Skip to main content
Log in

New determinants of firing rates and patterns of vasopressinergic magnocellular neurons: predictions using a mathematical model of osmodetection

  • Published:
Journal of Computational Neuroscience Aims and scope Submit manuscript

Abstract

Arginine vasopressin (AVP), one of the most important hormones involved in hydromineral homeostasis, is secreted by hypothalamic magnocellular neurons (MCNs). Here, we implemented two critical parameters for MCN physiology into a Hodgkin-Huxley simulation of the MCN. By incorporating the mechanosensitive channel (MSC) responsible for osmodetection and the synaptic inputs whose frequencies are modulated by changes in ambient osmolality into our model, we were able to develop an improved model with increased physiological relevance and gain new insight into the determinants of the firing patterns of AVP magnocellular neurons. Our results with this MCN model predict that 1) a single MCN is able to display all the firing patterns experimentally observed: silent, irregular, phasic and continuous firing patterns; 2) under conditions of hyperosmolality, burst durations are regulated by the frequency-dependent fatigue of dynorphin secretion; and 3) the transitions between firing patterns are controlled by EPSP and IPSP frequencies (0, 2, 4, 8, 16, 32, 64 and 128 Hz). Moreover, this simulation predicts that EPSPs and IPSPs do not modify the spiking frequency (SF) of phasic firing patterns (0.0034 Hz/Hz [EPSP]; 0.0012 Hz/Hz [IPSP]). Rather, these afferents strongly regulate SF during irregular and continuous firing patterns (0.075 Hz/Hz [EPSP]; 0.027 Hz/Hz [IPSP]). The use of the realistic MCN model developed here allows for an improved understanding of the determinants driving the firing patterns and spiking frequencies of vasopressinergic magnocellular neurons.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Andrew, R. D. (1987). Endogenous bursting by rat supraoptic neuroendocrine cells is calcium dependent. Journal de Physiologie, 384, 451–465.

    CAS  Google Scholar 

  • Andrew, R. D., & Dudek, F. E. (1984). Analysis of intracellularly recorded phasic bursting by mammalian neuroendocrine cells. Journal of Neurophysiology, 51, 552–566.

    PubMed  CAS  Google Scholar 

  • Armstrong, W. E., Smith, B. N., & Tian, M. (1994). Electrophysiological characteristics of immunochemically identified rat oxytocin and vasopressin neurones in vitro. Journal de Physiologie, 475, 115–128.

    CAS  Google Scholar 

  • Bicknell, R. J. (1988). Optimizing release from peptide hormone secretory nerve terminals. The Journal of Experimental Biology, 139, 51–65.

    PubMed  CAS  Google Scholar 

  • Boehmer, G., Greffrath, W., Martin, E., & Hermann, S. (2000). Subthreshold oscillation of the membrane potential in magnocellular neurones of the rat supraoptic nucleus. Journal de Physiologie, 526, 115–128.

    Article  CAS  Google Scholar 

  • Bourque, C. W. (1998). Osmoregulation of vasopressin neurons: a synergy of intrinsic and synaptic processes. Progress in Brain Research, 119, 59–76.

    Article  PubMed  CAS  Google Scholar 

  • Bourque, C. W., & Renaud, L. P. (1991). Membrane properties of rat magnocellular neuroendocrine cells in vivo. Brain Research, 540, 349–352.

    Article  PubMed  CAS  Google Scholar 

  • Brimble, M. J., & Dyball, R. E. (1977). Characterization of the responses of oxytocin- and vasopressin-secreting neurones in the supraoptic nucleus to osmotic stimulation. Journal de Physiologie, 271, 253–271.

    CAS  Google Scholar 

  • Brimble, M. J., Dyball, R. E., & Forsling, M. L. (1978). Oxytocin release following osmotic activation of oxytocin neurones in the paraventricular and supraoptic nuclei. Journal de Physiologie, 278, 69–78.

    CAS  Google Scholar 

  • Brown, C. H., & Bourque, C. W. (2004). Autocrine feedback inhibition of plateau potentials terminates phasic bursts in magnocellular neurosecretory cells of the rat supraoptic nucleus. Journal de Physiologie, 557, 949–960.

    Article  CAS  Google Scholar 

  • Brown, C. H., Ludwig, M., & Leng, G. (1998). kappa-opioid regulation of neuronal activity in the rat supraoptic nucleus in vivo. The Journal of Neuroscience, 18, 9480–9488.

    PubMed  CAS  Google Scholar 

  • Brown, C. H., Bull, P. M., & Bourque, C. W. (2004). Phasic bursts in rat magnocellular neurosecretory cells are not intrinsically regenerative in vivo. The European Journal of Neuroscience, 19, 2977–2983.

    Article  PubMed  Google Scholar 

  • Brown, C. H., Scott, V., Ludwig, M., Leng, G., & Bourque, C. W. (2007). Somatodendritic dynorphin release: orchestrating activity patterns of vasopressin neurons. Biochemical Society Transactions, 35, 1236–1242.

    Article  PubMed  CAS  Google Scholar 

  • Chakfe, Y., & Bourque, C. W. (2000). Excitatory peptides and osmotic pressure modulate mechanosensitive cation channels in concert. Nature Neuroscience, 3, 572–579.

    Article  PubMed  CAS  Google Scholar 

  • Dunn, F. L., Brennan, T. J., Nelson, A. E., & Robertson, G. L. (1973). The role of blood osmolality and volume in regulating vasopressin secretion in the rat. Journal of Clinical Investigation, 52, 3212–3219.

    Article  PubMed  CAS  Google Scholar 

  • Hatton, G. I. (1982). Phasic bursting activity of rat paraventricular neurones in the absence of synaptic transmission. Journal of Physiology, 327, 273–284.

    CAS  Google Scholar 

  • Hobbach, H. P., Hurth, S., Jost, D., & Racke, K. (1988). Effects of tetraethylammonium ions on frequency-dependent vasopressin release from the rat neurohypophysis. Journal de Physiologie, 397, 539–554.

    CAS  Google Scholar 

  • Inenaga, K., Cui, L. N., Nagatomo, T., Honda, E., Ueta, Y., & Yamashita, H. (1997). Osmotic modulation in glutamatergic excitatory synaptic inputs to neurons in the supraoptic nucleus of rat hypothalamus in vitro. Journal of Neuroendocrinology, 9, 63–68.

    Article  PubMed  CAS  Google Scholar 

  • Iremonger, K. J., & Bains, J. S. (2007). Integration of asynchronously released quanta prolongs the postsynaptic spike window. The Journal of Neuroscience, 27, 6684–6691.

    Article  PubMed  CAS  Google Scholar 

  • Komendantov, A. O., Trayanova, N. A., & Tasker, J. G. (2007). Somato-dendritic mechanisms underlying the electrophysiological properties of hypothalamic magnocellular neuroendocrine cells: a multicompartmental model study. Journal of Computational Neuroscience, 23, 143–168.

    Article  PubMed  Google Scholar 

  • Leng, G., Brown, C. H., Bull, P. M., Brown, D., Scullion, S., Currie, J., et al. (2001). Responses of magnocellular neurons to osmotic stimulation involves coactivation of excitatory and inhibitory input: an experimental and theoretical analysis. The Journal of Neuroscience, 21, 6967–6977.

    PubMed  CAS  Google Scholar 

  • Li, Z., & Ferguson, A. V. (1996). Electrophysiological properties of paraventricular magnocellular neurons in rat brain slices: modulation of IA by angiotensin II. Neuroscience, 71, 133–145.

    Article  PubMed  CAS  Google Scholar 

  • Li, C., Tripathi, P. K., & Armstrong, W. E. (2007). Differences in spike train variability in rat vasopressin and oxytocin neurons and their relationship to synaptic activity. Journal de Physiologie, 581, 221–240.

    Article  CAS  Google Scholar 

  • McKinley, M. J., Mathai, M. L., McAllen, R. M., McClear, R. C., Miselis, R. R., Pennington, G. L., et al. (2004). Vasopressin secretion: osmotic and hormonal regulation by the lamina terminalis. Journal of Neuroendocrinology, 16, 340–347.

    Article  PubMed  CAS  Google Scholar 

  • Oliet, S. H., & Bourque, C. W. (1993a). Mechanosensitive channels transduce osmosensitivity in supraoptic neurons. Nature, 364, 341–343.

    Article  PubMed  CAS  Google Scholar 

  • Oliet, S. H., & Bourque, C. W. (1993b). Steady-state osmotic modulation of cationic conductance in neurons of rat supraoptic nucleus. The American Journal of Physiology, 265, R1475–R1479.

    PubMed  CAS  Google Scholar 

  • Richard, D., & Bourque, C. W. (1995). Synaptic control of rat supraoptic neurones during osmotic stimulation of the organum vasculosum lamina terminalis in vitro. Journal de Physiologie, 489, 567–577.

    CAS  Google Scholar 

  • Roper, P., Callaway, J., Shevchenko, T., Teruyama, R., & Armstrong, W. (2003). AHP’s, HAP’s and DAP’s: how potassium currents regulate the excitability of rat supraoptic neurones. Journal of Computational Neuroscience, 15, 367–389.

    Article  PubMed  Google Scholar 

  • Roper, P., Callaway, J., & Armstrong, W. (2004). Burst initiation and termination in phasic vasopressin cells of the rat supraoptic nucleus: a combined mathematical, electrical, and calcium fluorescence study. The Journal of Neuroscience, 24, 4818–4831.

    Article  PubMed  CAS  Google Scholar 

  • Shibuya, I., Kabashima, N., Tanaka, K., Setiadji, V. S., Noguchi, J., Harayama, N., et al. (1998). Patch-clamp analysis of the mechanism of PACAP-induced excitation in rat supraoptic neurones. Journal of Neuroendocrinology, 10, 759–768.

    Article  PubMed  CAS  Google Scholar 

  • Shuster, S. J., Riedl, M., Li, X., Vulchanova, L., & Elde, R. (1999). Stimulus-dependent translocation of kappa opioid receptors to the plasma membrane. The Journal of Neuroscience, 19, 2658–2664.

    PubMed  CAS  Google Scholar 

  • Tremblay, C., Berret, E., Henry, M., Nehme, B., Nadeau, L., & Mouginot, D. (2010). A neuronal sodium leak channel is responsible for the detection of sodium in the rat median preoptic nucleus. Journal of Neurophysiology. doi:10.1152/jn.00417.2010.

    PubMed  Google Scholar 

  • Trudel, E., & Bourque, C. W. (2003). A rat brain slice preserving synaptic connections between neurons of the suprachiasmatic nucleus, organum vasculosum lamina terminalis and supraoptic nucleus. Journal of Neuroscience Methods, 128, 67–77.

    Article  PubMed  Google Scholar 

  • Trudel, E., & Bourque, C. W. (2010). Central clock excites vasopressin neurons by waking osmosensory afferents during late sleep. Nature Neuroscience, 13, 467–474.

    Article  PubMed  CAS  Google Scholar 

  • Voisin, D. L., Chakfe, Y., & Bourque, C. W. (1999). Coincident detection of CSF Na+ and osmotic pressure in osmoregulatory neurons of the supraoptic nucleus. Neuron, 24, 453–460.

    Article  PubMed  CAS  Google Scholar 

  • Wakerley, J. B., Poulain, D. A., & Brown, D. (1978). Comparison of firing patterns in oxytocin- and vasopressin-releasing neurones during progressive dehydration. Brain Research, 148, 425–440.

    Article  PubMed  CAS  Google Scholar 

  • Wakerly, J. B., Poulain, D. A., Dyball, R. E., & Cross, B. A. (1975). Activity of phasic neurosecretory cells during haemorrhage. Nature, 258, 82–84.

    Article  Google Scholar 

  • Wuarin, J. P., & Dudek, F. E. (1993). Patch-clamp analysis of spontaneous synaptic currents in supraoptic neuroendocrine cells of the rat hypothalamus. The Journal of Neuroscience, 13, 2323–2331.

    PubMed  CAS  Google Scholar 

  • Zhang, Z., & Bourque, C. W. (2003). Osmometry in osmosensory neurons. Nature Neuroscience, 6, 1021–1022.

    Article  PubMed  CAS  Google Scholar 

  • Zhang, Z., & Bourque, C. W. (2008). Amplification of transducer gain by angiotensin II-mediated enhancement of cortical actin density in osmosensory neurons. The Journal of Neuroscience, 28, 9536–9544.

    Article  PubMed  CAS  Google Scholar 

  • Zhang, Z., Kindrat, A. N., Sharif-Naeini, R., & Bourque, C. W. (2007). Actin filaments mediate mechanical gating during osmosensory transduction in rat supraoptic nucleus neurons. The Journal of Neuroscience, 27, 4008–4013.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgement

This project was supported by the Canadian Institutes for Health Research (CIHR) MOP-178002. LN received a scholarship from the Natural Sciences and Engineering Research Council of Canada (NSERC, ESD3-334440-2006).

We would like to thank Myriam Rioux (University of Ottawa, Canada) and Francis Gagnon-Moisan (PTB, Braunschweig, Germany) for valuable suggestions and comments on the study. We also thank Dr. Charles Bourque (McGill University, Montreal, Canada) for his kind gift of experimental data and for his permission to include these data in the present study. Finally, we would to thank Dr. Peter Roper (The University of Utah, U.S.A.) for sharing his source code and for the useful answers to our questions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Didier Mouginot.

Additional information

Action Editor: Bard Ermentrout

Electronic supplementary material

Below is the link to the electronic supplementary material.

Online Resource 1

Calculation of the MSC conductance as a function of the external osmolality (PDF 394 kb)

Online Resource 2

Adjustment of the Na+ and K+ leak conductance in the MSC model (PDF 181 kb)

Online Resource 3

Comparison of the MCN firing pattern induced by either an increased osmolality, or an increased [Na+]. (PDF 218 kb)

Online Resource 4

Interspike interval histogram of MCNs displaying a phasic firing pattern (PDF 460 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nadeau, L., Mouginot, D. New determinants of firing rates and patterns of vasopressinergic magnocellular neurons: predictions using a mathematical model of osmodetection. J Comput Neurosci 31, 441–451 (2011). https://doi.org/10.1007/s10827-011-0321-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10827-011-0321-4

Keywords

Navigation