Skip to main content

Advertisement

Log in

Sequestration of CaMKII in dendritic spines in silico

  • Published:
Journal of Computational Neuroscience Aims and scope Submit manuscript

Abstract

Calcium calmodulin dependent kinase II (CaMKII) is sequestered in dendritic spines within seconds upon synaptic stimulation. The program Smoldyn was used to develop scenarios of single molecule CaMKII diffusion and binding in virtual dendritic spines. We first validated simulation of diffusion as a function of spine morphology. Additional cellular structures were then incorporated to simulate binding of CaMKII to the post-synaptic density (PSD); binding to cytoskeleton; or their self-aggregation. The distributions of GFP tagged native and mutant constructs in dissociated hippocampal neurons were measured to guide quantitative analysis. Intra-spine viscosity was estimated from fluorescence recovery after photo-bleach (FRAP) of red fluorescent protein. Intra-spine mobility of the GFP-CaMKIIα constructs was measured, with hundred-millisecond or better time resolution, from FRAP of distal spine tips in conjunction with fluorescence loss (FLIP) from proximal regions. Different FRAP \ FLIP profiles were predicted from our Scenarios and provided a means to differentiate binding to the PSDs from self-aggregation. The predictions were validated by experiments. Simulated fits of the Scenarios provided estimates of binding and rate constants. We utilized these values to assess the role of self-aggregation during the initial response of native CaMKII holoenzymes to stimulation. The computations revealed that self-aggregation could provide a concentration-dependent switch to amplify CaMKII sequestration and regulate its activity depending on its occupancy of the actin cytoskeleton.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Andrews, S. S. (2009). Accurate particle-based simulation of adsorption, desorption and partial transmission. Physical Biology, 6, 046015.

    Article  PubMed  Google Scholar 

  • Andrews, S. S., Addy, N. J., Brent, R., & Arkin, A. P. (2010). Detailed simulations of cell biology with Smoldyn 2.1. PLoS Computational Biology, 6, e1000705.

    Article  PubMed  Google Scholar 

  • Andrews, S. S., & Bray, D. (2004). Stochastic simulation of chemical reactions with spatial resolution and single molecule detail. Physical Biology, 1, 137–151.

    Article  PubMed  CAS  Google Scholar 

  • Bayer, K. U., De Koninck, P., Leonard, A. S., Hell, J. W., & Schulman, H. (2001). Interaction with the NMDA receptor locks CaMKII in an active conformation. Nature, 411, 801–805.

    Article  PubMed  CAS  Google Scholar 

  • Bayer, K. U., LeBel, E., McDonald, G. L., O’Leary, H., Schulman, H., & De Koninck, P. (2006). Transition from reversible to persistent binding of CaMKII to postsynaptic sites and NR2B. The Journal of Neuroscience, 26, 1164–1174.

    Article  PubMed  CAS  Google Scholar 

  • Beyer, H. (1985). Handbuch der Mikroskopie (2nd ed.). Berlin: VEB Verlag Technik.

    Google Scholar 

  • Bhalla, U. S. (2004). Signaling in small subcellular volumes. II. Stochastic and diffusion effects on synaptic network properties. Biophysical Journal, 87, 745–753.

    Article  PubMed  CAS  Google Scholar 

  • Block, S. M., Segall, J. E., & Berg, H. C. (1982). Impulse responses in bacterial chemotaxis. Cell, 31, 215–226.

    Article  PubMed  CAS  Google Scholar 

  • Bloodgood, B. L., & Sabatini, B. L. (2005). Neuronal activity regulates diffusion across the neck of dendritic spines. Science, 310, 866–869.

    Article  PubMed  CAS  Google Scholar 

  • Bloodgood, B. L., & Sabatini, B. L. (2007). Ca(2+) signaling in dendritic spines. Current Opinion in Neurobiology, 17, 345–351.

    Article  PubMed  CAS  Google Scholar 

  • Byrne, M. J., Putkey, J. A., Waxham, M. N., & Kubota, Y. (2009). Dissecting cooperative calmodulin binding to CaM kinase II: a detailed stochastic model. Journal of Computational Neuroscience, 27, 621–638.

    Article  PubMed  Google Scholar 

  • Chen, X., Vinade, L., Leapman, R. D., Petersen, J. D., Nakagawa, T., Phillips, T. M., et al. (2005). Mass of the postsynaptic density and enumeration of three key molecules. Proceedings of the National Academy of Sciences of the United States of America, 102, 11551–11556.

    Article  PubMed  CAS  Google Scholar 

  • DePristo, M. A., Chang, L., Vale, R. D., Khan, S. M., & Lipkow, K. (2009). Introducing simulated cellular architecture to the quantitative analysis of fluorescent microscopy. Progress in Biophysics and Molecular Biology, 100, 25–32.

    Article  PubMed  CAS  Google Scholar 

  • Dosemeci, A., Tao-Cheng, J. H., Vinade, L., Winters, C. A., Pozzo-Miller, L., & Reese, T. S. (2001). Glutamate-induced transient modification of the postsynaptic density. Proceedings of the National Academy of Sciences of the United States of America, 98, 10428–10432.

    Article  PubMed  CAS  Google Scholar 

  • Erhard, F., Friedel, C. C., & Zimmer, R. (2008). FERN - a Java framework for stochastic simulation and evaluation of reaction networks. BMC Bioinformatics, 9, 356.

    Article  PubMed  Google Scholar 

  • Eshhar, N., Petralia, R. S., Winters, C. A., Niedzielski, A. S., & Wenthold, R. J. (1993). The segregation and expression of glutamate receptor subunits in cultured hippocampal neurons. Neuroscience, 57, 943–964.

    Article  PubMed  CAS  Google Scholar 

  • Garcia de la Torre, J. G., & Bloomfield, V. A. (1981). Hydrodynamic properties of complex, rigid, biological macromolecules: theory and applications. Quarterly Reviews of Biophysics, 14, 81–139.

    Article  PubMed  CAS  Google Scholar 

  • Grant, P. A., Best, S. L., Sanmugalingam, N., Alessio, R., Jama, A. M., & Torok, K. (2008). A two-state model for Ca2+/CaM-dependent protein kinase II (alphaCaMKII) in response to persistent Ca2+ stimulation in hippocampal neurons. Cell Calcium, 44, 465–478.

    Article  PubMed  CAS  Google Scholar 

  • Hudmon, A., Lebel, E., Roy, H., Sik, A., Schulman, H., Waxham, M. N., et al. (2005). A mechanism for Ca2+/calmodulin-dependent protein kinase II clustering at synaptic and nonsynaptic sites based on self-association. The Journal of Neuroscience, 25, 6971–6983.

    Article  PubMed  CAS  Google Scholar 

  • Kaech, S., Brinkhaus, H., & Matus, A. (1999). Volatile anesthetics block actin-based motility in dendritic spines. Proceedings of the National Academy of Sciences of the United States of America, 96, 10433–10437.

    Article  PubMed  CAS  Google Scholar 

  • Kuriu, T., Inoue, A., Bito, H., Sobue, K., & Okabe, S. (2006). Differential control of postsynaptic density scaffolds via actin-dependent and -independent mechanisms. The Journal of Neuroscience, 26, 7693–7706.

    Article  PubMed  CAS  Google Scholar 

  • Landis, D. M., & Reese, T. S. (1983). Cytoplasmic organization in cerebellar dendritic spines. The Journal of Cell Biology, 97, 1169–1178.

    Article  PubMed  CAS  Google Scholar 

  • Levine, C. G., Mitra, D., Sharma, A., Smith, C. L., & Hegde, R. S. (2005). The efficiency of protein compartmentalization into the secretory pathway. Molecular Biology of the Cell, 16, 279–291.

    Article  PubMed  CAS  Google Scholar 

  • Lisman, J., Lichtman, J. W., & Sanes, J. R. (2003). LTP: perils and progress. Nature Reviews. Neuroscience, 4, 926–929.

    Article  PubMed  CAS  Google Scholar 

  • Lisman, J. E., Raghavachari, S., & Tsien, R. W. (2007). The sequence of events that underlie quantal transmission at central glutamatergic synapses. Nature Reviews. Neuroscience, 8, 597–609.

    Article  PubMed  CAS  Google Scholar 

  • Lu, Z., McLaren, R. S., Winters, C. A., & Ralston, E. (1998). Ribosome association contributes to restricting mRNAs to the cell body of hippocampal neurons. Molecular and Cellular Neurosciences, 12, 363–375.

    Article  PubMed  CAS  Google Scholar 

  • Lucic, V., Greif, G. J., & Kennedy, M. B. (2008). Detailed state model of CaMKII activation and autophosphorylation. European Biophysics Journal, 38, 83–98.

    Article  PubMed  CAS  Google Scholar 

  • Matus, A., Ackermann, M., Pehling, G., Byers, H. R., & Fujiwara, K. (1982). High actin concentrations in brain dendritic spines and postsynaptic densities. Proceedings of the National Academy of Sciences of the United States of America, 79, 7590–7594.

    Article  PubMed  CAS  Google Scholar 

  • Noguchi, J., Matsuzaki, M., Ellis-Davies, G. C., & Kasai, H. (2005). Spine-neck geometry determines NMDA receptor-dependent Ca2+ signaling in dendrites. Neuron, 46, 609–622.

    Article  PubMed  CAS  Google Scholar 

  • Novak, I. L., Kraikivski, P., & Slepchenko, B. M. (2009). Diffusion in cytoplasm: effects of excluded volume due to internal membranes and cytoskeletal structures. Biophysical Journal, 97, 758–767.

    Article  PubMed  CAS  Google Scholar 

  • Okabe, S. (2007). Molecular anatomy of the postsynaptic density. Molecular and Cellular Neurosciences, 34, 503–518.

    Article  PubMed  CAS  Google Scholar 

  • Okamoto, K., Nagai, T., Miyawaki, A., & Hayashi, Y. (2004). Rapid and persistent modulation of actin dynamics regulates postsynaptic reorganization underlying bidirectional plasticity. Nature Neuroscience, 7, 1104–1112.

    Article  PubMed  CAS  Google Scholar 

  • Okamoto, K., Narayanan, R., Lee, S. H., Murata, K., & Hayashi, Y. (2007). The role of CaMKII as an F-actin-bundling protein crucial for maintenance of dendritic spine structure. Proceedings of the National Academy of Sciences of the United States of America, 104, 6418–6423.

    Article  PubMed  CAS  Google Scholar 

  • Oliveira, R. F., Terrin, A., Di Benedetto, G., Cannon, R. C., Koh, W., Kim, M., et al. (2010). The role of type 4 phosphodiesterases in generating microdomains of cAMP: large scale stochastic simulations. PLoS ONE, 5, e11725.

    Article  PubMed  Google Scholar 

  • Otmakhov, N., Tao-Cheng, J. H., Carpenter, S., Asrican, B., Dosemeci, A., Reese, T. S., et al. (2004). Persistent accumulation of calcium/calmodulin-dependent protein kinase II in dendritic spines after induction of NMDA receptor-dependent chemical long-term potentiation. The Journal of Neuroscience, 24, 9324–9331.

    Article  PubMed  CAS  Google Scholar 

  • Petersen, J. D., Chen, X., Vinade, L., Dosemeci, A., Lisman, J. E., & Reese, T. S. (2003). Distribution of postsynaptic density (PSD)-95 and Ca2+/calmodulin-dependent protein kinase II at the PSD. The Journal of Neuroscience, 23, 11270–11278.

    PubMed  CAS  Google Scholar 

  • Ridgway, D., Broderick, G., Lopez-Campistrous, A., Ru’aini, M., Winter, P., Hamilton, M., et al. (2008). Coarse-grained molecular simulation of diffusion and reaction kinetics in a crowded virtual cytoplasm. Biophysical Journal, 94, 3748–3759.

    Article  PubMed  CAS  Google Scholar 

  • Sanabria, H., Kubota, Y., & Waxham, M. N. (2007). Multiple diffusion mechanisms due to nanostructuring in crowded environments. Biophysical Journal, 92, 313–322.

    Article  PubMed  CAS  Google Scholar 

  • Sanabria, H., Swulius, M. T., Kolodziej, S. J., Liu, J., & Waxham, M. N. (2009). {beta}CaMKII regulates actin assembly and structure. The Journal of Biological Chemistry, 284, 9770–9780.

    Article  PubMed  CAS  Google Scholar 

  • Santamaria, F., Wils, S., De Schutter, E., & Augustine, G. J. (2006). Anomalous diffusion in Purkinje cell dendrites caused by spines. Neuron, 52, 635–648.

    Article  PubMed  CAS  Google Scholar 

  • Sharma, K., Fong, D. K., & Craig, A. M. (2006). Postsynaptic protein mobility in dendritic spines: long-term regulation by synaptic NMDA receptor activation. Molecular and Cellular Neurosciences, 31, 702–712.

    Article  PubMed  CAS  Google Scholar 

  • Shen, K., & Meyer, T. (1999). Dynamic control of CaMKII translocation and localization in hippocampal neurons by NMDA receptor stimulation. Science, 284, 162–166.

    Article  PubMed  CAS  Google Scholar 

  • Shen, K., Teruel, M. N., Connor, J. H., Shenolikar, S., & Meyer, T. (2000). Molecular memory by reversible translocation of calcium/calmodulin-dependent protein kinase II. Nature Neuroscience, 3, 881–886.

    Article  PubMed  CAS  Google Scholar 

  • Shen, K., Teruel, M. N., Subramanian, K., & Meyer, T. (1998). CaMKIIbeta functions as an F-actin targeting module that localizes CaMKIIalpha/beta heterooligomers to dendritic spines. Neuron, 21, 593–606.

    Article  PubMed  CAS  Google Scholar 

  • Sheng, M., & Hoogenraad, C. C. (2007). The postsynaptic architecture of excitatory synapses: a more quantitative view. Annual Review of Biochemistry, 76, 823–847.

    Article  PubMed  CAS  Google Scholar 

  • Smith, B. A., Roy, H., De Koninck, P., Grutter, P., & De Koninck, Y. (2007). Dendritic spine viscoelasticity and soft-glassy nature: balancing dynamic remodeling with structural stability. Biophysical Journal, 92, 1419–1430.

    Article  PubMed  CAS  Google Scholar 

  • Snapp, E. L., Sharma, A., Lippincott-Schwartz, J., & Hegde, R. S. (2006). Monitoring chaperone engagement of substrates in the endoplasmic reticulum of live cells. Proceedings of the National Academy of Sciences of the United States of America, 103, 6536–6541.

    Article  PubMed  CAS  Google Scholar 

  • Sprague, B. L., & McNally, J. G. (2005). FRAP analysis of binding: proper and fitting. Trends in Cell Biology, 15, 84–91.

    Article  PubMed  CAS  Google Scholar 

  • Sprague, B. L., Muller, F., Pego, R. L., Bungay, P. M., Stavreva, D. A., & McNally, J. G. (2006). Analysis of binding at a single spatially localized cluster of binding sites by fluorescence recovery after photobleaching. Biophysical Journal, 91, 1169–1191.

    Article  PubMed  CAS  Google Scholar 

  • Svoboda, K., Tank, D. W., & Denk, W. (1996). Direct measurement of coupling between dendritic spines and shafts. Science, 272, 716–719.

    Article  PubMed  CAS  Google Scholar 

  • Swaminathan, R., Hoang, C. P., & Verkman, A. S. (1997). Photobleaching recovery and anisotropy decay of green fluorescent protein GFP-S65T in solution and cells: cytoplasmic viscosity probed by green fluorescent protein translational and rotational diffusion. Biophysical Journal, 72, 1900–1907.

    Article  PubMed  CAS  Google Scholar 

  • Tang, S. J., & Schuman, E. M. (2002). Protein synthesis in the dendrite. Philosophical Transactions of the Royal Society of London. Series B: Biological Sciences, 357, 521–529.

    Article  PubMed  CAS  Google Scholar 

  • Walikonis, R. S., Oguni, A., Khorosheva, E. M., Jeng, C. J., Asuncion, F. J., & Kennedy, M. B. (2001). Densin-180 forms a ternary complex with the (alpha)-subunit of Ca2+/calmodulin-dependent protein kinase II and (alpha)-actinin. The Journal of Neuroscience, 21, 423–433.

    PubMed  CAS  Google Scholar 

  • Weiss, M. (2004). Challenges and artifacts in quantitative photobleaching experiments. Traffic (Copenhagen, Denmark), 5, 662–671.

    Article  CAS  Google Scholar 

  • Zhabotinsky, A. M., Camp, R. N., Epstein, I. R., & Lisman, J. E. (2006). Role of the neurogranin concentrated in spines in the induction of long-term potentiation. The Journal of Neuroscience, 26, 7337–7347.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank Steven Andrews for advice on Smoldyn and Ayse Dosemeci for comments on the manuscript. This work was supported by grant R01-GM49319 from the National Institutes of Health (to SK). YZ was an NIH summer student intern. AA was supported by start-up funds (to SK) from the School of Science & Engineering, LUMS.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shahid Khan.

Additional information

Action Editor: Upinder Singh Bhalla

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOC 71 kb)

(MPG 7232 kb)

(MPG 6368 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Khan, S., Zou, Y., Amjad, A. et al. Sequestration of CaMKII in dendritic spines in silico . J Comput Neurosci 31, 581–594 (2011). https://doi.org/10.1007/s10827-011-0323-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10827-011-0323-2

Keywords

Navigation