Skip to main content
Log in

Stochastic amplification of calcium-activated potassium currents in Ca2+ microdomains

  • Published:
Journal of Computational Neuroscience Aims and scope Submit manuscript

Abstract

Small conductance (SK) calcium-activated potassium channels are found in many tissues throughout the body and open in response to elevations in intracellular calcium. In hippocampal neurons, SK channels are spatially co-localized with L-Type calcium channels. Due to the restriction of calcium transients into microdomains, only a limited number of L-Type Ca2+ channels can activate SK and, thus, stochastic gating becomes relevant. Using a stochastic model with calcium microdomains, we predict that intracellular Ca2+ fluctuations resulting from Ca2+ channel gating can increase SK2 subthreshold activity by 1–2 orders of magnitude. This effectively reduces the value of the Hill coefficient. To explain the underlying mechanism, we show how short, high-amplitude calcium pulses associated with stochastic gating of calcium channels are much more effective at activating SK2 channels than the steady calcium signal produced by a deterministic simulation. This stochastic amplification results from two factors: first, a supralinear rise in the SK2 channel’s steady-state activation curve at low calcium levels and, second, a momentary reduction in the channel’s time constant during the calcium pulse, causing the channel to approach its steady-state activation value much faster than it decays. Stochastic amplification can potentially explain subthreshold SK2 activation in unified models of both sub- and suprathreshold regimes. Furthermore, we expect it to be a general phenomenon relevant to many proteins that are activated nonlinearly by stochastic ligand release.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Avery, R., & Johnston, D. (1996). Multiple channel types contribute to the low-voltage-activated calcium current in hippocampal CA3 pyramidal neurons. Journal of Neuroscience, 16(18), 5567.

    PubMed  CAS  Google Scholar 

  • Bekkers, J. (2000). Distribution of slow AHP channels on hippocampal CA1 pyramidal neurons. Journal of Neurophysiology, 83(3), 1756.

    PubMed  CAS  Google Scholar 

  • Belle, M., Diekman, C., Forger, D., & Piggins, H. (2009). Daily electrical silencing in the mammalian circadian clock. Science, 326(5950), 281.

    Article  PubMed  CAS  Google Scholar 

  • Berridge, M. (2006). Calcium microdomains: organization and function. Cell Calcium, 40(5–6), 405–412.

    Article  PubMed  CAS  Google Scholar 

  • Berridge, M., & Galione, A. (1988). Cytosolic calcium oscillators. The FASEB Journal, 2(15), 3074.

    PubMed  CAS  Google Scholar 

  • Bhalla, U. (2004). Signaling in small subcellular volumes. II. Stochastic and diffusion effects on synaptic network properties. Biophysical Journal, 87(2), 745–753.

    Article  PubMed  CAS  Google Scholar 

  • Blatz, A., & Magleby, K. (1987). Calcium-activated potassium channels. Trends in Neurosciences, 10(11), 463–467.

    Article  CAS  Google Scholar 

  • Bleasel, A., & Pettigrew, A. (1992). Development and properties of spontaneous oscillations of the membrane potential in inferior olivary neurons in the rat. Developmental Brain Research, 65(1), 43–50.

    Article  PubMed  CAS  Google Scholar 

  • Bowden, S., Fletcher, S., Loane, D., & Marrion, N. (2001). Somatic colocalization of rat SK1 and D class (Cav 1.2) L-type calcium channels in rat CA1 hippocampal pyramidal neurons. Journal of Neuroscience, 21(20), 175.

    Google Scholar 

  • Bower, J., Beeman, D., & Hucka, M. (2002). The GENESIS simulation system. In M. A. Arbib (Ed.), The handbook of brain theory and neural networks (pp. 475–478, 2nd ed.). Cambridge: MIT Press.

    Google Scholar 

  • Bower, J., Beeman, D., & Wylde, A. (1998). The book of GENESIS: Exploring realistic neural models with the GEneral NEural SImulation System (2nd ed.). New York: Springer.

    Google Scholar 

  • Bruce, I. (2009). Evaluation of stochastic differential equation approximation of ion channel gating models. Annals of Biomedical Engineering, 37(4), 824–838.

    Article  PubMed  Google Scholar 

  • Catterall, W., Perez-Reyes, E., Snutch, T., & Striessnig, J. (2005). International union of pharmacology. XLVIII. Nomenclature and structure-function relationships of voltage-gated calcium channels. Pharmacological Reviews, 57(4), 411.

    Article  PubMed  CAS  Google Scholar 

  • Catterall, W., Perez-Reyes, E., Snutch, T., & Striessnig, J. (2010). Voltage-gated calcium channels: Cav1.3. Last modified on 2010-07-01. Accessed on 13 October 2010. IUPHAR database (IUPHAR-DB) URL http://www.iuphar-db.org/DATABASE/ObjectDisplayForward?objectId=530.

  • Chay, T., & Keizer, J. (1983). Minimal model for membrane oscillations in the pancreatic beta-cell. Biophysical Journal, 42(2), 181–189.

    Article  PubMed  CAS  Google Scholar 

  • Choi, S., Yu, E., Kim, D., Urbano, F., Makarenko, V., Shin, H., et al. (2010). Subthreshold membrane potential oscillations in inferior olive neurons are dynamically regulated by P/Q-and T-type calcium channels: A study in mutant mice. The Journal of Physiology, 588(16), 3031.

    Article  PubMed  CAS  Google Scholar 

  • Chorev, E., Yarom, Y., & Lampl, I. (2007). Rhythmic episodes of subthreshold membrane potential oscillations in the rat inferior olive nuclei in vivo. Journal of Neuroscience, 27(19), 5043.

    Article  PubMed  CAS  Google Scholar 

  • Chow, C., & White, J. (1996). Spontaneous action potentials due to channel fluctuations. Biophysical Journal, 71(6), 3013–3021.

    Article  PubMed  CAS  Google Scholar 

  • Cingolani, L., Gymnopoulos, M., Boccaccio, A., Stocker, M., & Pedarzani, P. (2002). Developmental regulation of small-conductance Ca2+-activated K+ channel expression and function in rat Purkinje neurons. Journal of Neuroscience, 22(11), 4456.

    PubMed  CAS  Google Scholar 

  • De Schutter, E,, & Smolen, P. (1998). Calcium dynamics in large neuronal models. In C. Koch, & I. Segev (Eds.), Methods in neuronal modeling: From ions to networks (pp. 211-215, 2nd ed., chap. 6). Cambridge: MIT Press.

    Google Scholar 

  • Diba, K., Lester, H., & Koch, C. (2004). Intrinsic noise in cultured hippocampal neurons: Experiment and modeling. Journal of Neuroscience, 24(43), 9723.

    Article  PubMed  CAS  Google Scholar 

  • Dyhrfjeld-Johnsen, J., Maier, J., Schubert, D., Staiger, J., Luhmann, H., Stephan, K., et al. (2005). CoCoDat: A database system for organizing and selecting quantitative data on single neurons and neuronal microcircuitry. Journal of Neuroscience Methods, 141(2), 291–308.

    Article  PubMed  CAS  Google Scholar 

  • Eliasmith, C., & Anderson, C. (2004). Neural engineering: Computation, representation, and dynamics in neurobiological systems. Cambridge: MIT Press.

    Google Scholar 

  • Ellis, L., Mehaffey, W., Harvey-Girard, E., Turner, R., Maler, L., & Dunn, R. (2007). SK channels provide a novel mechanism for the control of frequency tuning in electrosensory neurons. Journal of Neuroscience, 27(35), 9491.

    Article  PubMed  CAS  Google Scholar 

  • Fakler, B., & Adelman, J. (2008). Control of KCa channels by calcium nano/microdomains. Neuron, 59(6), 873–881.

    Article  PubMed  CAS  Google Scholar 

  • Fettiplace, R., & Fuchs, P. (1999). Mechanisms of hair cell tuning. Annual Review of Physiology, 61(1), 809–834.

    Article  PubMed  CAS  Google Scholar 

  • Fisher, J., Kowalik, L., & Hudspeth, A. (2011). Imaging electrical resonance in hair cells. Proceedings of the National Academy of Sciences, 108(4), 1651.

    Article  CAS  Google Scholar 

  • Fuchs, P., Nagai, T., & Evans, M. (1988). Electrical tuning in hair cells isolated from the chick cochlea. Journal of Neuroscience, 8(7), 2460.

    PubMed  CAS  Google Scholar 

  • Gillespie, D. (1977). Exact stochastic simulation of coupled chemical reactions. The Journal of Physical Chemistry, 81(25), 2340–2361.

    Article  CAS  Google Scholar 

  • Gleeson, P., Crook, S., Cannon, R., Hines, M., Billings, G., Farinella, M., et al. (2010). NeuroML: A language for describing data driven models of neurons and networks with a high degree of biological detail. PLoS Computational Biology, 6(6), e1000815.

    Article  Google Scholar 

  • Gleeson, P., Steuber, V., & Silver, R. (2007). neuroConstruct: A tool for modeling networks of neurons in 3D space. Neuron, 54(2), 219–235.

    Article  PubMed  CAS  Google Scholar 

  • Hallworth, N., Wilson, C., & Bevan, M. (2003). Apamin-sensitive small conductance calcium-activated potassium channels, through their selective coupling to voltage-gated calcium channels, are critical determinants of the precision, pace, and pattern of action potential generation in rat subthalamic nucleus neurons in vitro. Journal of Neuroscience, 23(20), 7525.

    PubMed  CAS  Google Scholar 

  • Hell, J., Westenbroek, R., Warner, C., Ahlijanian, M., Prystay, W., Gilbert, M., et al. (1993). Identification and differential subcellular localization of the neuronal class C and class D L-type calcium channel alpha 1 subunits. The Journal of Cell Biology, 123(4), 949.

    Article  PubMed  CAS  Google Scholar 

  • Helton, T., Xu, W., & Lipscombe, D. (2005). Neuronal L-type calcium channels open quickly and are inhibited slowly. Journal of Neuroscience, 25(44), 10247.

    Article  PubMed  CAS  Google Scholar 

  • Hille, B. (2001). Ion channels of excitable membranes (3rd ed.). Sinauer Sunderland, MA.

  • Hirschberg, B., Maylie, J., Adelman, J., & Marrion, N. (1998). Gating of recombinant small-conductance Ca-activated K+ channels by calcium. The Journal of General Physiology, 111(4), 565.

    Article  PubMed  CAS  Google Scholar 

  • Hirschberg, B., Maylie, J., Adelman, J., & Marrion, N. (1999). Gating properties of single SK channels in hippocampal CA1 pyramidal neurons. Biophysical Journal, 77(4), 1905–1913.

    Article  PubMed  CAS  Google Scholar 

  • Hodgkin, A., & Huxley, A. (1952). A quantitative description of membrane current and its application to conduction and excitation in nerve. The Journal of Physiology, 117(4), 500.

    PubMed  CAS  Google Scholar 

  • Hudspeth, A., & Lewis, R. (1988). A model for electrical resonance and frequency tuning in saccular hair cells of the bull-frog, Rana catesbeiana. The Journal of Physiology, 400(1), 275.

    PubMed  CAS  Google Scholar 

  • Jacobson, D., Mendez, F., Thompson, M., Torres, J., Cochet, O., & Philipson, L. (2010). Calcium-activated and voltage-gated potassium channels of the pancreatic islet impart distinct and complementary roles during secretagogue induced electrical responses. The Journal of Physiology, 588(18), 3525–3537.

    Article  PubMed  CAS  Google Scholar 

  • Jaffe, D., Ross, W., Lisman, J., Lasser-Ross, N., Miyakawa, H., & Johnston, D. (1994). A model for dendritic Ca2+ accumulation in hippocampal pyramidal neurons based on fluorescence imaging measurements. Journal of Neurophysiology, 71(3), 1065.

    PubMed  CAS  Google Scholar 

  • Kang, Y., & Kitai, S. (1993). Calcium spike underlying rhythmic firing in dopaminergic neurons of the rat substantia nigra. Neuroscience Research, 18(3), 195–207.

    Article  PubMed  CAS  Google Scholar 

  • Knopfel, T., Vranesic, I., Gahwiler, B., & Brown, D. (1990). Muscarinic and beta-adrenergic depression of the slow Ca2+-activated potassium conductance in hippocampal CA3 pyramidal cells is not mediated by a reduction of depolarization-induced cytosolic Ca2+ transients. Proceedings of the National Academy of Science, 87, 4083–4087.

    Article  CAS  Google Scholar 

  • Koschak, A., Obermair, G., Pivotto, F., Sinnegger-Brauns, M., Striessnig, J., & Pietrobon, D. (2007). Molecular nature of anomalous L-type calcium channels in mouse cerebellar granule cells. Journal of Neuroscience, 27(14), 3855.

    Article  PubMed  CAS  Google Scholar 

  • Kuznetsova, A., Huertas, M., Kuznetsov, A., Paladini, C., & Canavier, C. (2010). Regulation of firing frequency in a computational model of a midbrain dopaminergic neuron. Journal of Computational Neuroscience, 28(3), 1–15.

    Article  Google Scholar 

  • Li, G., Nair, S., & Quirk, G. (2009). A biologically realistic network model of acquisition and extinction of conditioned fear associations in lateral amygdala neurons. Journal of Neurophysiology, 101(3), 1629.

    Article  PubMed  Google Scholar 

  • Llinas, R., & Yarom, Y. (1986). Oscillatory properties of guinea-pig inferior olivary neurones and their pharmacological modulation: An in vitro study. The Journal of Physiology, 376(1), 163.

    PubMed  CAS  Google Scholar 

  • Losonczy, A., & Magee, J. (2006). Integrative properties of radial oblique dendrites in hippocampal CA1 pyramidal neurons. Neuron, 50(2), 291–307.

    Article  PubMed  CAS  Google Scholar 

  • Lu, L., Zhang, Q., Timofeyev, V., Zhang, Z., Young, J., Shin, H., et al. (2007). Molecular coupling of a Ca2+-activated K+ channel to L-type Ca2+ channels via α-Actinin2. Circulation Research, 100(1), 112.

    Article  PubMed  CAS  Google Scholar 

  • Mainen, Z., & Sejnowski, T. (1996). Influence of dendritic structure on firing pattern in model neocortical neurons. Nature, 382(6589), 363–366.

    Article  PubMed  CAS  Google Scholar 

  • Mainen, Z., & Sejnowski, T. (1998). Modeling active dendritic processes in pyramidal neurons. In C. Koch, & I. Segev (Eds.), Methods in neuronal modeling: From ions to networks (pp. 171-210). Cambridge: MIT Press.

    Google Scholar 

  • Marder, E., Kopell, N., & Karen, S. (1999). How computation aids in understanding biological networks. In P. S. G. Stein, S. Grillner, A.I. Selverston, & D. G. Stuart (Eds.), Neurons, networks, and motor behavior (pp. 139-150, chap. 13). Cambridge: MIT Press.

    Google Scholar 

  • Marrion, N., & Tavalin, S. (1998). Selective activation of Ca2+-activated K+ channels by co-localized Ca2+ channels in hippocampal neurons. Nature, 395(6705), 900–905.

    Article  PubMed  CAS  Google Scholar 

  • Migliore, M., Cook, E., Jaffe, D., Turner, D., & Johnston, D. (1995). Computer simulations of morphologically reconstructed CA3 hippocampal neurons. Journal of Neurophysiology, 73(3), 1157.

    PubMed  CAS  Google Scholar 

  • Millership, J., Heard, C., Fearon, I., & Bruce, J. (2010). Differential regulation of calcium-activated potassium channels by dynamic intracellular calcium signals. Journal of Membrane Biology, 235(3), 191–210.

    Google Scholar 

  • Mino, H., Rubinstein, J., & White, J. (2002). Comparison of algorithms for the simulation of action potentials with stochastic sodium channels. Annals of Biomedical Engineering, 30(4), 578–587.

    Article  PubMed  Google Scholar 

  • Navedo, M., Amberg, G., Westenbroek, R., Sinnegger-Brauns, M., Catterall, W., Striessnig, J., et al. (2007). Cav1.3 channels produce persistent calcium sparklets, but Cav1.2 channels are responsible for sparklets in mouse arterial smooth muscle. American Journal of Physiology—Heart and Circulatory Physiology, 293(3), H1359.

    Article  Google Scholar 

  • Nedergaard, S., Flatman, J., & Engberg, I. (1993). Nifedipine-and omega-conotoxin-sensitive Ca2+ conductances in guinea-pig substantia nigra pars compacta neurones. The Journal of Physiology, 466(1), 727.

    PubMed  CAS  Google Scholar 

  • Ngo-Anh, T., Bloodgood, B., Lin, M., Sabatini, B., Maylie, J., & Adelman, J. (2005). SK channels and NMDA receptors form a Ca2+-mediated feedback loop in dendritic spines. Nature Neuroscience, 8(5), 642–649.

    Article  PubMed  CAS  Google Scholar 

  • Ping, H., & Shepard, P. (1996). Apamin-sensitive Ca2+-activated K+ channels regulate pacemaker activity in nigral dopamine neurons. Neuroreport, 7(3), 809.

    Article  PubMed  CAS  Google Scholar 

  • Regehr, W., Connor, J., & Tank, D. (1989). Optical imaging of calcium accumulation in hippocampal pyramidal cells during synaptic activation. Nature, 341, 533–536.

    Article  PubMed  CAS  Google Scholar 

  • Sah, P., & Bekkers, J. (1996). Apical dendritic location of slow afterhyperpolarization current in hippocampal pyramidal neurons: Implications for the integration of long-term potentiation. Journal of Neuroscience, 16(15), 4537.

    PubMed  CAS  Google Scholar 

  • Sah, P., & Clements, J. (1999). Photolytic manipulation of [Ca2+]i reveals slow kinetics of potassium channels underlying the afterhyperpolarization in pyramidal neurons. Journal of Neuroscience, 19(10), 3657.

    PubMed  CAS  Google Scholar 

  • Sah, P., & Isaacson, J. (1995). Channels underlying the slow afterhyperpolarization in hippocampal pyramidal neurons: Neurotransmitters modulate the open probability. Neuron, 15(2), 435–441.

    Article  PubMed  CAS  Google Scholar 

  • Sailer, C., Kaufmann, W., Marksteiner, J., & Knaus, H. (2004). Comparative immunohistochemical distribution of three small-conductance Ca2+-activated potassium channel subunits, SK1, SK2, and SK3 in mouse brain. Molecular and Cellular Neuroscience, 26(3), 458–469.

    Article  PubMed  CAS  Google Scholar 

  • Schaefer, A., Larkum, M., Sakmann, B., & Roth, A. (2003). Coincidence detection in pyramidal neurons is tuned by their dendritic branching pattern. Journal of Neurophysiology, 89(6), 3143.

    Article  PubMed  Google Scholar 

  • Schiller, J., Helmchen, F., & Sakmann, B. (1995). Spatial profile of dendritic calcium transients evoked by action potentials in rat neocortical pyramidal neurones. The Journal of Physiology, 487(Pt 3), 583.

    PubMed  CAS  Google Scholar 

  • Sherman, A. (1996). Contributions of modeling to understanding stimulus-secretion coupling in pancreatic beta-cells. American Journal of Physiology—Endocrinology and Metabolism, 271(2), E362.

    Google Scholar 

  • Shuai, J., & Parker, I. (2005). Optical single-channel recording by imaging Ca2+ flux through individual ion channels: Theoretical considerations and limits to resolution. Cell Calcium, 37(4), 283–299.

    Article  PubMed  CAS  Google Scholar 

  • Skupin, A., Kettenmann, H., Falcke, M. (2010). Calcium signals driven by single channel noise. PLoS Computational Biology, 6(8), 1183–1186.

    Article  Google Scholar 

  • Sourdet, V., Russier, M., Daoudal, G., Ankri, N., & Debanne, D. (2003). Long-term enhancement of neuronal excitability and temporal fidelity mediated by metabotropic glutamate receptor subtype 5. Journal of Neuroscience, 23(32), 10238.

    PubMed  CAS  Google Scholar 

  • Stocker, M. (2004). Ca2+-activated K+ channels: Molecular determinants and function of the SK family. Nature Reviews Neuroscience, 5(10), 758–770.

    Article  PubMed  CAS  Google Scholar 

  • Stocker, M., Hirzel, K., D’hoedt, D., & Pedarzani, P. (2004). Matching molecules to function: neuronal Ca2+-activated K+ channels and afterhyperpolarizations. Toxicon, 43(8), 933–949.

    Article  PubMed  CAS  Google Scholar 

  • Stocker, M., Krause, M., & Pedarzani, P. (1999). An apamin-sensitive Ca2+-activated K+ current in hippocampal pyramidal neurons. Proceedings of the National Academy of Sciences of the United States of America, 96(8), 4662.

    Article  PubMed  CAS  Google Scholar 

  • Stojilkovic, S., Zemkova, H., & Van Goor, F. (2005). Biophysical basis of pituitary cell type-specific Ca2+ signaling-secretion coupling. Trends in Endocrinology and Metabolism, 16(4), 152–159.

    Article  PubMed  CAS  Google Scholar 

  • Strassberg, A., & DeFelice, L. (1993). Limitations of the Hodgkin–Huxley formalism: Effects of single channel kinetics on transmembrane voltage dynamics. Neural Computation, 5(6), 843–855.

    Article  Google Scholar 

  • Takahashi, Y., Jeong, S., Ogata, K., Goto, J., Hashida, H., Isahara, K., et al. (2003). Human skeletal muscle calcium channel α1S is expressed in the basal ganglia: Distinctive expression pattern among L-type Ca2+ channels. Neuroscience Research, 45(1), 129–137.

    Article  PubMed  CAS  Google Scholar 

  • Thibault, O., & Landfield, P. (1996). Increase in single L-type calcium channels in hippocampal neurons during aging. Science, 272(5264), 1017.

    Article  PubMed  CAS  Google Scholar 

  • Traub, R., Jefferys, J., Miles, R., Whittington, M., & Toth, K. (1994). A branching dendritic model of a rodent CA3 pyramidal neurone. The Journal of Physiology, 481(Pt 1), 79.

    PubMed  CAS  Google Scholar 

  • Tzingounis, A., Heidenreich, M., Kharkovets, T., Spitzmaul, G., Jensen, H., Nicoll, R., et al. (2010). The KCNQ5 potassium channel mediates a component of the afterhyperpolarization current in mouse hippocampus. Proceedings of the National Academy of Sciences, 107(22), 10232.

    Article  CAS  Google Scholar 

  • Tzingounis, A., Kobayashi, M., Takamatsu, K., & Nicoll, R. (2007). Hippocalcin gates the calcium activation of the slow afterhyperpolarization in hippocampal pyramidal cells. Neuron, 53(4), 487–493.

    Article  PubMed  CAS  Google Scholar 

  • Van Goor, F., Li, Y., & Stojilkovic, S. (2001). Paradoxical role of large-conductance calcium-activated K+ (BK) channels in controlling action potential-driven Ca2+ entry in anterior pituitary cells. Journal of Neuroscience, 21(16), 5902.

    PubMed  Google Scholar 

  • Vergara, C., Latorre, R., Marrion, N., & Adelman, J. (1998). Calcium-activated potassium channels. Current Opinion in Neurobiology, 8(3), 321–329.

    Article  PubMed  CAS  Google Scholar 

  • Von Wegner, F., & Fink, R. (2010). Stochastic simulation of calcium microdomains in the vicinity of an L-type calcium channel. European Biophysics Journal, 39(7), 1079–1088.

    Article  CAS  Google Scholar 

  • Warman, E., Durand, D., & Yuen, G. (1994). Reconstruction of hippocampal CA1 pyramidal cell electrophysiology by computer simulation. Journal of Neurophysiology, 71(6), 2033.

    PubMed  CAS  Google Scholar 

  • Wei, A., Gutman, G., Aldrich, R., Chandy, K., Grissmer, S., & Wulff, H. (2005). International union of pharmacology. LII. Nomenclature and molecular relationships of calcium-activated potassium channels. Pharmacological Reviews, 57(4), 463.

    Article  PubMed  CAS  Google Scholar 

  • Xia, X., Fakler, B., Rivard, A., Wayman, G., Johnson-Pais, T., Keen, J., et al. (1997). Mechanism of calcium gating in small-conductance calcium-activated potassium channels. Nature, 386, 167–170.

    Article  Google Scholar 

  • Yung, W., Häusser, M., & Jack, J. (1991). Electrophysiology of dopaminergic and non-dopaminergic neurones of the guinea-pig substantia nigra pars compacta in vitro. The Journal of Physiology, 436(1), 643.

    PubMed  CAS  Google Scholar 

  • Zhang, M., Houamed, K., Kupershmidt, S., Roden, D., & Satin, L. (2005). Pharmacological properties and functional role of Kslow current in mouse pancreatic β-Cells. The Journal of General Physiology, 126(4), 353.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

The authors wish to thank Dr. Berj Bardakjian, Dr. Avrama Blackwell, Behnam Kia, Ernest Ho, and Pengpeng Cao for valuable discussion. We are grateful to Dr. Neil V. Marrion and Dr. Pankaj Sah for providing elaboration on their published experimental results, which were essential for this paper. We also thank Janet Stanley for proofreading the manuscript and Kerstin Menne for making her GENESIS code available. The authors also wish to acknowledge ONR and NSERC for providing funding for this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David Arthur Stanley.

Additional information

Action Editor: Alain Destexhe

This work was supported by NSERC, ONR, and CIHR.

Appendix

Appendix

In the discussion section of this paper, we stated that, as the pulse duration is made infinitesimally small relative to the time constants of the channel, the delay in channel activation cancels out the two factors that generally lead to stochastic amplification. In this section, we prove this analytically by solving the differential equations for an arbitrary length Markov process. Extending Eqs. (16) and (17) to arbitrary length chains yields:

(22)
$$ p_o(t) = s^N(t) \qquad \frac {d s(t)}{dt} = \alpha [{\rm Ca}]_i (1-s) - \beta s $$
(23)

This N + 1 length Markov process corresponds to a KCa channel with N independent Ca2+ binding sites that all must be open for the channel to activate. A sample input to the system, [Ca2+] i , as well as the system’s response, is depicted in Fig. 11. This represents a single iteration of the calcium pulse protocol that is repeated indefinitely. The total length is nT 0. The input consists of a pulse of height nA 0 and length T 1, followed by a delay of length T 2 = nT 0 − T 1, during which there is no calcium present. The calcium pulse height is allowed to vary, scaled by the integer n ≥ 1 and the corresponding period nT 0 is scaled accordingly to produce a fixed mean calcium value of A 0 T 1/T 0. Integer n must be finite, and T 0 > T 1 > 0. The time course of the system’s open probability, p o (t), is obtained by solving Eq. (23). This solution is given by x(t) during the rising phase (T 1) and y(t) during the falling phase (T 2), taking the form:

$$ x(t) = (x_\infty + (x_0 - x_\infty) e^{-t / \tau_x})^N $$
(24)
$$ y(t) = (y_\infty + (y_0 - y_\infty) e^{-t / \tau_y})^N $$
(25)
$$ = (y_0 e^{-t / \tau_y})^N $$
(26)
Fig. 11
figure 11

Calcium pulse protocol used for minimal model. Parameter n is an integer ≥ 1 that controls the height of the calcium pulse. Period, nT 0 is scaled accordingly so that the mean calcium value remains constant at A 0 T 1/T 0. Traces x(t) and y(t) depict examples of the rise and falling p o (t) time courses, respectively

In these equations, τ x  = 1/(αn A 0 + β) and τ y  = 1/β; also, x  ∞  = αn A 0 τ x and y  ∞  = 0. Enforcing continuity at the boundaries gives \(x(T_1) = y_0^N\) and \(y(T_2) = x_0^N\). We next solve this system of equations to determine x 0 and y 0:

$$ y_0^N = x(T_1) = (x_\infty + (x_0 - x_\infty) e^{-T_1 / \tau_x})^N $$
(27)
$$ x_0^N = y(T_2) = (y_0 e^{-T_2 / \tau_y})^N $$
(28)

Note that x 0 and y 0 are both real and positive. Substituting Eq. (28) into Eq. (27), after raising both to the power 1/N, gives:

$$ y_0 = x_\infty + (y_0 e^{-T_2/\tau_y} - x_\infty) e^{-T_1 / \tau_x} $$
(29)
$$ = x_\infty \frac{1-e^{-T_1/\tau_x}}{1-e^{-T_1/\tau_x} e^{-T_2/\tau_y}} $$
(30)

Substituting Eq. (30) back into Eq. (28) yields:

$$ x_0 = x_\infty \frac{1-e^{-T_1/\tau_x}}{1-e^{-T_1/\tau_x} e^{-T_2/\tau_y}}e^{-T_2/\tau_y} $$
(31)

Now, we proceed to estimate the mean value of p o (t), \(\overline{p_o}\), for the case when T 1/τ x and T 2/τ y are infinitesimally small. Our goal is to show that \(\overline{p_o}\) is independent of pulse height, and therefore unaffected by stochastic amplification. We have \(\overline{p_o} = (\overline{x} T_1 + \overline{y} T_2) / (T1 + T2)\). Setting u = T 1/τ x and w = T 2/τ y , and letting w = γu allows us to solve for \(\overline{x}\) as u and w approach zero:

$$ \overline{x} = \lim\limits_{u\to 0} \frac{1}{T_1}\int_0^{T_1} x(t) \! \, \mathrm{d}t $$
(32)
$$ = \lim\limits_{u\to 0} \frac{1}{T_1}\int_0^{T_1} (x_\infty + (x_0 - x_\infty)e^{-t/\tau_x} )^N \! \, \mathrm{d}t $$
(33)

Substituting t′ = t/τ x gives:

$$= \lim\limits_{u\to 0} \frac{\tau_x}{T_1}\int_0^{T_1/\tau_x} (x_\infty + (x_0 - x_\infty)e^{-t'} )^N \! \, \mathrm{d}t' $$
(34)
$$= \lim\limits_{u\to 0} \frac{1}{u}\int_0^{u} (x_\infty + (x_0 - x_\infty)e^{-t'} )^N \! \, \mathrm{d}t' $$
(35)
$$= \lim\limits_{u\to 0} (x_\infty + (x_0 - x_\infty)e^{-u} )^N \cdot \lim\limits_{u\to 0} \frac{1}{u} \int_0^{u} \! \, \mathrm{d}t $$
(36)
$$ = (x_\infty + (\lim\limits_{u\to 0} x_0 - x_\infty)(1) )^N \cdot (1) $$
(37)
$$= (\lim\limits_{u\to 0} x_0)^N $$
(38)

Now, it just remains to solve for lim u→0 x 0. Substituting in from Eq. (31), invoking w = γu, and applying L’Hopital’s rule provides:

$$ \lim\limits_{u\to 0} x_0 = \lim\limits_{u\to 0} x_\infty \frac{1-e^{-T_1/\tau_x}}{1-e^{-T_1/\tau_x - T_2/ \tau_y}}e^{-T_2/\tau_y} $$
(39)
$$ = \lim\limits_{u\to 0} x_\infty \frac{1-e^{-u}}{1-e^{-u(1+\gamma)}}e^{-\gamma u} $$
(40)
$$ = \lim\limits_{u\to 0} x_\infty \frac{e^{-u}}{(1+\gamma)e^{-u(1+\gamma)}}e^{-\gamma u} $$
(41)
$$ = x_\infty \frac{1}{1+\gamma}(1) $$
(42)
$$ = x_\infty \frac{u}{u+w} $$
(43)
$$ = x_\infty \frac{T_1/\tau_x}{T_1/\tau_x+T_2/\tau_y} $$
(44)

We now use our earlier definitions τ x  = 1/(αn A 0 + β), τ y  = 1/β, x  ∞  = αn A 0 τ x , and T 2 = nT 0 − T 1. Substituting these back into the equation for \(\overline{x}\) (38) provides a form for \(\overline{x}\) independent of n:

$$ \lim\limits_{u\to 0} x_0 = \big(\alpha n A_0 \tau_x\big) \frac{T_1/\tau_x }{\big(T_1\big(\alpha n A_0 + \beta\big)+\big(n T_0 - T_1\big)\beta\big)} $$
(45)
$$ = \big(\alpha n A_0 \tau_x\big) \frac{T_1/\tau_x }{\alpha n A_0 T_1+n T_0 \beta} $$
(46)
$$ = \frac{\alpha n A_0 T_1 }{\alpha n A_0 T_1+n T_0 \beta} $$
(47)
$$ = \frac{\alpha A_0 T_1 }{\alpha A_0 T_1+ T_0 \beta} $$
(48)

Thus, substituting back into the equation for \(\overline{x}\) (38) gives:

$$ \overline{x} = \left(\frac{\alpha A_0 T_1 }{\alpha A_0 T_1+ T_0 \beta}\right)^N $$
(49)

Note that the integer n has cancelled out, making \(\overline{x}\) independent of pulse height. Now it just remains to show that \(\overline{y}\) is also independent of n. One can solve for \(\overline{y}\) by analogy with the solution for x(t):

$$ \overline{y} = \lim\limits_{u\to 0} \frac{1}{T_2}\int_0^{T_2} y(t) \! \, \mathrm{d}t $$
(50)
$$ = \lim\limits_{u\to 0} \frac{1}{T_2}\int_0^{T_2} \big(y_0 e^{-t/\tau_y} \big)^N \! \, \mathrm{d}t $$
(51)
$$ = \lim\limits_{u\to 0} \frac{\tau_y}{T_2}\int_0^{T_2/\tau_y} \big(y_0 e^{-t'} \big)^N \! \, \mathrm{d}t' $$
(52)
$$ = \lim\limits_{u\to 0} \frac{1}{\gamma u}\int_0^{\gamma u} \big(y_0 e^{-t'} \big)^N \! \, \mathrm{d}t' $$
(53)
$$ = \big(\lim\limits_{u\to 0} y_0\big)^N $$
(54)

Since \(y_0 = x_0 / (e^{-T_2/\tau_y})\) from Eq. (28), we can substitute this in and adopt the expression for x 0 from Eq. (48):

$$ \overline{y} = \big(\lim\limits_{u\to 0} x_0 / \big(e^{-T_2/\tau_y}\big)\big)^N $$
(55)
$$ = \big(\lim\limits_{u\to 0} x_0 \big)^N $$
(56)
$$ = \left(\frac{\alpha A_0 T_1 }{\alpha A_0 T_1+ T_0 \beta}\right)^N $$
(57)
$$ = \overline{x} $$
(58)

Thus, in the limit where T 1/τ x and T 2/τ y become infinitesimally small, \(\overline{x}=\overline{y}=\overline{p_o}\), where \(\overline{p_o}\) is the mean value of the channel’s open probability for the experiment duration:

$$ \overline{p_o} = \big(\overline{x} T_1 + \overline{y} T_2\big) / (T1 + T2) $$
(59)
$$ = \left(\frac{\alpha A_0 T_1 }{\alpha A_0 T_1+ T_0 \beta}\right)^N $$
(60)

Thus p o is independent of the variable that scales pulse height, n, and stochastic amplification does not occur. As mentioned above, the mean value of our calcium pulse input protocol is A 0 T 1 / T 0. If one applies this calcium value as a constant input to the system, the system will equilibrate to its steady-state p :

$$ p_\infty = s_\infty^N $$
(61)
$$ = \left(\frac{\alpha [{\rm Ca}]_i}{\alpha [{\rm Ca}]_i + \beta}\right)^N $$
(62)
$$ = \left(\frac{\alpha A_0 T_1 / T_0}{\alpha A_0 T_1 / T_0 + \beta}\right)^N $$
(63)
$$ = \left(\frac{\alpha A_0 T_1}{\alpha A_0 T_1 + T_0\beta}\right)^N $$
(64)
$$ = \overline{p_o} $$
(65)

Therefore, as T 1 and T 2 become infinitesimally small relative to τ x and τ y , stochastic amplification no longer occurs. The mean value of the system’s open probability, \(\overline{p_o}\), converges to the system’s steady-state response (p  ∞ ) to the mean calcium input ([Ca] i  = A 0 T 1 / T 0). This was seen for the case of the sAHP channel in Fig. 9(b). Note that τ x  = 1/(αn A 0 + β) and, thus, T 1/τ x  = T 1(αn A 0 + β). In order for the condition T 1/τ x → 0 to hold, n must be finite. This explains why, in Fig. 9(b), a slight amount of stochastic amplification can be seen for pulse height 9.6 μM.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Stanley, D.A., Bardakjian, B.L., Spano, M.L. et al. Stochastic amplification of calcium-activated potassium currents in Ca2+ microdomains. J Comput Neurosci 31, 647–666 (2011). https://doi.org/10.1007/s10827-011-0328-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10827-011-0328-x

Keywords

Navigation