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Abstract We present a neural field model of binoc-

ular rivalry waves in visual cortex. For each eye

we consider a one–dimensional network of neurons

that respond maximally to a particular feature of

the corresponding image such as the orientation of

a grating stimulus. Recurrent connections within

each one-dimensional network are assumed to be

excitatory, whereas connections between the two

networks are inhibitory (cross-inhibition). Slow adap-

tation is incorporated into the model by taking

the network connections to exhibit synaptic de-

pression. We derive an analytical expression for the

speed of a binocular rivalry wave as a function of

various neurophysiological parameters, and show

how properties of the wave are consistent with the

wave–like propagation of perceptual dominance ob-

served in recent psychophysical experiments. In ad-

dition to providing an analytical framework for study-
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ing binocular rivalry waves, we show how neural

field methods provide insights into the mechanisms

underlying the generation of the waves. In partic-

ular, we highlight the important role of slow adap-

tation in providing a “symmetry breaking mecha-

nism” that allows waves to propagate.
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1 Introduction

A number of phenomena in visual perception in-

volve wave–like propagation dynamics. Examples

include perceptual filling-in [14], migraine aura [18],

expansion of illusory contours [17] and the line–

motion illusion [21]. Another important example,

which is the focus of this paper, is the wave–like

propagation of perceptual dominance during binoc-

ular rivalry [41, 27, 22, 23]. Binocular rivalry is

the phenomenon whereby perception switches back

and forth between different images presented to the

two eyes. The resulting fluctuations in perceptual

dominance and suppression provide a basis for non-

invasive studies of the human visual system and the

identification of possible neural mechanisms under-
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lying conscious visual awareness [6, 7]. One way to

observe and measure the speed of perceptual waves

in psychophysical experiments [41, 27] is to take

the rival images to be a low–contrast radial grat-

ing presented to one eye and a high–contrast spiral

grating presented to the other eye. Each image is

restricted to an annular region of the visual field

centered on the fixation point of the observer, thus

effectively restricting wave propagation to the one

dimension around the annulus. Switches in percep-

tual dominance can then be triggered using a brief

rapid increase in stimulus contrast within a small

region of the suppressed low-contrast grating. This

induces a perceptual traveling wave in which the

observer perceives the local dominance of the low–

contrast image spreading around the annulus. The

observer presses a key when the perceptual wave

reaches a target area at a fixed distance from the

trigger zone, and this determines the wave speed

[41, 27]. Since the rival images consist of oriented

gratings, one might expect that primary visual cor-

tex (V1) plays some role in the generation of binoc-

ular rivalry waves. Indeed, it has been shown using

functional magnetic resonance imaging that there

is a systematic correspondence between the spa-

tiotemporal dynamics of activity in V1 and the

time course of perceptual waves [27]. However, it

has not been established whether the waves origi-

nate in V1 or are evoked by feedback from extras-

triate cortex.

Recently Kang et. al. [22, 23] have developed

a new psychophysical method for studying binoc-

ular rivalry waves that involves periodic perturba-

tions of the rival images. An observer tracks ri-

valry within a small, central region of spatially ex-

tended rectangular grating patterns, while alter-

nating contrast triggers are presented repetitively

in the periphery of the rival patterns. The basic

experimental set up is illustrated in Fig. 1. A num-

ber of interesting results have been obtained from

these studies. First, over a range of trigger frequen-

cies, the switching between rival percepts within

the central regions is entrained to the triggering

events. Moreover, the optimal triggering frequency

depends on the natural frequency of spontaneous

switching (in the absence of triggers). Second, the

latency between triggering event and perceptual

switching increases approximately linearly with the

distance between the triggering site and the central

region being tracked by the observer, consistent

with the propagation of a traveling front. Third,

the speed of the traveling wave across observers

covaries with the spontaneous switching rate.

In this paper we analyze the existence and sta-

bility of binocular rivalry waves in a continuum

neural field model of visual cortex. We derive an

analytical expression for the wave speed as a func-

tion of neurophysiological parameters, and use this

to show how our model reproduces various experi-

mental results found by Kang et al. [22, 23], in par-

ticular, the observation that wave speed covaries

with the natural alternation rate. Our model is es-

sentially a continuum version of a previous com-

putational model of rivalry waves based on a dis-

crete two layer neural network [41, 23]. The two

layers represent cortical neurons responsive to one

or more features of the image presented to the left

and right eye respectively. Such features could in-

clude the orientation of a spatially extended grat-

ing stimulus or distinguish between spiral and ra-

dial annulus patterns. In the discrete computational

model, connections within a layer were taken to

be excitatory, whereas neurons between layers mu-

tually inhibited each other via a set of local in-

terneurons. Moreover, in order to allow switching

between the dominant and suppressed populations,

the excitatory neurons were assumed to exhibit

some form of slow spike frequency adaptation. In

our neural field version of this model, we consider

an alternative form of slow adaptation based on
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Fig. 1 Schematic diagram illustrating experimental prototocol used to study binocular rivalry waves [22]. High contrast

triggers are presented periodically in antiphase within the upper extended region of one grating pattern and within the

lower region of the rival pattern. Subject simply reports perceptual alternations in rival dominance within the central

monitoring region indicated by the horizontal black lines on each pattern. The monitoring region is a distance ∆d from the

trigger region, which can be adjusted. If ∆t is the latency between the triggering event and the subsequent observation of

a perceptual switch, then the speed c of the wave is given by the slope of the plot ∆d = c∆t.

depressing synapses. In addition to providing an

analytical framework for studying binocular rivalry

waves, we show how neural field methods provide

insights into the mechanisms underlying the gen-

eration of the waves. In particular, we highlight

the important role of slow adaptation in provid-

ing a “symmetry breaking mechanism” that allows

fronts to propagate.

2 The Model

In order to model binocular rivalry waves in the

presence of oriented grating stimuli [41, 22, 23], it
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is useful to review some of the stimulus response

properties of neurons in the primary visual cortex

(V1) [19, 20]. First, each neuron in V1 responds

to light stimuli in a restricted region of the visual

field called its classical receptive field; stimuli out-

side a neuron’s receptive field do not directly affect

its activity. Second, most neurons in V1 respond

preferentially to stimuli targeting either the left or

right eye, which is known as ocular dominance. It

has been suggested that neurons with different oc-

ular dominance may inhibit one another if they

have nearby receptive fields [24]. Third, most neu-

rons in V1 are tuned to respond maximally when

a stimulus of a particular orientation is in their

receptive field [19, 8]. This is known as a neu-

ron’s orientation preference, and the neuron will

not respond if a stimulus is sufficiently different

from its preferred orientation. Finally, multielec-

trode recordings and optical imaging have estab-

lished that at each point in the visual field there

exists a corresponding set of neurons spanning the

entire spectrum of orientation preferences that are

packed together as a unit in V1, known as a hy-

percolumn [20, 38, 8]. Within each hypercolumn,

neurons with sufficiently similar orientations tend

to excite each other whereas those with sufficiently

different orientations inhibit each other, and this

serves to sharpen a particular neuron’s orientation

preference [5, 15]. Moreover, anatomical evidence

suggests that inter-hypercolumn connections link

neurons with similar orientation preferences [35, 3].

The functional relationship between stimulus fea-

ture preferences and synaptic connections within

V1 thus suggests that V1 is a likely substrate of

simple examples of binocular rivalry such as those

involving sinusoidal grating stimuli.

Binocular rivalry waves consist of two basic com-

ponents: the switching between rivalrous left/right

eye states and the propagation of the switched state

across a region of cortex. Let us first focus on the

switching mechanism by neglecting spatial effects.

Suppose that distinct oriented grating patterns are

presented to the two eyes such as those shown in

Fig. 1. This induces rivalry due to the combination

of orientation specific and ocular dominant cross-

inhibition in V1 [5, 35, 7]. During left eye stimulus

dominance, it is assumed that a group of the left

eye neurons that respond to vertical orientations

are firing persistently, while right eye neurons are

suppressed by cross-inhibitory connections. Follow-

ing this, some slow adaptive process such as synap-

tic depression or spike frequency adaptation causes

a switch so that right eye neurons tuned to the

oblique orientation fire persistently, suppressing the

left eye neurons. The cycle of left eye neural dom-

inance along with right eye neural suppression fol-

lowed by right eye neural dominance along with

left eye neural suppression can then repeat itself in

the form of rivalrous oscillations. This basic model

of reciprocal inhibition paired with a slow adaptive

process has often been used to phenomenologically

model the neural substrate of binocular rivalry os-

cillations [16, 34, 41, 26, 37, 32, 33, 25].

In order to take into account the propagation of

activity seen in binocular rivalry waves [41, 22, 23],

we will consider a continnuum neural field model.

Several previous studies have modeled the sponta-

neous switching between rivalrous oriented stimuli

in terms of a pair of ring networks (neural fields on

a periodic domain) with slow adaptation and cross-

inhibition, representing a pair of hypercolumns for

the left and right eyes, respectively [26, 25]. In

these models, the rivalrous states consist of sta-

tionary activity bumps coding for either the left or

right eye stimuli. (Rivalry effects in a spatially ex-

tended model have also been examined in a prior

study by Loxley and Robinson [28], in which rival-

rous stimuli are presented to a single one–dimensional

network). However, these models were not used

to study binocular rivalry waves and, as formu-
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Fig. 2 Schematic diagram of network architecture consisting of two one–dimensional neural fields. Suppose that the left

eye is shown a 135 degree grating and the right eye is shown a 45 degree grating. Then one of the neural fields represents

the activity of neurons tuned to 135 degree orientations in the left eye, whilst the other neural field represents the activity

of neurons tuned to 45 degree orientations in the right eye. Recurrent connections within each one-dimensional network are

assumed to be excitatory, whereas connections between the two networks are inhibitory (cross-inhibition). The excitatory

and inhibitory weight distributions are taken to be Gaussians. Slow adaptation is incorporated into the model by taking

the network connections to exhibit synaptic depression.

lated, were on the wrong spatial scale since they

only considered short–range spatial scales compa-

rable to a single hypercolumn. One way to pro-

ceed would be to construct a more general cou-

pled ring model along the lines of Bressloff et. al.

[10, 11], in which two sets of hypercolumns (ring

networks) are distributed along a pair of lines cor-

responding to the left and right eyes, respectively,

such that along each line the synaptic weights can

be decomposed into short-range intra-columnar in-

teractions and long–range inter-columnar interac-

tions, together with cross-inhibitory connections

between the left and right eye networks. In this

paper, we will consider a simpler network architec-

ture in which we neglect the internal structure of

a hypercolumn. That is, for each eye we consider

a one–dimensional network of neurons whose ori-

entation preference coincides with the orientation

of the corresponding grating stimulus, which is a

reasonable first approximation from the perspec-

tive of the experiments conducted by Kang et. al.

[22, 23]. Recurrent connections within each one-

dimensional network are assumed to be excitatory,

whereas connections between the two networks are

inhibitory (cross-inhibition). Slow adaptation is in-

corporated into the model by taking the network

connections to exhibit synaptic depression along

the lines of Kilpatrick and Bressloff [25]. The basic

architecture is shown schematically in Fig. 2. Note

that a similar network architecture was previously

considered in a computational model of binocu-

lar rivalry waves [41, 27], in which cross inhibi-

tion was mediated explicitly by interneurons and,

rather than including depressing synapses, the ex-

citatory neurons were taken to exhibit spike fre-

quency adaptation. The most significant difference

between our approach and the computational ap-

proach is that the latter considers a discrete neural

network rather than a continuum neural field. As

we will establish in this paper, one advantage of

neural field theory is that analytical methods can

be used to derive conditions for the existence and

stability of traveling waves, and to derive formulae
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relating the wave speed to various neurophysiolog-

ical parameters.

Let u(x, t) and v(x, t) denote the activity of the

left and right eye networks at position x ∈ R at

time t. The associated neural field equations are

taken to be of the form

τ
∂u(x, t)

∂t
= −u(x, t) + Iu(x, t) (2.1a)

+

ˆ ∞

−∞

we(x − x′)qu(x′, t)f(u(x′, t)))dx′

−
ˆ ∞

−∞

wi(x − x′)qv(x′, t)f(v(x′, t)))dx′

τs

∂qu(x, t)

∂t
= 1 − qu(x, t) − βqu(x, t)f(u(x, t)),

(2.1b)

and

τ
∂v(x, t)

∂t
= −v(x, t) + Iv(x, t) (2.2a)

+

ˆ ∞

−∞

we(x − x′)qv(x′, t)f(v(x′, t)))dx′

−
ˆ ∞

−∞

wi(x − x′)qu(x′, t)f(u(x′, t)))dx′,

τs

∂qv(x, t)

∂t
= 1 − qv(x, t) − βqv(x, t)f(v(x, t)).

(2.2b)

The nonlinear function f represents the mean firing

rate of a local population and is usually taken to

be a smooth, bounded monotonic function such as

a sigmoid

f(u) =
1

1 + e−η(u−κ)
, (2.3)

with gain η and threshold κ. However, in order to

derive explicit traveling wave solutions, it will be

convenient to consider the high gain limit η → ∞
of (2.3) such that f becomes a Heaviside function

[2, 30, 13]

f(u) = H(u − κ) =

{
0 if u < κ

1 if u > κ.
(2.4)

The distribution we of excitatory connections be-

tween neurons of the same eye preference and the

distribution of cross-inhibitory connections between

neurons of the opposite eye preference are both

taken to be Gaussians:

we(r) =
ae√
2πσ2

e

e
− r2

2σ2
e , wi(r) =

ai√
2πσ2

i

e
− r2

2σ2
i

(2.5)

We assume that excitatory connections are longer

range than inhibitory connections, σe > σi and fix

length scales by setting σe = 2 and σi = 1 at base-

line. We expect excitatory connections to span a

cortical hypercolumn so that σe will be of the or-

der 200 µm. We also fix the temporal scale of the

network by setting the membrane time constant

τ = 1; the membrane time constant is typically

around 10msec. Depressing synapses are incorpo-

rated into the model in the form of the presynaptic

scaling factors qu, qv evolving according to equa-

tions (2.1b) and (2.2b). These scaling factors can

be interpreted as a measure of available presynap-

tic resources, which are depleted at a rate propor-

tional to βqf [39, 36, 4], and are recovered on a

timescale specified by the constant τs. Specifically,

we will study the effect of slow short term synaptic

depression (experimentally shown to recover over

5-10s [40, 12]). Slow short term synaptic depression

has been implicated as a mechanism for contrast

adaptation in V1, due to its comparable recovery

timescale of 5-10s [40]. Thus, there is evidence for

participation of this slower depression in processes

of V1 in addition to faster short term synaptic de-

pression, which recovers on timescales of roughly

200-800ms [1, 40]. Finally, we take Iu, Iv to rep-

resent the effective strength of the left and right

eye stimuli, respectively. Recall that we are only

modeling neurons whose orientation preference co-

incides with the corresponding stimulus orientation

so that we can take the unperturbed network to

have constant homogeneous inputs. (The induction

of traveling waves requires locally perturbing one

of the inputs).
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3 Travelling Waves

3.1 Non-depressing synapses (β = 0)

In our simplified model, we interpret the binocular

rivalry wave seen in the experiments of Kang et.

al. [22, 23] as a traveling wave front solution of the

neural field equations (2.1) and (2.2), in which a

high activity state invades the suppressed left eye

network, say, whilst retreating from the dominant

right eye network. Let us begin by ignoring the

effects of synaptic depression, that is, we set β =

0 and qu = qv ≡ 1. We also assume that both

inputs have the same strength or contrast so that

Iu = Iv = I. We then obtain the reduced system of

equations (for τ = 1 and f given by the Heaviside

(2.4))

∂u

∂t
+ u =

ˆ ∞

−∞

we(x − x′)H(u(x′, t) − κ)dx′

−
ˆ ∞

−∞

wi(x − x′)H(v(x′, t) − κ)dx′ + I,

(3.1)

and

∂v

∂t
+ v =

ˆ ∞

−∞

we(x − x′)H(v(x′, t) − κ)dx′

−
ˆ ∞

−∞

wi(x − x′)H(u(x′, t) − κ)dx′ + I.

(3.2)

Given that the differential operator D = ∂
∂t

+1 has

a Green’s function given by G(t, s) = η(t− s) with

η(t) =





0 t < 0

e−t t > 0,

we can re-write the above equations in purely in-

tegral form:

u(x, t) = I +

ˆ ∞

0

η(s)Ge[u](x, t − s)ds

−
ˆ ∞

0

η(s)Gi[v](x, t − s)ds (3.3)

v(x, t) = I +

ˆ ∞

0

η(s)Ge[v](x, t − s)ds

−
ˆ ∞

0

η(s)Gi[u](x, t − s)ds (3.4)

where

Gp[u](x, t) =

ˆ ∞

−∞

wp(y)H(u(x − y, t) − κ)dy

(3.5)

for p = e, i.

Homogeneous fixed point solutions (U∗, V ∗) of

equations (3.3) and (3.4) satisfy the pair of equa-

tions

U∗ = weH(U∗ − κ) − wiH(V ∗ − κ) + I

V ∗ = weH(V ∗ − κ) − wiH(U∗ − κ) + I,

where

we =

ˆ ∞

−∞

we(x)dx, wi =

ˆ ∞

−∞

wi(x)dx. (3.6)

There are a maximum of four possible fixed point

solutions, all of which are stable. First, there is the

off state U∗ = V ∗ = I, which occurs when I < κ,

that is, the input is not strong enough to directly

activate either population. Second there is the on-

state or fusion state U∗ = V ∗ = we − wi + I,

which occurs when I > κ + wi − we. This case

is more likely when recurrent excitation is strong

or cross-inhibition is weak. Finally, there are two

winner–take–all (WTA) states in which one pop-

ulation dominates the other: the left eye domi-

nant state (U∗, V ∗) = XL ≡ (we + I, I − wi) and

the right eye dominant state (U∗, V ∗) = XR ≡
(I−wi, we+I). These states exist when I > κ−we

and I < κ + wi. We will assume that the space–

clamped network operates in a regime where the

WTA fixed points exist.

Let us now consider a traveling wave front so-

lution of the form

u(x, t) = U(x − ct), v(x, t) = V (x − ct)
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where c is the wave speed and ξ = x − ct is a

traveling wave coordinate. We assume that

(U(ξ), V (ξ)) → XL as ξ → −∞,

(U(ξ), V (ξ)) → XR as ξ → ∞

with U(ξ) a monotonically decreasing function of ξ

and V (ξ) a montonically increasing function of ξ. It

follows that if c > 0 then the wavefront represents

a solution in which activity invades a supressed left

eye network and retreats from a dominant right eye

network. Substituting the traveling front solution

into equations (3.3) and (3.4) gives

U(ξ) = I +

ˆ ∞

0

η(s)Ĝe[U ](ξ + cs)ds

−
ˆ ∞

0

η(s)Ĝi[V ](ξ + cs)ds

V (ξ) = I +

ˆ ∞

0

η(s)Ĝe[V ](ξ + cs)ds

−
ˆ ∞

0

η(s)Ĝi[U ](ξ + cs)ds.

where

Ĝp[U ](ξ) =

ˆ ∞

−∞

wp(y)H(U(ξ − y) − κ)dy, p = e, i

Given the asymptotic behavior of the solution and

the requirements of monotonicity, we see that U(ξ)

and V (ξ) each cross threshold at a single location,

which may be different for the two eyes. Exploit-

ing translation invariance we take U(0) = κ and

V (ξ0) = κ. These threshold crossing conditions im-

ply that the above equations simplify further ac-

cording to

U(ξ) =

ˆ ∞

0

η(s)

[
ˆ ∞

ξ+cs

we(y)dy

−
ˆ ξ−ξ0+cs

−∞

wi(y)dy

]
ds + I (3.7)

V (ξ) =

ˆ ∞

0

η(s)

[
ˆ ξ−ξ0+cs

−∞

we(y)dy

−
ˆ ∞

ξ+cs

wi(y)dy

]
ds + I. (3.8)

It is convenient to introduce the function

Ψξ0
(z) =

ˆ ∞

z

we(y)dy −
ˆ z−ξ0

−∞

wi(y)dy. (3.9)

Exploiting the fact that the Gaussian weight dis-

tributions we(y) and wi(y) are even functions of y,

it can be seen that

Ψξ0
(ξ0 − z) =

ˆ z−ξ0

−∞

we(y)dy −
ˆ ∞

z

wi(y)dy,

so that equations (3.7) and (3.8) can be rewritten

in the more compact form

U(ξ) =

ˆ ∞

0

η(s)Ψξ0
(ξ + cs)ds + I (3.10)

V (ξ) =

ˆ ∞

0

η(s)Ψξ0
(ξ0 − ξ − cs) + I. (3.11)

Finally, imposing the threshold conditions U(0) =

V (ξ0) = κ gives

κ =

ˆ ∞

0

η(s)Ψξ0
(cs)ds + I, (3.12)

κ =

ˆ ∞

0

η(s)Ψξ0
(−cs)ds + I. (3.13)

It is now straightforward to show that a travel-

ing front solution cannot exist for the neural field

model without adaptation given by equations (3.1)

and (3.2). For subtracting equation (3.13) from

(3.12) implies that

ˆ ∞

0

η(s) [Ψξ0
(cs) − Ψξ0

(−cs)] ds = 0, (3.14)

which does not have a solution for any c, ξ0 such

that c 6= 0. The latter follows from equation (3.9),

which shows that for c 6= 0,

c [Ψξ0
(cs) − Ψξ0

(−cs)]

= −c

ˆ cs

−cs

we(y)dy − c

ˆ cs−ξ0

−cs−ξ0

wi(y)dy < 0

whereas η(s) > 0 for all s ∈ [0,∞). The non-

existence of traveling fronts is consistent with the

observation that in the absence of any cross-inhibition

(wi ≡ 0), the system reduces to two independent
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one–dimensional neural fields with excitatory con-

nections. In order to construct a front solution that

simultaneously invades one network whilst retreat-

ing from the other we would require a one–dimensional

excitatory neural field to be able to support a pair

of counter-propagating front solutions with speeds

±c, which is not possible [2]. Therefore, some mech-

anism must be introduced that breaks the exchange

symmetry of the two one–dimensional networks.

This cannot be achieved simply by taking Iu 6=
Iv, since binocular rivalry waves are still observed

when the left and right eye stimuli have the same

contrast. An alternative approach is to introduce

slow synaptic depression.

3.2 Slow synaptic depression (β > 0, τs ≫ 1)

Let us now consider the full neural field model with

depressing excitatory connections given by equa-

tions (2.1) and (2.2) with f(u) = H(u − κ). As

in the case β = 0, there are four possible ho-

mogeneous fixed points corresponding to an off-

state, a fusion state and two WTA states, and all

are stable. Denoting a homogeneous fixed point by

(U∗, V ∗, Q∗
u, Q∗

v), we have

U∗ = Q∗
uweH(U∗ − κ) − Q∗

vwiH(V ∗ − κ) + I

Q∗
u =

1

1 + βH(U∗ − κ)

V ∗ = Q∗
vweH(V ∗ − κ) − Q∗

uwiH(U∗ − κ) + I

Q∗
v =

1

1 + βH(V ∗ − κ)

with we, wi given by equation (3.6). Hence, the fu-

sion state is now

(U∗, V ∗) =

(
we − wi

1 + β
+ I,

we − wi

1 + β
+ I

)
,

(Q∗
u, Q∗

v) =

(
1

1 + β
,

1

1 + β

)
, (3.15)

and occurs when I > κ − (w̄e − w̄i)/(1 + β). This

case is more likely for very strong depression (β

large), since cross inhibition will be weak, or when

the local connections are strong and excitation-

dominated. The left eye dominant WTA state now

takes the form

(U∗, V ∗) =

(
we

1 + β
+ I, I − wi

1 + β

)
,

(Q∗
u, Q∗

v) =

(
1

1 + β
, 1

)
(3.16)

whereas the right eye dominant WTA state be-

comes

(U∗, V ∗) =

(
I − wi,

we

1 + β
+ I

)
,

(Q∗
u, Q∗

v) =

(
1,

1

1 + β

)
(3.17)

The WTA states exist provided that

I > κ − we

1 + β
, I < κ +

wi

1 + β

This will occur in the presence of weak depres-

sion (β small) and strong cross-inhibition such that

depression cannot exhaust the dominant hold one

population has on the other. Previously, we have

shown that equations (2.1) and (2.2) also support

homogeneous limit cycle oscillations in which there

is periodic switching between left and right eye

dominance consistent with binocular rivalry [25].

Since all the fixed points are stable, it follows that

such oscillations cannot arise via a standard Hopf

bifurcation. Indeed, we find bistable regimes in which

a rivalry state coexists with a fusion state as il-

lustrated in Figure 3. (Such behavior persists in

the case of smooth sigmoid firing rate functions, at

least for sufficiently high gain [25]).

Suppose that the full system given by equa-

tions (2.1) and (2.2) is initially in a stable right

eye dominated WTA state, and is then perturbed

away from this state by introducing a propagating

front that generates a switch from right to left eye

dominance. We further assume that over a finite

spatial domain of interest the time taken for the
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Fig. 3 Bifurcation diagram showing homogeneous solu-

tions for the left population activity u as a function of the in-

put amplitude I. Solid lines represent stable states, whereas

circles represent the maximum and minimum of rivalrous os-

cillations. It can be seen that there are regions of off/WTA

bistability, WTA/fusion bistability, and fusion/rivalry bista-

bility. Parameters are τs = 500, κ = 0.05, β = 5, we = 0.4

and wi = −1.

wave front to propagate is much smaller than the

relaxation time τs of synaptic depression. Thus, to

a first approximation we can ignore the dynamics

of the depression variables and assume that they

are constant, that is, (qu(x, t), qv(x, t)) = (Qu, Qv)

with Qu = 1 and Qv = (1 + β)−1. A similar adi-

abatic approximation can also be made if the net-

work is in a binocular rivalry state, provided that

(a) the duration of wave propagation is short com-

pared to the natural switching period and (b) the

induction of the wave does not occur close to the

point at which spontaneous switching occurs. In

this case Qu and Qv will not be given by the WTA

solution, but we can assume that Qu 6= Qv. Under

the adiabatic approximation, we obtain a slightly

modified version of equations (3.1) and (3.2) given

by

u(x, t) = I + Qu

ˆ ∞

0

η(s)Ge[u](x, t − s)ds

−Qv

ˆ ∞

0

η(s)Gi[v](x, t − s)ds (3.18)

v(x, t) = I + Qv

ˆ ∞

0

η(s)Ge[v](x, t − s)ds

−Qu

ˆ ∞

0

η(s)Gi[u](x, t − s)ds. (3.19)

with Ge,i given by equation (3.5). The analysis of

the existence of a traveling wave front solution pro-

ceeds along identical lines to section 3.1, except

that now the asymptotic states take the form

XL = (quwe+I, I−qvwi), XR = (I−quwi, qvwe+I).

We thus obtain the following modified threshold

conditions:

κ =

ˆ ∞

0

η(s)Ψξ0
(cs)ds + I, (3.20)

κ =

ˆ ∞

0

η(s)Φξ0
(−cs)ds + I, (3.21)

with Ψ and Φ defined by

Ψξ0
(z) = Qu

ˆ ∞

z

we(y)dy − Qv

ˆ z−ξ0

−∞

wi(y)dy.

(3.22)

Φξ0
(z) = Qv

ˆ ∞

z

we(y)dy − Qu

ˆ z−ξ0

−∞

wi(y)dy.

(3.23)

It can be seen that synaptic depression breaks the

symmetry of the consistency equations, and this

will allow us to find solutions for c, ξ0 and thus

establish the existence of traveling front solutions.
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3.3 Calculation of wave speed

In order to establish the existence of a wave speed

c and a threshold crossing point ξ0, define the func-

tions

F1(c, ξ0) =

ˆ ∞

0

η(s)Ψξ0
(cs)ds (3.24)

and

F2(c, ξ0) =

ˆ ∞

0

η(s)Φξ0
(−cs)ds. (3.25)

Evaluating the integrals using equations (2.5), (3.22),

(3.23) and η(s) = e−s gives (for c > 0)

F1(c, ξ0) =
aeQu

2

(
1 − e

σ2
e

2τ2
f

c2 Erfc

[
σe√
2τf c

])

−aiQv

2

(
Erfc

[
ξ0√
2σi

]
(3.26)

−e

σ2
i
−2τf cξ0

2τ2
f

c2 Erfc

[
σ2

i − τfcξ0√
2σiτfc

])

F2(c, ξ0) =
aeQv

2

(
1 + e

σ2
e

2τ2
f

c2 Erfc

[
σe√
2τf c

])

−aiQu

2

(
Erfc

[
ξ0√
2σi

]
(3.27)

−e

σ2
i
+2ξ0τf c

2τ2
f

c2 Erfc

[
σ2

i + ξ0τfc√
2σiτf c

])

where

Erfc(x) =
2√
π

ˆ ∞

x

e−t2dt

is the complementary error function. Subtracting

equation (3.21) from (3.20), we then have the im-

plicit equation

G(c, ξ0) ≡ F1(c, ξ0) − F2(c, ξ0) = 0. (3.28)

It is straightforward to show that for fixed ξ0,

lim
c→∞

G(c, ξ0) > 0, lim
c→−∞

G(c, ξ0) < 0.

Hence, the intermediate value theorem guarantees

at least one solution c = c(ξ0), which is differen-

tiable by the implicit function theorem. If Qu =

Qv, then F1(0, ξ0) = F2(0, ξ0) and the only point

where G vanishes is at c = 0. On the other hand,

if Qv 6= Qu then G(0, ξ0) 6= 0 for all finite ξ0 so

that c(ξ0) 6= 0. Given a solution c = c(ξ0) of equa-

tion (3.28), the existence of a traveling wavefront

solution reduces to the single threshold condition

κ = F1(c(ξ0), ξ0) + I. (3.29)

We find that there exists a unique traveling front

solution for a range of values of κ.

In Figs. 4 and 5, we plot wave speed as a func-

tion of various model parameters. We choose base-

line parameter values such that spontaneous oscil-

lations and traveling fronts co-exist, as found ex-

perimentally [22, 23]. The model wave speed is of

the order c = 1 in dimensionless units, that is, c =

σe/2τ where σe is the range of excitation and τ is

the membrane time constant. In the psychophysi-

cal experiments of Kang et. al. [22, 23], it was found

that binocular rivalry waves took approximately

0.8 seconds to traverse 2 degrees of the visual field.

The magnification factor in humans throughout

the foveal region is approximately 0.4cm/deg, which

corresponds to 0.8cm of cortex. Hence the wave

speed we would expect to see in cortex based on

the psychophysical experiments is approximately

10mm/sec. This is consistent with our analytical

results, if we take σe to be of the order 200µm

and τ to be of the order 10 msec. Fig. 4 shows

that increasing the strength of excitation (cross–

inhibition) increases (decreases) the speed of the

wave, whereas Fig. 5(a) shows that the speed of

the wave decreases as the threshold κ increases.

However, these parameters cannot be manipulated

in psychophysical experiments. On the other hand,

it is possible to vary the contrast of the sinusoidal

grating stimuli. For example, Kang et. al.[22, 23]

showed that increasing the stimulus contrast in-

creases wave speed. This is consistent with Fig.

5(b), which plots wave speed as a function of in-
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Fig. 4 Plot of wave speed c as a function of various weight parameters: (a,b) the amplitudes ae, ai and (c,d) the length

constants σe, σi. The default parameters are taken to be ai = 1, ae = 0.4, σi = 1, σe = 2, β = 5, κ = 0.05, I = 0.24, Qu =

0.42, Qv = 0.25 and the corresponding wave speed is c = 1.2. For this set of parameters, the network operates in a regime

that supports both traveling waves and homogeneous oscillatory solutions, that is, spontaneous switching occurs in the

absence of traveling waves.

put amplitude I. Another variable that could be

manipulated is the time at which a rivalry wave

is induced relative to the phase of the limit cy-

cle representing spontaneous rivalry oscillations. In

our model, under the adiabatic approximation, this

would correspond to changing the values of Qu and

Qv. In Fig. 5(c) we plot wave speed as a func-

tion of ∆Q = (Qu − Qv)/2 with Qu + Qv fixed.

It can be seen that c increases with ∆Q, which is

analogous to inducing a wave closer to the point

at which spontaneous switching would occur (see

also section IV). Note that in the experimental pro-

tocol of Kang et al [22, 23], see Fig. 1, the wave

speed is determined after averaging with respect

to the switching events induced by a sequence of

periodic trigger stimuli rather than a single trig-

gering event. In terms of our model, this would

correspond to averaging the wave speed with re-

spect to a range of values of Qu and Qv, since

spontaneous binocular rivalry oscillations are ac-

tually noisy. Hence, the dependence of wave speed

on the timing of the inducing stimuli relative to the

phase of spontaneous oscillations is effectively re-

duced. However, Kang et al did find that there is an

optimal trigger period for inducing reliable switch-

ing that depends on the natural period of spon-

taneous oscillations. It is likely that this phase–

locking phenomenon reflects some residual depen-

dence of wave propagation on the relative timing

of the trigger stimuli. Finally, a typical example

of a wavefront profile is shown in Fig. 5(d). Note

that the symmetry breaking mechanism necessary
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Fig. 5 (a-c) Plot of wave speed c as a function of (a) the threshold κ, (b) the external input strength I and (c) ∆Q where

Qu = Q0 +∆Q, Qv = Q0 −∆Q with Q0 = 0.335. (d) Plot of right–moving traveling front solution in which in which a high

activity state invades the suppressed left eye network whilst retreating from the dominant right eye network. Parameters

are at the baseline values of Fig. 4 unless specified otherwise.

to support wave propagation is reflected by the

fact that limξ→−∞ U(ξ) > limξ→∞ V (ξ). That is,

the initial activity in the dominant right eye is de-

pressed compared to the final activity in the domi-

nant left eye (under the adiabatic approximation).

3.4 Wave stability

In order to determine wave stability, we linearize

equations (3.18) and (3.19) around the traveling

wave solution (U(ξ), V (ξ)) with Qu, Qv fixed. Writ-

ing u(x, t) = U(ξ) + r(ξ)eλt and v(x, t) = V (ξ) +

p(ξ)eλt with Re[λ] > −1, we obtain the linear sys-

tem

r(ξ) = Qu

ˆ ∞

0

η(s)

ˆ ∞

−∞

we(y)r(ξ + cs − y)e−λs

×δ(U(ξ + cs − y) − κ)dyds

−Qv

ˆ ∞

0

η(s)

ˆ ∞

−∞

wi(y)p(ξ + cs − y)e−λs

×δ(V (ξ + cs − y) − κ)dyds

p(ξ) = Qv

ˆ ∞

0

η(s)

ˆ ∞

−∞

we(y)p(ξ + cs − y)e−λs

×δ(V (ξ + cs − y) − κ)dyds

−Qu

ˆ ∞

0

η(s)

ˆ ∞

−∞

wi(y)r(ξ + cs − y)e−λs

×δ(U(ξ + cs − y) − κ)dyds,

where δ(U − κ) denotes the Dirac delta function.

Using the threshold conditions U(0) = κ, V (ξ0) =
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κ and a property of Dirac delta functions, we have

δ(U(ξ)) =
δ(ξ)

|U ′(0)| , δ(V (ξ)) =
δ(ξ − ξ0)

|V ′(ξ0)|
(3.30)

Hence,

r(ξ) = Qu

ˆ ∞

0

η(s)we(ξ + cs)
r(0)

|U ′(0)|e
−λsds

−Qv

ˆ ∞

0

η(s)wi(ξ + cs − ξ0)
p(ξ0)

|V ′(ξ0)|
e−λsds

(3.31)

p(ξ) = Qv

ˆ ∞

0

η(s)we(ξ + cs − ξ0)
p(ξ0)

|V ′(ξ0)|
e−λsds

−Qu

ˆ ∞

0

η(s)wi(ξ + cs)
r(0)

|U ′(0)|e
−λsds.

(3.32)

Introducing an appropriate norm on the space of

functions (r(ξ), p(ξ)), the linear equations (3.31)

and (3.32) generate a well defined spectral prob-

lem. In particular, the discrete spectrum of eigen-

values λ is obtained by finding solutions r(ξ) and

p(ξ) that decay sufficiently fast as |ξ| → ∞ – the

rate of decay is determined by the weight functions

we, wi. These eigensolutions can be found by set-

ting ξ = 0 in equation (3.31) and ξ = ξ0 in equation

(3.32), and solving the resulting self–consistency

equations for r(0) and p(ξ0):

(
r(0)

p(ξ0)

)
=




Qu

cWe(λ,0)
|U ′(0)| −Qv

cWi(λ,−ξ0)
|V ′(ξ0)|

−Qu
cWi(λ,ξ0)
|U ′(0)|

Qv
cWe(λ,0)

|V ′(ξ0)|




(

r(0)

p(ξ0)

)

where

Ŵp(λ, ξ) =

ˆ ∞

0

η(s)wp(cs + ξ)e−λsds

for p = e, i. The self–consistency equation has a

non-trivial solution provided that λ is a zero of the

function

E(λ) = det




Qu

cWe(λ,0)
|U ′(0)| − 1 −Qv

cWi(λ,−ξ0)
|V ′(ξ0)|

−Qu
cWi(λ,ξ0)
|U ′(0)|

Qv
cWe(λ,0)

|V ′(ξ0)| − 1





We identify E(λ) with the so–called Evans func-

tion of the traveling wave solution [42, 13, 31].

That is, the complex number λ is an eigenvalue

of the linear system if and only if E(λ) = 0. More-

over, the algebraic multiplicity of each eigenvalue

is equal to the order of the corresponding zero of

the Evans function. It can be shown that E(λ) is

analytic in λ and thus normal numeric root finding

may be used to find λ. The wave will be linearly

stable if all non-zero eigenvalues λ have negative

real part and λ = 0 is a simple eigenvalue. The

existence of a zero eigenvalue reflects translation

invariance of the dynamical system given by equa-

tions (3.18) and (3.19). (Note that there is also a

continuous part of the spectrum, but this always

lies in the left–half complex λ–plane and thus does

not contribute to any wave instabilities [13, 31]).

Numerically plotting the zero sets Re[E[λ]] and

Im[E[λ]] for the baseline parameter values, we find

that there exists only a single eigenvalue (at λ = 0),

indicating that the traveling front is linearly stable.

This result persists for other choices of parameters

for which a traveling front exists.

4 Numerical simulations

In our analysis of binocular rivalry waves (section

3), we neglected the dynamics of the depression

variables by making an adiabatic approximation.

In this section we numerically solve the full system

of equations (2.1) and (2.2) and show that traveling

fronts persist when the dynamics of the depression

variables is included.

We begin by considering a single trigger stimu-

lus in the form of a temporary, spatially localized

increase in the input strength to the suppressed eye

network, which for concreteness we take to be the

left eye. Thus,

Iu(x, t) = Θ(t − t0)Θ(∆t + t0 − t)Θ(∆x − |x|)∆I

+ I,

Iv(x, t) = I
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Fig. 6 Induction of a solitary binocular rivalry wave. Parameter values are τs = 800, ai = 1, ae = 0.4, σi = 1, σe = 2, β =

5, κ = 0.05, I = 0.24. (a) Homogeneous oscillatory solution in which there is spontaneous periodic switching between left

and right eye dominance. Plot against time of the left eye neural activity u (solid red), the right eye neural activity v (solid

blue) together with the corresponding depression variables qu (dashed red) and qv (dashed blue). (b,c) Space–time plots

of u(x, t) and v(x, t) following onset of the trigger stimulus to the left eye at time t0 = 300, which involves a temporary

increase in the input strength Iu from 0.24 to 0.74 within the domain −2 ≤ x ≤ 2. (The duration of the trigger stimulus is

also indicated by the grey bar in part (a)). Lighter (darker) colors indicate higher (lower) activity values. The mean wave

speed of the front (calculated numerically)) is c ∼ 2. This is in good agreement with our analytical results based on taking

fixed depression variables Qu = qu(t0), Qv = qv(t0).

where Θ is the Heaviside function. The trigger stim-

ulus is switched on at t = t0 and switched off at

time t = t0 + ∆t, and consists of an increase in

input strength ∆I in a region of width 2∆x cen-

tered about x = 0. In order for traveling waves to

be induced in our model, the size ∆x of the excited

region has to be of the order of σe, otherwise the

effects of the perturbation simply die away. This is

consistent with the size of perturbation used in the

experiments by Kang et. al. [22, 23], which was of

size 0.2 degrees, corresponding to 0.8mm of cortical

tissue. Their perturbations were shown for 200ms,

similar to the time interval of ∆t = 10 used in

our simulations. Two examples of induced binocu-
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Fig. 7 Same as Fig. 6 except that τs = 500. Onset of trigger stimulus is at t0 = 200. Both the frequency of spontaneous

oscillations and the speed of the wave are higher with c ∼ 3

lar rivalry waves are shown in Fig. 6 and Fig. 7. In

these examples, the wave speed is fast relative to

the frequency of spontaneous oscillations so the de-

pression variables change very little over the time

during which the wave is traveling. Hence, there

is a good match between properties of the numer-

ically simulated wave and our analytical results of

section 3. In Fig. 8 we further illustrate the good

agreement between theory and numerics by plot-

ting the location x vs. time t of a fixed point in

traveling wave coordinates given by u(x, t) = 0.3.

As expected, there is a small variation in wave

speed due to the dynamics of the depression vari-

ables but the mean speed is consistent with theory.

Since the network operates in a regime where

spontaneous rivalry oscillations occur in the ab-

sence of any trigger stimuli, it follows from our an-

alytical results (section 3) that the speed of the in-

duced wave will depend on which phase of the limit

cycle the trigger stimulus is initiated. That is, let

the time of stimulus onset be t0 = nT + θT/(2π),

where T is the period of spontaneous oscillations,

n is an integer and 0 ≤ θ < 2π. Denoting the oscil-

latory solution of the depression variables on the

limit cycle by {q∗u(φ), q∗v(φ)|0 ≤ φ < 2π}, we set
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Fig. 9 Wavespeed vs phase (solid curve) along one cycle of

spontaneous oscillations. Here cL (cR) denotes the speed of

a wave induced in the suppressed left (right) eye network.

Also shown are the temporal profiles of the depression vari-

ables (dashed curves). Same parameter values as Fig. 7.

Qu = q∗u(θ), Qv = q∗v(θ) where Qu, Qv are the fixed

values appearing in equations (3.18) and (3.19) un-

der the adiabatic approximation. It follows that

the wave speed calculated from equation (3.29) is

phase–dependent: c = c(Qu, Qv) = c(θ). An ex-

ample plot of wave speed vs phase θ is shown in

Fig. 9. We see that a rivalry wave only exists if

the trigger stimulus occurs in the latter ∼ 2
3 of the

half–cycle, with faster waves induced closer to the

point of spontaneous switching. Now suppose that

we keep the phase of the trigger stimulus fixed and

determine how both the natural frequency 1/T and

wave speed c vary with stimulus contrast I. The re-

sults are presented in Fig. 10. The wave speed is

determined from equation (3.29), whereas the pe-

riod T is calculated using the analytical results of

[25]. It can be seen that faster natural alternation

rates lead to faster wave speeds. (Wavespeed and

frequency also covary with changes in the depres-

sion rate constant β, for example). Interestingly,

an analogous result was obtained by Kang et. al.

[22, 23], who found experimentally that traveling

waves were faster for subjects whose natural rate of

binocular rivalry oscillations was higher. However,

as noted in section 3, the wave speed was aver-

aged over several cycles of trigger stimuli in the

psychophysical experiments. Given the stochastic

nature of spontaneous oscillations, we expect such

averaging to reduce the dependence on the phase

θ.

In order to relate our model more closely with

the experimental protocol of Kang et al. [22, 23], we

have also carried out simulations of the full model

(2.1) and (2.2) in the presence of additive noise and

periodic trigger stimuli. For the sake of illustration,

we introduce spatially uncorrelated additive white

noise terms to the the dynamical equations for the

depression variables according to

τs

∂qu(x, t)

∂t
= 1 − qu(x, t) − βqu(x, t)f(u(x, t))

+ σξu(x, t) (4.1)

τs

∂qv(x, t)

∂t
= 1 − qv(x, t) − βqv(x, t)f(v(x, t))

+ σξv(x, t) (4.2)

with

〈ξu(x, t)〉 = 〈ξv(x, t)〉 = 0



18

0.24 0.25 0.26 0.27 0.28

input I

5

6

7

8

9

0.24 0.25 0.26 0.27

0.9

1.0

1.1

1.2

1.3

c

T-1

input I

(a)

(b)
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1
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stimulus onset to be θ = 3π/2. All other parameters are

given by the baseline values of Fig. 4.

and

〈ξu(x, t)ξu(x′, t′)〉 = δ(x − x′)δ(t − t′),

〈ξv(x, t)ξv(x′, t′)〉 = δ(x − x′)δ(t − t′)

〈ξu(x, t)ξv(x′, t′)〉 = 0.

Furthermore, the inputs Iu and Iv in equations

(2.1a) and (2.2a) take the form

Iu(x, t) = I +
∑

m=0,2,4,...

Θ(t − t0 − mT0)

× Θ(∆t + t0 + mT0 − t)Θ(∆x − |x|)∆I,

Iv(x, t) = I +
∑

m=1,3,5,...

Θ(t − t0 − mT0)

× Θ(∆t + t0 + mT0 − t)Θ(∆x − |x|)∆I

That is, starting at time t = t0, the left and right

eye networks receive a T0–periodic alternating se-

quence of trigger stimuli, each of which consists of
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Fig. 11 Comparison of spontaneous and periodically forced

binocular rivalry oscillations in the presence of noise. The

time evolution of the activity and depression variables are

shown at a fixed spatial location (x = 7). Noise strength

σ = 1 and all other parameter values are as in Fig. 7. Left

(right) eye variables are shown in red (blue) with noise in

the depression variables. (a) Homogeneous oscillatory so-

lution, which shows some irregularity due to noise in the

depression variables (b) Periodically triggered alternations

in dominance. Onset of each trigger stimulus is indicated

by an arrow. Initial trigger occurs at t0 = 150 and time

between triggers is T0 = 100.

an enhancement of input strength in the domain

|x| < ∆x that has duration ∆t.

Results from numerical simulations of the full

model given by equations (2.1a), (2.2a), (4.1) and

(4.2) are shown in Figs. 11 and 12. It can be seen

that provided the noise strength σ is not too large

then there is reliable switching between left and

right eye dominance that phase locks to the pe-

riodic trigger stimuli. However, as σ increases to

a value of around σ ≈ 2, phase locking starts to
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Fig. 12 Breakdown of mode–locking as noise strength increases. (a-c). The time evolution of the activity and depression

variables are shown at a fixed spatial location (x = 7) for various noise strengths: (a) σ = 1, (b) σ = 2, (c) σ = 3. All

other parameter values are as in Fig. 11. Onset of each trigger stimulus is indicated by an arrow. Initial trigger occurs

at t0 = 150 and time between triggers is T0 = 100. (d-e) Corresponding histograms showing how the change in activity

∆u = u(x, t1) − u(x, t2) at a fixed location x = 7 and two different times (t1 = 450, t2 = 470) is distributed over multiple

trials. Pink (purple) bars indicate distribution in the presence (absence) of periodic trigger stimuli
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Fig. 13 Space–time plots of periodically triggered binoc-

ular rivalry waves in left eye network for increasing levels

of noise: (a) σ = 1, (b) σ = 2, (c) σ = 3. Red rectangles

indicate duration and spatial extent of trigger stimuli. All

other parameters as in Fig. 12.

break down. As a further illustration of how mode–

locking depends on the level of noise, we also plot

in Fig. 12 histograms comparing the spontaneous

and forced distributions of activity ∆u = u(x, t1)−
u(x, t2 at a fixed location x and fixed times time

t1, t2 over multiple trials (simulation runs). For a

noise strength σ = 1 it can be seen that mode lock-

ing causes a very strong tendency to be in the com-

pletely opposite state to that without mode lock-

ing, whereas for higher noise strengths σ = 2, 3 the

distribution is much wider and in some situations

the forcing did not change the state from the un-

forced case (breakdown of mode-locking). Finally,

the disruption of binocular rivalry waves with in-

creasing noise is illustrated by the space–time plots

of the left network activity variable u(x, t) in Fig.

13.

So far we have taken the firing rate function

to be the Heaviside function (2.4) in order to com-

pare our numerics with the analysis of section 3. As

in many previous studies of neural field equations

dating back to Amari [2], the use of Heavisides al-

lowed us to construct explicit traveling wave so-

lutions and to derive an explicit formula for the

speed of the wave. However, it is important to

check that the same basic mechanism of wave in-

duction and propagation carries over to more real-

istic sigmoidal rate functions. This is indeed found

to be the case, as is illustrated in Fig. 14. The speed

of the wave is more variable than the Heavside case

but is still comparable in magnitude to theoretical

predictions.

Note on simulations. All deterministic simulations

were carried out by discretizing space and solving

the resulting system of ODEs with Mathematica

8.0’s ODE solver (NDSolve). Discretization of the

neural field model with additive noise generated a

system of stochastic ODEs, which were then sim-

ulated in C++ code (with boost and Intel TBB)

using the Euler–Maruyama method.

5 Discussion

In this paper we analyzed a neural field model

of binocular rivalry waves in primary visual cor-

tex. Formulating the problem in terms of contin-

uum neural field equations allowed us to study the

short time behavior associated with the propaga-

tion of eye dominance from an analytical perspec-

tive. In particular, we established that in order

for traveling waves to exist, a symmetry break-

ing mechanism needs to be present. That is, the

equations for the left and right eye networks have

to be different on the time scales during which

traveling waves propagate. We identified one pos-

sible mechanism for providing the necessary sym-

metry breaking, namely, synaptic depression. How-

ever any form of slow adaptation would work in-

cluding spike frequency adaptation. We then showed

analytically that for plausible values of biological
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Fig. 14 Induction of a solitary binocular rivalry wave in the case of a smooth sigmoidal firing rate function. Gain of sigmoid

is η = 80. Other parameter values are as in Fig. 6 . (a) Homogeneous oscillatory solution in which there is spontaneous

periodic switching between left and right eye dominance. Plot against time of the left eye neural activity u (solid red), the

right eye neural activity v (solid blue) together with the corresponding depression variables qu (dashed red) and qv (dashed

blue). (b,c) Space–time plots of u(x, t) and v(x, t) following onset of the trigger stimulus to the left eye at time t0 = 290,

which involves a temporary increase in the input strength Iu from 0.24 to 0.74 within the domain −2 ≤ x ≤ 2. Lighter

(darker) colors indicate higher (lower) activity values. (d) Plot of the spatial location x vs. time t of the point at which

u(x, t) = 0.2 (black curve). The speed calculated for the Heaviside case is given by the slope of the straight line (grey curve).

parameters such as the range of synaptic interac-

tions and the membrane time constant, we could

recover wave speeds similar to those seen in exper-

iments [41, 22, 23]. Moreover, our model exhibited

the expected dependence of wave speed on param-

eters that can be experimentally varied, such as

stimulus contrast. It also replicated the experimen-

tal finding that wave speed covaries with the nat-

ural frequency of spontaneous rivalry oscillations.

Finally, numerical simulations of the full system

were in good agreement with our analytical short

time scale results in the case of a Heaviside firing

rate function. We also found that binocular rivalry

waves persisted in the case of smooth sigmoid fir-

ing rate functions and in the presence of additive

white noise in the depression variable dynamics.

However, mode–locking to periodic trigger stimuli
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broke down when the noise strength became too

large.

In future work it would be interesting to extend

our neural field model to a more realistic network

topology. Instead of considering one line of neu-

rons for each eye, we could consider a circle of neu-

rons for each point in the visual field - this would

allow us to take orientation information into ac-

count using an extension of the coupled ring model

[10, 11]. We could then investigate the experimen-

tal observation that the speed of binocular rivalry

waves depends on the orientation of the left and

right eye grating stimuli [41]. Another important

issue that we only partially addressed in this pa-

per is the role of noise. A number of recent studies

have considered stochastic models of binocular ri-

valry and the statistics of dominance times, but

have neglected spatial effects [29, 33, 9]. Develop-

ing a better understanding of the combined effects

of noise and wave propagation on periodically trig-

gered switching would allow us to address relevant

issues such as determining the stimulus trigger pe-

riod in a noisy system that gives the highest prob-

ability of a dominance switch. Such results would

add to those already found in this paper (such as

wave speed variation with phase angle) that could

be experimentally tested and lead to further refine-

ments of the neural field model.
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