of graphs chosen in
this paper is a random graph, but the measure is not a
standard one. The measure is actually described by the
process by which the graph is built and has got several
random components. First, the nodes (respectively the
neurons) have properties (like the membrane potential
firing threshold; see below) which are chosen randomly
with a certain distribution. Second, the axons are ran-
dom in two ways: their direction, and their length. On
the other hand, the length is chosen from experimen-
tally known data and finally the number of connections
is modeled after the work (Eckmann et al. 2007), as we
explain below.

Once the matrix of synaptic weights is constructed
we assign two real values to each neuron n: V∗

n the
membrane potential firing threshold and Vn(t) the
membrane potential which depends on the time t ∈ IR+.

2Random network in which the probability of connections be-
tween all pairs of neurons is equal are also studied in this paper.
Table 3 shows also results concerning this particular kind of
random networks.



288 J Comput Neurosci (2011) 31:285–304

Without loss of generality, we can consider that the
membrane potential3 fluctuates roughly between 0 and
〈V∗〉 = 1 (where 〈V∗〉 is the mean of all the neuron
membrane potential firing thresholds). The time evolu-
tion of the membrane potential Vn(t) is computed using
the leaky integrate and fire (Gerstner and Kistler 2002)
neuron model.

The dynamics is the following, every neuron n (re-
spectively every membrane potential Vn(t)) which in-
tegrates the electrical signal it receives from the other
neurons is able to fire (when Vn(t) > V∗

n) and then
sends a signal to the other neurons. Just after firing
the membrane potential is reset to 0. The membrane
potential also decreases with a leaky time τ (loss of
memory).

More precisely, the membrane potential evolution
equation of the neuron n is the evolution equation of
a leaky integrate and fire neuron model (Gerstner and
Kistler 2002)

Vn(t + dt) = Vn(t)e− dt
τ

︸ ︷︷ ︸

Loss of memory

(1 − χn [Vn(t)])
︸ ︷︷ ︸

Reset after firing

+
N

∑

m=1

Wnmχm

[

Vm

(

t − dnm

v

)]

︸ ︷︷ ︸

Connections

+ Bt,n · �t,n
︸ ︷︷ ︸

Noise

(1)

where

• dt is a formal infinitesimal time step,
• τ ∈ IR+ is the leaky time (or characteristic time of

the membrane (Gerstner and Kistler 2002)),
• χn[Vn(t)] is, for the neuron n, the indicator func-

tion of the set of potentials bigger or equal to V∗
n .

Namely, χn[Vn(t)] = 1 whenever Vn(t) ≥ V∗
n and

χn[Vn(t)] = 0 otherwise. The distribution of all the
characteristic membrane potential firing threshold
is approximately4 Gaussian with a probability den-
sity function close (see footnote 4) to h (V∗) =

1
	V∗√2π

e− (V∗−1)2

2	V∗ 2 where 	V∗, the standard deviation,
is a parameter,

3We know that the membrane potential fluctuates more or less
between −70 and −50 mV (Gerstner and Kistler 2002). But to
simplify, we will approximately scale the membrane potential
between 0 and 1.
4We decided that negative membrane potential firing thresh-
olds are not allowed since we do not want the firing condition
(

Vn(t) > V∗
n
)

to be reached for some neurons each time they are
reset.

• dnm = dmn is the distance between the neuron n
and the neuron m. In the experiments related in
Eckmann et al. (2008), one finds a 2D density of
about 2,000 cells

mm2 . This leads us here to fix the metric
scale in our simulations: If we observe an expected
mean number of neurons of 2,000 neurons inside
the grid square, we assume that this square mea-
sures 1 mm2. Nevertheless, we can also measure the
distance in an arbitrary unit given by the expected
number of neurons in a row but we need the metric
scale to compare our signal propagation velocity to
the experimental one,

• v is the propagation velocity of the signal in the
neural network,

• Bt,n is, for each time t and each neuron n, a
Gaussian random variable with mean σ > 0 and
standard deviation σ

3 . Without addition of noise,
all the membrane potentials of our simulations will
tend to 0 (because of the leaky time). To avoid
that, we add Gaussian noise to each neuron n. The
choice of Bt,n ∼ N

(

σ, σ
3

)

(for all n and for all t >

0) guarantees that the noise we add is a positive
quantity between 0 and 2σ (99% of the times). To
generate this Gaussian noise, we use a Box–Muller
transform. In Section 4.1, we will explain how to fix
the parameter σ .

• �t,n is a Markovian exponential clock with a mean
rate ω. In Section 4.1, we will explain how to fix the
parameter ω. Concerning the Markovian exponen-
tial clock, for most t, one has �t,n = 0, but some-
times �t,n = 1. More precisely, the distribution of
the time intervals 	t of the continuous set t where
�t,n = 0 follows the exponential distribution 1

ω
e− 	t

ω

(ω is the mean value). Finally, it means that Bt,n ·
�t,n is a noise Bt,n which acts on the membrane
potential of neuron n only when the exponential
clock �t,n rings.

By looking at Eq. (1), we see that, in principle, we
can compute every membrane potential all the time.
But it is not useful and too complicated to compute
every membrane potential continuously. Choosing a
fixed time step δt > 0 also introduces some problems
like synchronized events and systematic errors (Cessac
and Samuelides 2007). In the program, made in Perl, we
compute the membrane potential only when an event
happens.5 At this time, we check if the neuron fires
or not. So, in the program, we store the events to find
out the next membrane potential to update. In other

5Here, by event we mean the moment when a neuron receives
a signal from another neuron or when a neuron receives some
noise (i.e., the Markovian exponential clock �t,n rings).
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words, our simulations (Eq. (1)) are event-based sim-
ulations. The firing time of neurons is not discretized
but computed event per event at the machine precision
level. This way of doing provides, in principle, unbiased
simulations (Cessac et al. 2008; Cessac and Samuelides
2007; Rudolph and Destexhe 2007). Since the time is
not discretized, the noise is not added to every neuron
at the same moment. The exponential clock which is a
natural way to split the events in time (e.g., radioactive
decay follows an exponential law), guarantees that on
average a neuron receives noise as often as another
neuron and that the strategy is not clock-driven. Re-
mark that Eq. (1) is written as if the time is discretized
only to simplify the reading.

Note that if “every” neuron fires at (almost) the
same time (this may happen in a burst) then all the
membrane potentials are reset to 0 at the same time;
the neurons are synchronized. To avoid that this situ-
ation occurs too often, when we initialize a sequence,
we give to each neuron n a membrane potential in
[0, V∗

n) (uniformly distributed). Note that we reinitiate
a sequence each time a burst is too long, so it is possible
that during a simulation the neurons get synchronized.
The reinitiation of sequences does not occur very of-
ten (less than one time every thousand bursts). These
reinitiations have two main reasons. (1) Reinitiation
implies that we choose other initial conditions and run
our simulation again. The invariance of our results
under the change of initial conditions is then ensured
by the reinitiation of sequences. We did not remark any
sensitivity to initial conditions in any results we present
in this paper. (2) If a burst is too long, the reinitiation of
sequences allows to focus again on the neurons that fire
early in the bursts and not to compute bursts evolution.

Note also that if the mean exponential clock rate ω is
too small relatively to the leaky time τ , it does not really
matter which kind of distribution we use for the noise
Bt,n. This means that if ω � τ then we can use Bt,n = σ

for all t and for all n as the noise distribution Bt,n and
the result of the simulations remains the same.

2.2 Values of parameters and simulation choices

The parameters are fixed in a way to observe activity
like the one observed in the experiments (Eckmann
et al. 2008) when we restrict the observation to sixty
neurons. This section provides a list of the order of
magnitude of the parameters used in Eq. (1). Note
that the reader can find almost all the information in
Eckmann et al. (2007).

• We made simulations for different sizes N ∈ IN.
But beyond N ∼ 4 it does not affect the presence of

bursts and leaders. This means that we already get
a leader when we consider only four neurons. All
the figures presented in this paper show simulations
with N = 900; The reason is only plot convenience.
During the study, we have tested our results for
simulation size between N = 4 to N = 40,000.

• In fact fixing the dentrites size r, the mean axon
length L and the axon length distribution fix the
distribution function for the sons (out-degree) and
the mean number of connections per neuron (noted
〈connections/neuron〉). Remark that the number of
sons per neuron distribution looks like the axon
length distribution while the number of fathers
per neuron distribution is always approximately
Gaussian distributed (data not shown). Note also
that the geometry we have chosen for our simu-
lations induces that the successful pre-burst shows
locality, like the one observed by the authors in
Eckmann et al. (2008). Finally in most of our sim-
ulations, we have chosen r = 0.85 and L = 7, then
〈connections/neuron〉 ∼= 11.

• The synaptic weight w is surely a function of the
neuron and of the time (the neuron’s learning). As
soon as we choose a mean number of connections
per neuron and considering the kind of neural ac-
tivity we want, we can fix w. We use w ∼ 1

10 . Note
that if w ∼= 〈V∗〉 = 1 (where 〈V∗〉 is the mean of all
the neuron membrane potential firing thresholds)
then all neurons are too strongly correlated and if
w = 0 then all neurons are independent.

• For the inhibitory proportion r, the choice of r =
0.2 is reasonable. Depending on the neural culture
type, the inhibitory cells proportion can change
approximately from 20 to 30% (see Soriano et al.
2008).

• In our simulations, the leaky time τ is about 100
ms. Note that the order of magnitude is the correct
one (Alvarez-Lacalle and Moses 2007). To be exact
we compute with τ = 0.1 s, this means that the used
time unit is the second.

• The propagation speed v in a neural net-
work is between 50 and 100 mm

s , see Eckmann
et al. (2007). In our case, v should be replaced by
the propagation speed in the axon which is big-
ger. However, we have decided to use this range
throughout.

• The standard deviation of the membrane potential
firing threshold 	V∗ is also a parameter. We used
0 ≤ 	V∗ ≤ 0.2〈V∗〉, which guarantees that neurons
are quit similar and still the membrane potentials
do not get synchronized too often.

• For the exponential clock rate we use ω between
0.001 and 0.01 s.
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Table 1 Known and
unknown parameters of the
simulations

The unknown parameters will
be set in Section 4.1

Neural network parameters Dynamical parameters

Known r ∼= 20% (inhibitory proportion) τ ∼= 100 ms (leaky time)

r, L, (mean number of connections) v ∼= 100
mm

s
(propagation speed)

To be set N (computing-memory) 〈V∗〉 − V > w > 0 (synaptic weight)
	V∗ (firing threshold standard deviation) σ , ω (noise parameters)

• The mean noise σ is determined by the kind
of neural activity we want to have (observe). If
there is too much noise then we loose the local-
ity in the successful pre-burst because we have
a lot of uncorrelated activities. Note that the
mean membrane potential (without connection)
V = limT→∞ 1

T

∫ T
0 V

(

t̃
)

dt̃ is about6 τσ
ω

. We want
the mean membrane potential V to be high enough
to get some neural activity due to the noise. But we
also want that V + w < 〈V∗〉, so that one spike does
not necessarily create a burst.
One might think that to keep the neural activity one
can vary the values ω and σ , keeping the ratio σ

ω

constant, because the mean membrane potential V
is about τσ

ω
. But to preserve the neural activity, the

mean membrane potential V is not that relevant.
However, it is necessary to keep constant the mean
time the membrane potential of neurons need to
reach the value V∗. From this point of view the
relation between σ , ω and w is a first passage time
problem. Note also that if the value of the mean
membrane potential V is too low then there is no
neural activity due to the noise (this means no
neural activity at all). To conclude, even if the exact
value of the mean membrane potential V is not
fundamental, this value must not be too far from
the mean of all neurons membrane potential firing
threshold 〈V∗〉 (see Gerstner and Kistler 2002).

The parameters N, r, L, 	V∗ and r are the neural
network parameters and the parameters τ , v, w, σ and
ω are the dynamical parameters (Table 1).

3 General appearance of the simulations and some
definitions

In this section we show what is the product of our
simulations and we give the definitions of what we call
a leader neuron, according to Eckmann et al. (2008).

6The mean membrane potential charge due to the noise is σ +
σe− ω

τ + σe−2 ω
τ + . . . = σ

1−e− ω
τ

∼= τσ
ω

if ω
τ

is small.

3.1 General appearance

Like in the experiments (Eytan and Marom 2006;
Eckmann et al. 2008; Wagenaar et al. 2006a), we
want to look at the neural activity. The output of our
simulations consists of a list of ordered spikes times. For
each spike i, the list gives us ti, the time of the ith spike,
and ni, the neuron that fired. Then, considering only the
spike chronology, we analyze the “spike sequence” of a
subset (or all) neurons of our simulations.

3.2 Definitions

Figure 2 represents a part of a simulation and leads us
to define sequences in the simulations. This section is
roughly the same than Eckmann et al. (2008, Section
2.3). Precisely we will define mathematically what we
call a burst and a leader. In order to make the present
paper comparable to Eckmann et al. (2008), we adhere
strictly to the same definitions. So the reader who has
read Eckmann et al. (2008) or knows these definitions
can skip this part and move directly to the next section.

3.2.1 Definition of bursts and their triggers

First we divide all the spikes of our list into four classes:
burst, successful pre-burst, aborted pre-burst, isolated
spike, and each spike belonging to one and only one
class. The precise definitions are given below, but ba-
sically a spike is in a burst if it is in a group of many
spikes that follow each other closely. If a spike is not
in a burst it can be in a successful pre-burst or aborted
pre-burst. But it must be anyway in a sequence of spikes
that are close enough in time so that communication
between them is still possible. The distinction between
successful or aborted pre-burst depends on whether the
spike sequence is eventually followed by a burst or not.
Finally, all other spikes are isolated.

More precisely, we use three parameters, nburst,
δtburst, and δtisolate. We first look for interspike gaps of
length at least δtisolate, and we divide the set of all spikes
into disjoint subsets Rk of consecutive spikes, where k
is a running index. The Rk have the property that if (the
spike) i and i + 1 are in Rk then ti+1 − ti ≤ δtisolate, while
if i ∈ Rk and i + 1 ∈ Rk+1 then ti+1 − ti > δtisolate. The
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Isolated Aborted pre-burst Trigger Successful pre-burst Burst

15 [ms]

Fig. 2 Picture of the temporal evolution of a simulation for the
whole neural activity. This time diagram is a direct representation
of the data obtained with our simulations where all spikes are
represented without specification of which neuron is firing. Pre-
cisely, in this figure, the time goes from the left to the right and
from the top to the last row. Every vertical bar represents a spike.
Parameters: N = 900, r = 0.85, L = 7, r = 0.2, 	V∗ = 0.05, v = 5

1
ms , w = 0.1, τ = 100 ms, σ = 0.008, ω = 0.001 s, nburst = 500,
δtburst = 15 ms and δtisolated = 5 ms. The color code, that gives
a representation of the different definitions explained in the
following section, is the following: black for isolated spike, blue
for aborted pre-burst, red for trigger, brown for successful pre-
burst, and green for burst

rationale is that if the interspike gap is so large that the
spike i + 1 is due to noise and not to the axon signaling
of the precedent (in time) spike i (i.e., if ti+1 − ti >

δtisolate then the spikes belong to separate subsets).
We now want to further divide each Rk into the burst

itself, characterized by a high density of spikes, and its
precursor which immediately precedes it in time but has
a lower density. Each of the Rk contains at least one
spike, but may contain many. In each Rk we first look
for a spike that is followed by at least nburst − 1 spikes
in Rk within a lapse of time δtburst. Denoting this spike’s
index by i∗ = i∗(k), this is the first index in Rk with the
property:

ti∗+nburst−1 − ti∗ < δtburst . (2)

If the condition (2) is met then we subdivide Rk into
two disjoint sets at i∗: Rk = Pk ∪ Bk (Pk can be empty).

The index i∗ up to the last index in Rk make up the burst
Bk. The letter P refers to successful pre-bursts and B
refers to bursts.

If the condition (2) is never met in Rk, then the set
Rk is not subdivided. This is called an aborted pre-burst
if it has more than one spike and is an isolated spike
otherwise.

For these k where such an i∗ can be found, we check
if it is also the first spike in Rk. If so, this burst is an
immediate burst that has no successful pre-burst, so that
Rk = Bk. For all the other bursts we divide Rk = Pk ∪
Bk where Pk are the index i ∈ Rk with i < i∗, and Bk are
the others.

Between bursts the neural activity is much lower,
and we label these periods as quiet. Each quiet period,
denoted Qb , for a running index b , is actually a con-
catenation of consecutive Rk’s that did not contain a
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Table 2 Burst detection parameters

Analyzed neurons nburst δtburst (ms) δtisolate

60 20 √
N

2

max axon length
vN � N

10

burst in the earlier stage, or else an empty set. We now
renumber the set of index as follows

{1, . . . , M} = Q1 ∪ P1 ∪ B1 ∪ Q2 ∪ P2 ∪ B2 ∪ . . . ,

with Bb the b’th burst, Pb the corresponding successful
pre-burst (if it exists else Pb is empty) and Qb the
corresponding quiet phase. We define the trigger of
burst b as the neuron nib , where ib is the index of the
first spike in Pb (resp. Bb if Pb is empty like for an
immediate burst).

The parameters nburst, δtburst, and δtisolate that we used
are shown in Table 2. Remark also that the time pa-
rameters δtisolate and δtburst have to be smaller than the
characteristic time of the membrane τ . The rationale
for these choices are: Firstly, to cross the distance of
the biggest possible axon, the signal, at the velocity v,
needs a time of max axon length

v
. This computation gives us

the order of δtisolate. This means that only the signaling
velocity is taken into account to compute δtisolate. Sec-
ondly, even in a burst, the neural activity is not regular.
Thus, to balance this effect we need δtburst to be high
enough. Finally, for nburst we want it high enough to
guarantee that a burst includes many neurons (typically
nburst � N/10).

3.2.2 Leaders

For every successful pre-burst, aborted pre-burst or im-
mediate burst, the neuron which fires first is called the
trigger. Since we are interested in their special rôle, we
first need to make sure that triggers are not just neurons
with high neural activity, which are statistically more
often the first ones to fire. The following discussion will
exhibit that leaders are over-proportionally more often
triggers.

To qualify a neuron as a leader, we require that
a trigger’s probability to lead bursts should be sig-
nificantly higher than its probability to fire. Let M be
the total number of bursts in a simulation. For each
neuron n, we define an as the number of times that
neuron n has spiked during the simulation. Now, let
us consider a spike, and term by qn the probability7

7Unbiased estimator of the considered probability.

that neuron n has fired that spike: qn = an/
∑

n′ an′ . The
probability for the neuron n to be a spurious, or random
trigger F times in M bursts is given approximately8 by
the binomial distribution Pn(F):

(

M
F

)

qF
n (1 − qn)

M−F . (3)

In the limit of large M and reasonable qn this distribu-
tion is approximated by a Gaussian of mean Mqn and
variance Mqn(1 − qn). On the other hand, we denote
by fn the actual number of bursts that neuron n leads
(note that

∑

n fn = M).
Thus we have a scale on which to test triggering.

We define αn, a “leadership score”, and decide that a
neuron is a leader if it scores at least three standard
deviations above the natural expectation value. The
criterion for the leadership of neuron n is therefore

αn = fn − Mqn
√

Mqn(1 − qn)
> 3 . (4)

Because we expect α ∼ N (0, 1) to be Gaussian, Eq. (4)
corresponds to a p-value of 0.001.

4 Results

In this section we explain our results. We prove that
our simulations have stable leaders and we identify
the topological properties of these leaders. An analysis
of the first to fire neurons exhibits that the leader
properties we find are the correct ones.

4.1 About the parameters and some statistics

The next step consists in analyzing our simulations
knowing that our results will be more consistent if we
span as many parameters as possible. However, our
goal is not to obtain a phase transition diagram (Naud
et al. 2008), so we are not going to vary all parameters
(most of the them were fixed in Section 2.2 through
Table 1). Some parameters have not been fixed yet,
including dynamical parameters like w, σ and ω. So we
still have to find (and fix) a range for the parameters

8It would be exactly the binomial distribution if all the spikes
were independent. All the spikes are certainly not independent
because neurons are connected. So the binomial distribution is
not the correct one but gives a good enough approximation (see
Zbinden 2010).
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(a) The leadership score when we look at only 60 neurons like
in the experiments. We see that we have leaders and even very 
good ones. We also see that the average leadership score      
is about 0. Note that in this graph, each point represents 600 
seconds of simulation that contains more than 2500 bursts. 
Remark that the best leader among 60 neurons is not necessarily
a leaderwhile we consider all the neurons (see Figure 3(b)). In 
the restricted case, the neurons detected as leaders can be first 
to fire neurons (see Section 4.4).
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(b) The leadership score when we consider all the 900 neurons.
We can say that these neurons are the “true” best leaders of the
simulation. Note also that, luckily, one of the best leaders was
in the 60 selected neurons. But even when it is not the case,
when we consider only 60 neurons, some neurons show very
good leadership scores. On this graph, each point represents
about 2000 seconds of simulation that contains more than 8800
bursts.
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Fig. 3 Leadership score of a few neurons for the simulation shown in Fig. 2. Note that the leadership score depends on the number of
neurons considered for the analysis (see neurons 634, 643 and Section 4.4)

	V∗, w, σ and ω in a way to obtain “reasonable”9 para-
meters for our simulations which involves distinguish-
ing bursts, successful pre-bursts and quiet periods. One
of the best ways to do that mathematically is to look
at the time interspike distribution (TID) and compare
with the experimental one (data not shown). Note that
to distinguish bursts and quiet periods, the TID must
have a kind of (long) tail (since most of the spikes are
in bursts but some have to be outside). This means that
comparing the experimental TID and the simulated
TID result in comparing the tail of these distributions.
Finally showing the full TID is not really the proposal
of this paper (the tail comparison is done in Zbinden
2010). The analysis of the membrane potential profile
and the time length distribution are also possible in the
simulations (see Zbinden 2010).

In our model, the exact value of ω does not really
matter, since the leaky time τ fixes the time unit. There-
fore, only the ratio between ω and τ matters. In the

9Here by “reasonable” parameters, we mean to observe a neural
activity more or less like the one in Fig. 2 but without a precise
predicting spike timing (Brette and Gerstner 2005; Luscher et al.
2006). This means that we want to observe quiet periods, success-
ful pre-bursts and bursts in a way to find leaders. Note that this
range of “reasonable” parameters is quite large and the relation
between the dynamical parameters is non trivial, see remark in
Sections 2.2 and 4.1.

specific case ω > τ , not studied in this paper, the leaky
integrate and fire model will be replaced by a simpler
model (Eckmann et al. 2010) in which the definition of
leaders has to be modified as well.

4.2 Existence of leaders

In Section 3.2.2, we defined, for every neuron n a
leadership score αn (see Eq. (4)) that compares the
triggering frequency to the leadership expected fre-
quency (computed with respect to the neural activity
frequency). Figure 3 show the leadership score as a
function of the time for a few neurons. In these figures
we see that our simulations have stable leaders. Note
that this result is very robust. We mean that the choice
of the used parameters in simulations is not important.
As soon as we use “reasonable” (see footnote 9) para-
meters, our simulations have leaders. This is still true
when we only look at a few neurons instead of all of
them (Fig. 3(a)). Even more, we can change the axon
length distribution and the simulations still have stable
leaders.

Note also that even a random network with a uni-
form probability of connections10 shows bursts and

10This means a random network in which the probability of
connections between all possible pairs of neurons is equal.
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stable leaders but, in this case, we do not observe any
spatial locality (unlike in the experiments (Eckmann
et al. 2008)). During our investigations, we tested also
homogeneous networks. By homogeneous networks,
we mean networks in which all neurons have exactly
the same number of connections (for example the eight
nearest neighbors). In these kind of networks, one
of the differences between neurons is the number of
inhibitory sons and fathers and this suffices to observe
stable leaders (Zbinden 2010). To summarize, the net-
work topology does not really matter since we observe
stable leaders as soon as the number of neurons N is
much higher than the mean number of connections per
neuron.

In our simulations, with N > 400 about 5–10% of the
neurons have a mean leadership score (Eq. (4)) bigger
than the threshold 3 when we consider all the neu-
rons. While considering only 60 neurons, about 15%
neurons have a mean leadership score bigger than the
threshold 3. Also note that even if the leadership score
can fluctuate during the simulations, its mean value
stays stable (i.e., its standard deviation is small). Of
course, the leader ratio decreases when the mean noise
σ increases. This fact is logical because in a too noisy
neural activity it becomes more difficult to identify the
trigger of each burst. Note also that it seems that when
	V∗ (standard deviation of the membrane potential
firing threshold) is between 0.05 and 0.1 the leader ratio
seems maximal (data not shown).

In the experiments (Eckmann et al. 2008), one elec-
trode captures in general the spike signal of several
neurons (Eckmann et al. 2008, Fig. 1a). But, in our
simulations, up to this point we considered each neu-
ron separately, as if one electrode measures only one
neuron. Remark that the leadership score of groups
of neurons also reach the value 3 for some groups
(Zbinden 2010).

Moreover, we have tested the effect of other synaptic
weight distributions on the presence of leaders and the
conclusion is that stable leaders still exist.

One can ask: Do leaders still exist in a given sim-
ulation if we remove the observed leaders? The an-
swer is yes. Precisely, in Section 4.3.2 we discuss the
combination of properties that a neuron needs to be a
leader. The conclusion is that neurons with properties
near the typical leader properties are the leaders. When
we remove these leaders, then other neurons have their
properties near the typical leader properties and be-
come leaders (typically the followers if we dress a list).
Finally, a neuron is a leader because of its particular
connections in the network and its own properties (see
discussion at the end of Section 4.3.2).

At this point, our simulations reproduce basically
all the findings of Eckmann et al. (2008) (presence of
leaders, signature of bursts, force of leaders,. . . ); see
Zbinden (2010). The advantage of simulations is that
we have access to a lot of details that we did not have
access to in the experiments and we can analyze the
topology of the network to find out the properties of
leaders.

4.3 Leader properties

4.3.1 Some facts about the leader properties

In Figs. 4 and 5 we clearly see that the leaders seem
to have some special properties compared to the other
neurons. More precisely, Fig. 4(a) shows that good
leaders typically have a low membrane potential firing
threshold. This fact exhibits that to be a good leader, a
neuron must have the property of firing early. But, this
property is not the only one a neuron needs to have to
be a leader. Indeed the best leader in Fig. 4(a) is not
the neuron with the lowest membrane potential firing
threshold. Thus, another property of the leaders is easy
to highlight: the leaders are excitatory neurons11 (see
Fig. 5(a)). Figure 5(b) also gives an idea of another
typical leader property. Indeed, good leaders seem to
have only a few excitatory fathers. This means that to
be a leader, a neuron should not be the follower of
another excitatory neuron. Finally, in Fig. 4(b), we see,
as in Eckmann et al. (2008), that better leaders trigger
more bursts.

We can also look at the leadership score compared
to the neural activity ratio of the neurons shown in
Fig. 6. Firstly, remember that to compute the leadership
score we use the neural activity ratio q (see Eq. (4)).
Secondly, look at Fig. 6 and remark that there are
as much leaders with a high neural activity ratio as
leaders with a low neural activity ratio. So, clearly and
as expected, for a given neuron there is no link between
having a high leadership score and the neural activity

11Remark that in the special case where ω � τ , we rarely ob-
served a few inhibitory neurons with a leadership score higher
than 3. This can happen only when these inhibitory neurons have
a very low membrane potential firing threshold, a few excitatory
fathers and a lot of inhibitory fathers. The reason is as follow,
because ω � τ , the network gets synchronized after the first burst
and these particular inhibitors have the faculty to fire even before
the true trigger of the burst. Beside the type of their fathers
implies a very low neural activity, so their leadership scores
are potentially good. Note that the few best leaders are always
excitatory neurons.
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Fig. 4 Some properties of leaders for simulations with para-
meters close to the one we showed in Fig. 2. Note that each
point in these figures represents an average of the results for
five simulations using the same neural network and the same
parameters. Each simulation contains more than 10,000 bursts

and the simulated time was longer than 25 min. Parameters:
N = 900, r = 0.85, L = 7, r = 0.2, 	V∗ = 0.1, v = 5 1

ms , w = 0.1,
τ = 100 ms, σ = 0.008, ω = 0.001 s, nburst = 100, δtburst = 15 ms
and δtisolated = 5 ms
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(a) The leadership score (αn) compared to the neuron type

(Pn1). The red dashed line separates leaders and non-leaders.

This figure shows clearly that leaders are excitatory neurons
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(b) The leadership score (αn) compared to the number of exci-

tatory fathers. The red dashed line is a linear regression with

correlation r   = −0.29 that shows that, on average, a higher2

number of excitatory fathers implies a lower leadership score.

The mean number of excitatory fathers per neuron is repre-

sented by the brown dashed line.
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Fig. 5 Illustration of importance of the number of excitatory
fathers and of the type of neurons in the leadership score. As for
Fig. 4, the error bars of each point in this figure are computed us-
ing five simulations done with the same network and parameters.

The parameters are the same as in Fig. 4: N = 900, r = 0.85, L =
7, r = 0.2, 	V∗ = 0.1, v = 5 1

ms , w = 0.1, τ = 100 ms, σ = 0.008,
ω = 0.001 s, nburst = 100, δtburst = 15 ms and δtisolated = 5 ms
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Fig. 6 The leadership score (α) compared to the neural activity
ratio (q). The red dashed line separates leaders and non-leaders.
With these specific parameters, the leaders are distributed more
or less fairly around q̄ = 1

N
∼= 0.0011 even if the non-leaders seem

to accumulate on a line. Note that, as before, each point in this
figure represents an average of the results for 5 simulations using
the same neural network. Parameters: N = 900, r = 0.85, L = 7,
r = 0.2, 	V∗ = 0.1, v = 5 1

ms , τ = 100 ms, w = 0.1, σ = 0.008,
ω = 0.001 s, nburst = 100, δtburst = 15 ms and δtisolate = 5 ms

ratio, even if a good leader triggers a lot of bursts (see
Fig. 4(b)).

Before trying to find more leader properties, we
add more remarks about Fig. 6. We note that there
exist some neurons with a very high positive leadership
score (α > 10) but there is no neuron with a very low
leadership score (α < −10).

The mean neural activity ratio12 noted q̄ is always
equal to 1/N. Figure 6 in which q̄ = 1

900
∼= 0.0011 as ex-

pected, illustrates this fact. However, the standard de-
viation of the neural activity ratio distribution depends
strongly on the standard deviation of the membrane
potential firing threshold 	V∗. This can be understood
easily since the neural activity ratio of a neuron de-
pends on the number of fathers of this neuron and on its
membrane potential firing threshold. Figure 6 in which
	V∗ = 0.1, is more or less an illustration of the neural
activity ratio distribution.

All the relations between a property and the leader-
ship score that we showed did not exhibit an as good
link as the relations shown in Figs. 4(a) and 5(a). We
can also note another important fact: In the special case
where we use a network with every membrane potential
firing threshold fixed to 〈V∗〉 (i.e., 	V∗ = 0) or/and

12The neural activity ratio of neuron n, noted qn, is defined in
Section 3.2.2.
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Fig. 7 The leadership score αn of two different simulations using
the same neural network. The red dashed lines separate leaders
and non-leaders for both simulations. We observe that the best
leader is not necessarily the same and some neurons are leaders
with a set of parameters but are not leaders with the other set.
We also observe that most of the time a good leader continues
being a good leader in both simulations. Like for Fig. 4, the error
bars are computed by averaging over five simulations using the
same network and dynamical parameters w, σ and ω. Common
parameters: N = 900, r = 0.85, L = 7, r = 0.2, 	V∗ = 0.1, v = 5

1
ms , τ = 100 ms, nburst = 100, δtburst = 15 ms and δtisolate = 5 ms

without inhibitory neurons (i.e., r = 0), our simulations
still have stable leaders. These two facts lead us to the
following hypothesis: being a leader results from a non
trivial combination of properties.

To find these properties, we perform the following
experiment: We take a given network13 and make sev-
eral simulations with this network but change some of
the dynamical parameters (τ , v, w, σ and ω) in a way
of keeping a “reasonable” (see footnote 9) simulation.
Then, we compute the leadership score of each neuron
and we do this for each simulation. As a result, we find
that the best leader is not always the same even if most
of the time a leader stays leader. Figure 7 illustrates this
fact and this forces us to admit that the leader proper-
ties depend on the dynamical parameters. Nevertheless,
we can probably find a trend of the properties of a
typical leader by doing a linear least squares analysis
for all our simulations. Indeed, in Fig. 7 more than

13This means that we choose N, r, L, p, 	V∗, r and build a
realization of a network (i.e., W and V∗

n are known for all n).
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90% of the leaders continue being leaders and non
leaders continue being non leaders under the change
of dynamical parameters. Moreover, the leader proper-
ties that we are looking for are topological properties,
which means mainly neuron and network properties.
Thus, the neural activity ratio q and the dynamical
parameters will not be taken into account when we will
be searching for the leader properties since our aim is
to forecast which neurons will be leaders, before we run
our simulation.

Before going through this linear least squares analy-
sis, note that in the experiments related in Eckmann
et al. (2008), the leaders change during the days spent
in vitro with a typical life time of about one day (see
Eckmann et al. 2008, Fig. 3a). While, in the simulations,
the leaders stay the same in a given network if we do
not change the dynamical parameters of the simulation.
So, one of the interesting facts in the simulations is that
to change the leaders we do not need to change the
network, some changes in the dynamical parameters
are enough (we consider the synaptic weight w as a
dynamical parameter).

4.3.2 Finding the leader properties

To find out the leader properties we do the following
linear least squares analysis. First, we build a vector �α =
{αn}n=1,...,N that contains the leadership score αn of each
neuron n of a given simulation. Then we construct a ma-
trix P = {Pni}1≤n≤N, 1≤i≤6 that contains all the neuron
properties (excitatory or inhibitory neuron and mem-
brane potential firing threshold) and all the connection
properties at the first order.14 More precisely: Pn1 is the
type of the neuron n, so Pn1 = 1 if the neuron n is an
excitatory neuron and −1 otherwise. Pn2 = V∗

n−〈V∗〉
	V∗ if

	V∗ > 0 and 0 otherwise. Pn3 is number of excitatory
neurons connected to the axon of neuron n (this means
the number of excitatory sons of the neuron n, see
Section 2.1) and Pn4 the number of inhibitory sons.
Identically, Pn5 is the number of excitatory fathers of
the neuron n and Pn6 the number of inhibitory fathers.

Our linear least squares method, like in Wilkinson
and Reinsch (1971), consists in finding a vector �x =
{xi}i=1,...,6 such that the euclidean norm
∥

∥P�x − �α∥

∥ (5)

14We call connection properties at the first order all the direct
connections of the neuron in the network contained in the matrix
of synaptic weights W (this means the number of sons and
fathers (see Section 2.1)). In particular, we do not introduce any
information about higher order properties, such as the number of
paths between two neurons. All these higher order properties are
obtained from W above.

is minimized. This particular �x gives us the relations (at
the linear order) between the six first order properties15

of a neuron (in our simulations) and its leadership
score.

By repeating the calculation (Eq. (5)) for each simu-
lation and averaging over all simulations, we obtain the
typical solution

�x = (1.2 ± 0.3, −2.3 ± 0.4, 0.13 ± 0.03, −0.19 ± 0.04,

− 0.13 ± 0.03, 0 ± 0.03)T . (6)

Equation (6) means that a good prediction pn for the
leadership score αn of the neuron n in a network is given
by

pn = 1.22 · Pn1 − 2.33 · Pn2 + 0.13 · Pn3

− 0.19 · Pn4 − 0.13 · Pn5, (7a)

if 	V∗ > 0: pn = 1.22 · excitatoryn − 2.33 · V∗
n − 〈V∗〉
	V∗

+ 0.13 · # excitatory sonsn

− 0.19 · # inhibitory sonsn

− 0.13 · # excitatory fathersn (7b)

where
(

excitatoryn =)

Pn1 = 1 if the neuron n is an
excitatory neuron and −1 otherwise, Pn2 = V∗

n−〈V∗〉
	V∗ if

	V∗ > 0 and 0 otherwise, Pn3
(= # excitatory sonsn

)

is the number of excitatory sons (of neuron n),
Pn4

(= # inhibitory sonsn

)

is the number of inhibitory
sons and Pn5

(= # excitatory fathersn

)

is the number of
excitatory fathers.

In Eq. (5), the �x is unique if and only if the rank of
PT P is six (the number of components of �x) (Golub and
Van Loan 1996). But, in some simulations, it is possible
that, for example, 	V∗ = 0 then the rank of PT P is
lower than six. However, we must precise that, in the
particular case 	V∗ = 0, the prediction pn does not
depend on V∗

n (trivial since Pn2 = 0 for all n). So, the
problem should be restricted by removing the second
column of P and by computing only five components
of �x. The final prediction pn (Eq. (7)) remains the
same since “the missing component” has no physical
meaning and will be multiplied by 0 in the prediction
pn (Eq. (7)). Each component of Eq. (6) is computed by
averaging over all simulations in which the considered
component has a physical meaning. All the components
of Eq. (6) have a relative error of about 20%.

Note also that Eq. (7) do not depend on the axon
length distribution. Furthermore, by building a random

15We call first order properties all the neuron properties and all
the connection properties at the first order.
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network with a uniform probability of connections (see
footnote 10) (i.e., fixing only the mean number of
connections per neuron) we obtain the same formula.

Precisely, Eq. (7) mean that a typical leader in our
simulations is an excitatory neuron, that it has a low
membrane potential firing threshold and that it has a
lot of excitatory sons but a few inhibitory sons and
a few excitatory fathers. Equation (7) in this exact
form is valid for a mean number of connections per
neuron of about eleven (〈# connections/neuron〉 ∼= 11).
Equation (7) was computed for networks in which N �
〈# connections/neuron〉 and are typically valid in these
cases. In particular Eq. (7) shows that the prediction pn

does not depend on the number of neurons N.
By looking at Fig. 4(a), one can think that the only

property among the five that is really necessary for a
neuron to be a leader is the low membrane potential
firing threshold. However, this property cannot be the
only one since:

1. An inhibitory neuron cannot be a leader because it
cannot create a burst (Fig. 5(a)).

2. A neuron without output cannot create a burst
(trivial).

3. A neuron with many inputs is necessarily more
often a follower than a trigger (Fig. 5(b)).

So, even if it is obvious that a neuron needs more
than one property to be a leader and that Eq. (7) give

explicitly the five needed properties with their relative
importance, we can have a look at Figs. 5 and 8. These
figures complete the picture given by Fig. 4(a), in a way
to illustrate Eq. (7).

A comparison of the correlation coefficient of the
linear regression presented in Figs. 8(a) and 9 illus-
trates that, in a network in which all the neurons have
the same membrane potential firing threshold (i.e.,
	V∗ = 0), the importance of the number of excitatory
sons (Pn3) in the leadership score becomes significantly
stronger. This means that the relative importance of the
number of excitatory sons (Pn3) in the prediction pn

(Eq. (7)) is somewhat hidden by the first importance
of the low membrane potential firing threshold. The
relative importance of the different coefficients in the
prediction pn (Eq. (7)) is clearly highlighted by the ab-
solute value of these coefficients and illustrated by the
Figs. 4, 5, 8 and 9. Moreover, the relative importance of
each term of Eq. (7) varies with the parameters.

It is important to remark that in Figs. 8(a) and 9
some of the best leaders are concentrated near the
mean number of excitatory sons, unlike what is first
expected by our prediction pn (Eq. (7)). However,
Figs. 8(a) and 9 represent a projection of a multidimen-
sional figure that we cannot present in this paper for
obvious reasons. This multidimensional figure would
represent very well our prediction formula (Eq. (7))
by representing the leadership score α as a function
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(a) The leadership score (αn) compared to the number of ex-
citatory sons. The red dashed line is a linear regression with
correlation r   = 0.09 that shows that, on average, a higher num-2

ber of excitatory sons implies an higher leadership score. The
mean number of excitatory sons per neuron is represented by
the brown dashed line.

(b) The leadership score (αn) compared to the number of in-
hibitory sons. The red dashed line is a linear regression with
correlation r   = −0.14 that shows that, on average, a higher2

number of inhibitory sons implies an lower leadership score. The
mean number of inhibitory sons per neuron is represented by the
brown dashed line.

~ ~

Fig. 8 Illustration of the importance of the number of sons in
the leadership score. As usual, the error bars of each point in
this figure are computed using five simulations done with the
same network and parameters. The parameters are the same

than in Fig. 4: N = 900, r = 0.85, L = 7, r = 0.2, 	V∗ = 0.1, v =
5 1

ms , w = 0.1, τ = 100 ms, σ = 0.008, ω = 0.001 s, nburst = 100,
δtburst = 15 ms and δtisolate = 5 ms
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Fig. 9 As Fig. 8(a) compares the leadership score (αn) to the
number of excitatory sons, but here 	V∗ = 0. The red dashed
line which is a linear regression has therefore a better correlation
r2 ∼= 0.35. The mean number of excitatory sons per neuron is
represented by the brown dashed line. As usual, the error bars of
each point in this figure are computed using five simulations done
with the same network and parameters. Parameters: N = 900,
r = 0.85, L = 7, r = 0.2, 	V∗ = 0, v = 5 1

ms , τ = 100 ms, w = 0.1,
σ = 0.008, ω = 0.001 s, nburst = 100, δtburst = 15 ms and δtisolate =
5 ms

of all the considered parameters (number of excitatory
sons/fathers, membrane potential firing threshold V∗,
. . . ). Since in a projection like Fig. 9 (or Fig. 8(a)) only
the number of excitatory sons parameter is represented,
then the other parameters are, in mean, projected near
the mean number of excitatory sons.

Now, considering a given neural network (that we
did not use to obtain Eq. (7)) and using Eq. (7), we
can predict, even before running our simulation, which
neurons will be leaders. Figure 10 shows a typical pre-
diction. Remark that this prediction is pretty reliable
because: All the neurons with a prediction pn lower
than 0 are indeed not leaders and all the neurons with a
prediction pn bigger than 6 are leaders (αn > 3). More
precisely, in Fig. 10, the prediction efficiency16 pe is
0.93. This means that the prediction is correct for more
than 90% of the neurons (pe > 0.9).

Regarding the figures, one can understand that the
prediction pn (Eq. (7)) expresses a tendency but not
a strict rule. Moreover, one can probably find exam-
ples of networks in which most of the neurons have

16We call prediction efficiency the coefficient pe =
∑

n correct predictionn
N where correct predictionn is 1 if the neuron

n is a leader αn > 3 (respectively not a leader αn ≤ 3) in the
simulation and its prediction pn > 3 (respectively pn ≤ 3),
otherwise: correct predictionn = 0.
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Fig. 10 The leadership score (αn) compared to the prediction
(pn) for a particular simulation. The red dashed lines separate
leaders and non-leaders for both the simulation and the predic-
tion. As usual, the error bars of each point in this figure are
computed using five simulations done with the same network
and parameters. Parameters: N = 900, r = 0.85, L = 7, r = 0.2,
	V∗ = 0.1, v = 5 1

ms , τ = 100 ms, w = 0.1, σ = 0.0081, ω = 0.001
s, nburst = 100, δtburst = 15 ms and δtisolate = 5 ms

a prediction (Eq. (7)) higher than 3. However, these
examples are mostly out of the parameter range defined
in Section 2.2 in which the prediction pn is typically
valid.

For further analysis, Table 3 shows the prediction
efficiency (see footnote 16) for different simulations.
Most of the simulations presented in Table 3 show that
the trend of prediction of Eq. (7) is correct (pe > 0.9).
Precisely, for a range of simulations with different
standard deviations of the membrane potential firing
threshold (	V∗) (Table 3 simulations B, D, E and F),
for different mean noises (σ ) and exponential clock
rates (ω) (Table 3 simulations C and F) the trend of
prediction is correct. So, by looking only at the simu-
lations B, C, D, E, F, G and H of Table 3, we can say
that Eq. (7) give a pretty good prediction (even without
adapting the coefficient of Eq. (7) with the dynamical
parameters).

Before discussing the prediction efficiency of the
simulation A, let us comment the good results obtained
with the simulations G and H. The network of the sim-
ulation G is a random network with a uniform probabil-
ity of connections (see footnote 10) while the network
of the simulation H is an homogeneous network.17 Both
simulations (G and H) are not built as described in

17This means a network in which all neurons have exactly the
same number of connections: the eight nearest neighbors (unlike
Fig. 1). However, the membrane potential firing threshold of the
neurons differs.
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Table 3 The prediction efficiency pe for different simulations

Simulation Type r w 	V∗ σ ω (s) pe

A r, L 0 0.0666 0.1 0.008 0.001 0.88
B r, L 0.2 0.1 0.05 0.008 0.001 0.92
C r, L 0.2 0.1 0.1 0.014 0.002 0.92
D r, L 0.2 0.1 0 0.008 0.001 0.91
E r, L 0.2 0.1 0.2 0.007 0.001 0.91
F r, L 0.2 0.1 0.1 0.008 0.001 0.93
G Random 0.2 0.1 0.1 0.008 0.001 0.93
H Homogeneous 0.2 0.12 0.05 0.008 0.001 0.93

pe =
∑

n correct predictionn
N where correct predictionn is 1 if the neuron n is a leader αn > 3 (respectively not a leader αn ≤ 3) in the

simulation and its prediction pn > 3 (respectively pn ≤ 3), otherwise: correct predictionn = 0. Parameters: r = 0.85, L = 7, common:
N = 900, v = 5 1

ms , τ = 100 ms, nburst = 100, δtburst = 15 ms and δtisolate = 5 ms

Section 2.1, nevertheless both simulations have stable
leaders18 and have a correct trend of prediction given
by Eq. (7). An additional comment on the case of
the simulation H might be useful. By an homogeneous
network, we do not mean a network in which all the
neurons are the same,19 since obviously, in such a case,
we would not observe stable leaders. But the proba-
bility of such a symmetry (see footnote 19) appearing
in our model is zero. Nevertheless, it is possible to
construct examples in which the prediction (Eq. (7))
is almost identical for every neuron and can be bigger
than 3. This is not a paradox since these examples are
not built in accordance with Section 2.2.

For the simulation A the trend of prediction is less
good (pe ≤ 0.9). The fact is the following, for the sim-
ulation A, the inhibitory proportion r equals 0. This
means that for simulation A we did not stay in the
parameters range that we gave in Section 2.2 and that
we used to find out Eq. (7). We can say that the fact that
Eq. (7) does not give a very good trend of predictions
for the simulation A is a kind of edge effect.20 With
�xr=0 = (−0.8927, −3.23, 0.07, λ1, −0.02, λ2)

T in Eq. (7)
(where λ1, λ2 ∈ IR), we obtain a much better pre-
diction for simulation A (pe = 0.92). Remark that
the first number (−0.8927) (the coefficient of Pn1 =
excitatoryn) of �xr=0 has no physical meaning because
all neurons are excitatory neurons (if r = 0 then Pn1 =
excitatoryn = 1 ∀n). For the same reason λ1, λ2 in �xr=0

can be any real number because Pn4 (=# inhibitory

18This fact was already explained in Section 4.2.
19All the neurons with the same membrane potential firing
threshold, type and number of fathers and sons.
20Our model was done to mimic in vitro experiments (Eckmann
et al. 2008) in which the inhibitory proportion r is about 20%.
Normally 0 ≤ r ≤ 1. So by choosing r = 0 we are in the edge of
the parameter space. That is why we pretend that the abnormally
high prediction error is a kind of edge effect.

sonn) and Pn6 (=# inhibitory fathersn) are always 0 if
all neurons are excitatory neurons.

All this means that the relative importance of the
leader properties change by changing the parameters
of the simulation but the trend in Eq. (7) is correct (this
fact was already discussed while comparing Figs. 8(a)
and 9). By a correct trend we mean that Pn2 = V∗

n−〈V∗〉
	V∗

(if 	V∗ > 0 and 0 otherwise) and Pn3 (=# excitatory
sonsn) are still in the range of the value given by
Eq. (6) if we consider three times (or less) the standard
deviation.21 The only significant deviation to the mean
is observed for Pn5 (=# excitatory fathersn). This means
that when r = 0 the number of excitatory fathers is less
relevant for the leadership than in the standard case
r = 0.2. However, we observed that the sign of each
coefficient in Eq. (7) is robust (as soon as the coefficient
has a physical meaning). This means that only the
coefficients of the prediction formula can change while
we vary the parameters.

To illustrate once again the relative importance of
each term of Eq. (7) we continue with Table 3; we
can easily understand that Pn2 (for example) is very
important for the simulation E (	V∗ = 0.2) while Pn2

is irrelevant for the simulation D (	V∗ = 0).
We next explain why we do not use a bigger ma-

trix P. Considering a given neural network, we can
extract many different properties for all neurons n: the
number of fathers, the number of sons, the number of
fathers’fathers (second order property22), the number
of loops (order 2, 3, 4, 5 . . .) in which the neuron n
participates,. . . We can also reduce the network to an
excitatory network and so on. We can as well try to

21In a Gaussian distribution, which is expected for the compo-
nents of �x, the interval that contains the mean value more or less
three times the standard deviation includes 99% of the results.
22This means that we need to compute W2 to extract this
property.
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improve our results by using a lot of tricks and/or
cutoff. But using the properties at the first order (see
footnote 14) seems to be an easy and logical way of
doing. This is true especially considering two facts: (1)
A son will not necessarily fire after one of his fathers
did, so what to say about the sons of this son? (2) The
leadership score depends on the dynamical parameters.
Taking that fact into account improves the results more
than considering the second order properties in the
network.

To conclude, Eq. (7) cannot be taken as a general
law and Eq. (7) is only a good approximation of the
leadership score in the range of parameters we chose in
Section 2.2. However, we have observed that the signs
in Eq. (7) are robust under the change of parameters.
This means that our typical leader profile is the right
one.

Even if Eq. (7) is computed on small scale simula-
tions, the trend of the typical leader profile is the cor-
rect one. Even more, we propose to use the following
leader profile if the mean number of connections per
neuron varies

if r, 	V∗ > 0:

pn = 1.22 · excitatoryn − 2.33 · V∗
n − 〈V∗〉
	V∗

+ 1.14 · # excitatory sonsn

(1 − r)〈# connections/neuron〉
− 0.42 · # inhibitory sonsn

r 〈# connections/neuron〉
−1.14 · # excitatory fathersn

(1 − r)〈# connections/neuron〉 . (8)

This equation was computed knowing that in Eq. (7):
〈# connections/neuron〉 = 11.

We have already explained in Section 4.2 that we
can observe leaders in our simulations as soon as we
use “reasonable” (see footnote 9) parameters. Further
more, considering a given simulation, we can store the
neurons using the leadership score. After that, if we
decide to remove some of the (best) leaders from the
network and then run again our simulation we still
observe stable leaders. Finally, in a leaky integrate and
fire neuron model there are leaders in the networks
and the neurons which fit better with the typical leader
profile are the leaders.

4.4 First to fire neurons

In this section we characterize the first to fire neurons.
From this point, we will call first to fire neurons the
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Fig. 11 The mean number of fathers/sons per neuron as a func-
tion of the time position of a spike of this neuron in the burst.
The time bin in which we average the number of fathers/sons per
neuron is 1 ms. The time position 0 is reserved for the trigger
of the burst. The mean number of connections per neuron in
the network (noted 〈# connections/neuron〉) is about 11. The
typical number of fathers of an active neuron fa is about 11.5 (see
Eq. (9) for definition). We obtained this figure by averaging over
more than 35,000 bursts. Parameters: N = 900, r = 0.85, L = 7,
r = 0.2, 	V∗ = 0.05, v = 5 1

ms , w = 0.1, τ = 100 ms, σ = 0.008,
ω = 0.001 s, nburst = 150, δtburst = 15 ms and δtisolate = 5 ms

neurons that fire in a short time after the trigger. This
means that the first to fire neurons fire roughly in the
successful pre-burst.

Figure 11 shows the mean number of fathers (or
sons) per neuron as a function of the time position of
a spike of this neuron in the burst. To obtain Fig. 11
we average over all the bursts of a given simulation
without taking into account if the trigger of the burst
was a leader or not. Nevertheless, when we look at the
mean number of sons per trigger23 we remark that the
trigger of the burst has, on average, more sons than
its followers. This fact is consistent with our previous
analysis. Remember that Fig. 4(b) shows that leaders
trigger more bursts than other neurons. This means that
the trigger is, on average, a leader. Remember also that
Eq. (7) tells that a leader has typically many excitatory
sons (this means a lot of sons as well).

Figure 11 also shows that the first to fire neurons
have, on average, more sons than their followers and
have, on average, less sons than the trigger. This means
that very often several leaders are present in the suc-
cessful pre-burst (this is linked with the triggering force
of leaders, data not shown, see Zbinden 2010). So the

23The time position 0 in Fig. 11 is reserved for the trigger of the
burst.
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fact that first to fire neurons have typically a lot of sons
is consistent with Eq. (7).

In Fig. 11 the mean number of sons per neuron tends
to the mean number of connections per neuron in the
network. This means that, except for the trigger and
the first to fire neurons, the mean number of sons per
neuron for the neurons which fire during the burst itself
is not relevant.

Figure 11 shows explicitly that the mean number of
fathers per neuron of the first to fire neurons is higher
than the mean number of connections per neuron in
the network. This means that the first to fire neurons
are characterized by a high number of fathers. This is
consistent with the fact that neurons with a lot of fathers
light up early in the burst, respectively in the successful
pre-burst (see Cohen et al. 2009). In facts neurons with
a lot fathers have an higher neural activity than neurons
with a few fathers (data not shown). And again, this is
consistent with Cohen et al. (2009) and Fig. 11 which
shows that active neurons in the burst are, on average,
neurons with a lot of fathers (typically more fathers
than the mean number of connections per neuron in the
network).

In Fig. 11 the mean number of fathers per neuron
(unlike the mean number of sons) does not tend to
the mean number of connections per neuron in the
network but seems to increase again after the decay
of the first to fire neurons. This is consistent with the
following fact: in a burst, after a while, neurons are able
to fire again (as soon as their membrane potentials are
charged enough). And, of course, the neurons with a lot
of fathers are able to fire again sooner than the others.

What about the mean number of fathers of the trig-
ger? Figure 11 shows a tendency of the trigger to have
more fathers than the mean number of connections
per neurons. This last fact seems to contradict our
predictions (Eq. (7)). But in Fig. 11 the mean number
of fathers of the trigger is approximately what we call
the typical number of fathers of an active neuron fa:

fa =
N

∑

n=1

# fathersn · qn (9)

where # fathersn is the number of fathers of neuron n
and qn is the neural activity ratio of neuron n. Figure 11
shows that (except for the first to fire) the mean number
of fathers per neuron is about fa the typical number of
fathers of an active neuron and shows that the number
of fathers of the typical trigger is not different from fa.
These two facts can explain the term concerning the
number of fathers in Eq. (7), but still we can think it
contradicts Eq. (7).

To clarify this conflict, let us have a look at Fig. 12.
This figure shows, as Fig. 11, the mean number of
fathers (and sons) per neuron as a function of the time
position of a spike of this neuron in the burst. In Fig. 12
the standard deviation of the membrane potential firing
threshold 	V∗ is much higher than the one in Fig. 11.
In Fig. 12, we see that the number of sons of the trigger
as well as the one of the first to fire neurons is higher
than the mean number of connections per neuron in the
network. And we see that the number of fathers of the
trigger is lower than the mean number of connections
per neuron in the network. But the number of fathers of
the first to fire neurons is higher than the mean number
of connections per neuron in the network. This forces
us to conclude that the simulation shown in Fig. 12
does not contradict Eq. (7). The reason for that is that
the membrane potential firing threshold plays a more
important rôle in this case.

We can also remark that in Fig. 11 like in Fig. 12,
the mean number of fathers per neuron tends approx-
imately to the typical number of fathers of an active
neuron fa while we look forward in time in the burst.

Now, let us clarify the observation of Fig. 3 con-
cerning the neurons 634 and 643. Neuron 643 is one
of the best leaders of the simulation of Fig. 3(b) while
restricting the observation to 60 neurons only implies
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Fig. 12 The mean number of fathers/sons per neuron as a func-
tion of the time position of a spike of this neuron in the burst.
The time bin in which we average the number of fathers/sons per
neuron is 1 ms. The time position 0 is reserved for the trigger of
the burst. The mean number of connections per neuron in the
network (noted 〈# connections/neuron〉) is about 11. The typical
number of fathers of an active neuron fa is about 11.9 (see Eq.
(9)) for definition). We obtained this figure by averaging over
more than 35,000 bursts. Parameters: N = 900, r = 0.85, L = 7,
r = 0.2, 	V∗ = 0.2, v = 5 1

ms , w = 0.1, τ = 100 ms, σ = 0.007,
ω = 0.001 s, nburst = 150, δtburst = 15 ms and δtisolate = 5 ms
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that neuron 634, which is not a leader (see Fig. 3(b)),
appears as a leader (see Fig. 3(a)). The fact is that
both neurons 634 and 643 have the profile of first
to fire neurons (mean number of fathers close to the
typical number of fathers of an active neuron). But the
membrane potential firing threshold of the two neurons
explains why only neuron 643 can be a leader: V∗

634 =
1.009 and V∗

643 = 0.869 (〈V∗〉 = 1 and 	V∗ = 0.05). So
while restricting the observation to 60 neurons only,
it is possible that the first to fire neurons appear as
leaders. In the experiments (Eckmann et al. 2008) it was
impossible to distinguish between true leaders and first
to fire neurons.

Finally we have a competition between two facts: To
be a leader, a neuron needs to be able to fire early
(in order to do that it must have a low membrane
potential firing threshold and a lot of fathers) and to
be a leader, a trigger must trigger more bursts than we
expect. Typically a leader has a good triggering power
(this means a lot of excitatory sons) and a relatively
low neural activity ratio (this means less fathers than
the typical number of fathers of an active neuron).
That is the message of Eq. (7) (respectively Eq. (8)).
Remember that Eq. (7) was obtained by averaging over
simulations, so Eq. (7) express only a tendency of what
kind of neurons the leaders are.

5 Conclusion

Experimental studies show the existence of leader neu-
rons in population bursts of 2D living neural networks
(Eytan and Marom 2006; Eckmann et al. 2008). This
leads naturally to a question: Do leaders also exist in
neural network models? In this study, we have proved
that stable leaders exist in leaky integrate and fire
neural network simulations (lIF).

More precisely, we have clearly shown that a sin-
gle specific neuron (the leader) can start an electrical
activity (successful pre-burst) and that the followers
(the first to fire neurons) transmit this activity to the
(almost) full network. So the leaders do not really act
alone but only initiate the successful pre-burst.

In our simulations, we saw that leaders depend on
the network but also on the dynamical parameters.
Because the leaders mainly depend on the network and
on the own properties of the neurons, we were able
to find some important properties for these leaders.
Firstly, they are excitatory neurons and have a low
membrane potential firing threshold (ability of firing
early). Secondly, they send a signal to a lot of excitatory
neurons and to a few inhibitory neurons (triggering
power). Finally, they receive only a few signals from

other excitatory neurons (leaders trigger more bursts
than we expect by looking at the neural activity).

To conclude, we studied neural networks which are
complex systems. We have shown that in lIF some
neurons are leaders because of their position in the
network (many outputs for example). The fact that the
most important properties to become a leader are only
what we call first order (see footnote 14) properties
is a strong result. This means that the second order
connections do not play a significant rôle, as if for these
connections (and those of higher rank) a mean field
approximation suffices.

Others simple models can highlight the leader prop-
erties (Eckmann et al. 2010). Moreover, the study
of more biological plausible models (Izhikevich 2004;
Gerstner and Naud 2009) (like Hodgkin–Huxley)
would be very interesting to explore too and could
probably also produce stable leaders. These mod-
els could probably be used to find out other leader
properties.
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