Skip to main content
Log in

Spatiotemporal maps of CaMKII in dendritic spines

  • Published:
Journal of Computational Neuroscience Aims and scope Submit manuscript

Abstract

The calcium calmodulin dependent kinase (CaMKII) is important for long-term potentiation at dendritic spines. Photo-activatable GFP (PaGFP) – CaMKII fusions were used to map CaMKII movements between and within spines in dissociated hippocampal neurons. Photo-activated PaGFP (GFP*) generated in the shaft spread uniformly, but was retained for about 1 s in spines. The differential localization of GFP*-CaMKII isoforms was visualized with hundred nanometer precision frame to frame using de-noising algorithms. GFP*-CaMKIIα localized to the tips of mushroom spines. The spatiotemporal profiles of native and kinase defective GFP*-CaMKIIβ, differed markedly from GFP*-CaMKIIα and mutant GFP*-CaMKIIβ lacking the association domain. CaMKIIβ bound to cortical actin in the dendrite and the stable actin network in spine bodies. Glutamate produced a transiently localized GFP*-CaMKIIα fraction and a soluble GFP*-CaMKIIβ fraction in spine bodies. Single molecule simulations of the interplay between diffusion and biochemistry of GFP* species were guided by the spatiotemporal maps and set limits on binding parameters. They highlighted the role of spine morphology in modulating bound CaMKII lifetimes. The long residence times of GFP*-CaMKIIβ relative to GFP*-CaMKIIα followed as consequence of more binding sites on the actin cytoskeleton than the post-synaptic density. These factors combined to retain CaMKII for tens of seconds, sufficient to outlast the calcium transients triggered by glutamate, without invoking complex biochemistry.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Andrews, S. S., Addy, N. J., Brent, R., & Arkin, A. P. (2010). Detailed simulations of cell biology with Smoldyn 2.1. PLoS Computational Biology, 6, e1000705.

    Article  PubMed  Google Scholar 

  • Bayer, K. U., LeBel, E., McDonald, G. L., O’Leary, H., Schulman, H., & De Koninck, P. (2006). Transition from reversible to persistent binding of CaMKII to postsynaptic sites and NR2B. Journal of Neuroscience, 26, 1164–1174.

    Article  PubMed  CAS  Google Scholar 

  • Bloodgood, B. L., & Sabatini, B. L. (2005). Neuronal activity regulates diffusion across the neck of dendritic spines. Science, 310, 866–869.

    Article  PubMed  CAS  Google Scholar 

  • Bloodgood, B. L., & Sabatini, B. L. (2007). Ca(2+) signaling in dendritic spines. Current Opinion in Neurobiology, 17, 345–351.

    Article  PubMed  CAS  Google Scholar 

  • Boulanger, J., Kervrann, C., Bouthemy, P., Elbau, P., Sibarita, J. B., & Salamero, J. (2010). Patch-based nonlocal functional for denoising fluorescence microscopy image sequences. IEEE Transactions on Medical Imaging, 29, 442–454.

    Article  PubMed  Google Scholar 

  • Bourne, J., & Harris, K. M. (2007). Do thin spines learn to be mushroom spines that remember? Current Opinion in Neurobiology, 17, 381–386.

    Article  PubMed  CAS  Google Scholar 

  • Bourne, J. N., & Harris, K. M. (2008). Balancing structure and function at hippocampal dendritic spines. Annual Review of Neuroscience, 31, 47–67.

    Article  PubMed  CAS  Google Scholar 

  • Byrne, M.J., Waxham, M.N., Kubota, Y., (2011). The impacts of geometry and binding on CaMKII diffusion and retention in dendritic spines. Journal of Computational Neuroscience.

  • Cingolani, L. A., & Goda, Y. (2008). Actin in action: the interplay between the actin cytoskeleton and synaptic efficacy. Nature Reviews. Neuroscience, 9, 344–356.

    Article  PubMed  CAS  Google Scholar 

  • Collins, T. J. (2007). ImageJ for microscopy. Biotechniques, 43, 25–30.

    Article  PubMed  Google Scholar 

  • De Decker, A., Lee, J. A., & Verleysen, M. (2010). A principled approach to image denosing with similarity kernels involving patches. Neurocomputing, 73, 1198–1209.

    Google Scholar 

  • Denk, W., Yuste, R., Svoboda, K., & Tank, D. W. (1996). Imaging calcium dynamics in dendritic spines. Current Opinion in Neurobiology, 6, 372–378.

    Article  PubMed  CAS  Google Scholar 

  • Grant, P. A., Best, S. L., Sanmugalingam, N., Alessio, R., Jama, A. M., & Torok, K. (2008). A two-state model for Ca2+/CaM-dependent protein kinase II (alphaCaMKII) in response to persistent Ca2+ stimulation in hippocampal neurons. Cell Calcium, 44, 465–478.

    Article  PubMed  CAS  Google Scholar 

  • Honkura, N., Matsuzaki, M., Noguchi, J., Ellis-Davies, G. C., & Kasai, H. (2008). The subspine organization of actin fibers regulates the structure and plasticity of dendritic spines. Neuron, 57, 719–729.

    Article  PubMed  CAS  Google Scholar 

  • Huang, B., Bates, M., & Zhuang, X. (2009). Super-resolution fluorescence microscopy. Annual Review of Biochemistry, 78, 993–1016.

    Article  PubMed  CAS  Google Scholar 

  • Hudmon, A., Lebel, E., Roy, H., Sik, A., Schulman, H., Waxham, M. N., & De Koninck, P. (2005). A mechanism for Ca2+/calmodulin-dependent protein kinase II clustering at synaptic and nonsynaptic sites based on self-association. Journal of Neuroscience, 25, 6971–6983.

    Article  PubMed  CAS  Google Scholar 

  • Kaech, S., Brinkhaus, H., & Matus, A. (1999). Volatile anesthetics block actin-based motility in dendritic spines. Proceedings of the National Academy of Sciences of the United States of America, 96, 10433–10437.

    Article  PubMed  CAS  Google Scholar 

  • Kaech, S., Parmar, H., Roelandse, M., Bornmann, C., & Matus, A. (2001). Cytoskeletal microdifferentiation: a mechanism for organizing morphological plasticity in dendrites. Proceedings of the National Academy of Sciences of the United States of America, 98, 7086–7092.

    Article  PubMed  CAS  Google Scholar 

  • Kanaseki, T., Ikeuchi, Y., Sugiura, H., & Yamauchi, T. (1991). Structural features of Ca2+/calmodulin-dependent protein kinase II revealed by electron microscopy. The Journal of Cell Biology, 115, 1049–1060.

    Article  PubMed  CAS  Google Scholar 

  • Khan, S., Zou, Y., Amjad, A., Gardezi, A., Smith, C. L., Winters, C., & Reese, T. S. (2011). Sequestration of CaMKII in dendritic spines in silico. Journal of Computational Neuroscience, 31, 581–594.

    Article  PubMed  Google Scholar 

  • Kolodziej, S. J., Hudmon, A., Waxham, M. N., & Stoops, J. K. (2000). Three-dimensional reconstructions of calcium/calmodulin-dependent (CaM) kinase IIalpha and truncated CaM kinase IIalpha reveal a unique organization for its structural core and functional domains. Journal of Biological Chemistry, 275, 14354–14359.

    Article  PubMed  CAS  Google Scholar 

  • Lee, S. J., Escobedo-Lozoya, Y., Szatmari, E. M., & Yasuda, R. (2009). Activation of CaMKII in single dendritic spines during long-term potentiation. Nature, 458, 299–304.

    Article  PubMed  CAS  Google Scholar 

  • Lippincott-Schwartz, J., Altan-Bonnet, N., Patterson, G.H., (2003). Photobleaching and photoactivation: following protein dynamics in living cells. Nature Cell Biology Suppl, S7–14.

  • Lisman, J. E., Raghavachari, S., & Tsien, R. W. (2007). The sequence of events that underlie quantal transmission at central glutamatergic synapses. Nature Reviews. Neuroscience, 8, 597–609.

    Article  PubMed  CAS  Google Scholar 

  • Noguchi, J., Matsuzaki, M., Ellis-Davies, G. C., & Kasai, H. (2005). Spine-neck geometry determines NMDA receptor-dependent Ca2+ signaling in dendrites. Neuron, 46, 609–622.

    Article  PubMed  CAS  Google Scholar 

  • Northrup, S. H., & Erickson, H. P. (1992). Kinetics of protein-protein association explained by Brownian dynamics computer simulation. Proceedings of the National Academy of Sciences of the United States of America, 89, 3338–3342.

    Article  PubMed  CAS  Google Scholar 

  • Okabe, S. (2007). Molecular anatomy of the postsynaptic density. Molecular and Cellular Neuroscience, 34, 503–518.

    Article  PubMed  CAS  Google Scholar 

  • Okamoto, K., Narayanan, R., Lee, S. H., Murata, K., & Hayashi, Y. (2007). The role of CaMKII as an F-actin-bundling protein crucial for maintenance of dendritic spine structure. Proceedings of the National Academy of Sciences of the United States of America, 104, 6418–6423.

    Article  PubMed  CAS  Google Scholar 

  • Okamoto, K., Bosch, M., & Hayashi, Y. (2009). The roles of CaMKII and F-actin in the structural plasticity of dendritic spines: a potential molecular identity of a synaptic tag? Physiology (Bethesda, Md.), 24, 357–366.

    Article  CAS  Google Scholar 

  • O’Leary, H., Lasda, E., & Bayer, K. U. (2006). CaMKIIbeta association with the actin cytoskeleton is regulated by alternative splicing. Molecular Biology of the Cell, 17, 4656–4665.

    Article  PubMed  Google Scholar 

  • Otmakhov, N., Tao-Cheng, J. H., Carpenter, S., Asrican, B., Dosemeci, A., Reese, T. S., & Lisman, J. (2004). Persistent accumulation of calcium/calmodulin-dependent protein kinase II in dendritic spines after induction of NMDA receptor-dependent chemical long-term potentiation. Journal of Neuroscience, 24, 9324–9331.

    Article  PubMed  CAS  Google Scholar 

  • Ouyang, Y., Wong, M., Capani, F., Rensing, N., Lee, C. S., Liu, Q., Neusch, C., Martone, M. E., Wu, J. Y., Yamada, K., Ellisman, M. H., & Choi, D. W. (2005). Transient decrease in F-actin may be necessary for translocation of proteins into dendritic spines. The European Journal of Neuroscience, 22, 2995–3005.

    Article  PubMed  Google Scholar 

  • Patterson, G. H., & Lippincott-Schwartz, J. (2002). A photoactivatable GFP for selective photolabeling of proteins and cells. Science, 297, 1873–1877.

    Article  PubMed  CAS  Google Scholar 

  • Pi, H. J., Otmakhov, N., El Gaamouch, F., Lemelin, D., De Koninck, P., & Lisman, J. (2010). CaMKII control of spine size and synaptic strength: role of phosphorylation states and nonenzymatic action. Proceedings of the National Academy of Sciences of the United States of America, 107, 14437–14442.

    Article  PubMed  CAS  Google Scholar 

  • Rajpoot, N. M., Wilson, R. G., Meyer, F. G., & Coifman, R. R. (2003). Adaptive wavelet packet basis selection for zerotree image coding. IEEE Transactions on Image Processing, 12, 1460–1472.

    Article  PubMed  Google Scholar 

  • Rajpoot, N. M., Yao, Z., & Wilson, R. G. (2004). Adaptive wavelet restoration of noisy video sequenes. Proceedings of the International Conference Image Processing, 2, 957–960.

    Google Scholar 

  • Sanabria, H., Digman, M. A., Gratton, E., & Waxham, M. N. (2008). Spatial diffusivity and availability of intracellular calmodulin. Biophysical Journal, 95, 6002–6015.

    Google Scholar 

  • Sanabria, H., Swulius, M. T., Kolodziej, S. J., Liu, J., & Waxham, M. N. (2009). {beta}CaMKII regulates actin assembly and structure. Journal of Biological Chemistry, 284, 9770–9780.

    Article  PubMed  CAS  Google Scholar 

  • Schaus, T. E., Taylor, E. W., & Borisy, G. G. (2007). Self-organization of actin filament orientation in the dendritic-nucleation/array-treadmilling model. Proceedings of the National Academy of Sciences of the United States of America, 104, 7086–7091.

    Article  PubMed  CAS  Google Scholar 

  • Sharma, K., Fong, D. K., & Craig, A. M. (2006). Postsynaptic protein mobility in dendritic spines: long-term regulation by synaptic NMDA receptor activation. Molecular and Cellular Neuroscience, 31, 702–712.

    Article  PubMed  CAS  Google Scholar 

  • Shen, K., & Meyer, T. (1998). In vivo and in vitro characterization of the sequence requirement for oligomer formation of Ca2+/calmodulin-dependent protein kinase IIalpha. Journal of Neurochemistry, 70, 96–104.

    Article  PubMed  CAS  Google Scholar 

  • Shen, K., & Meyer, T. (1999). Dynamic control of CaMKII translocation and localization in hippocampal neurons by NMDA receptor stimulation. Science, 284, 162–166.

    Article  PubMed  CAS  Google Scholar 

  • Shen, K., Teruel, M. N., Subramanian, K., & Meyer, T. (1998). CaMKIIbeta functions as an F-actin targeting module that localizes CaMKIIalpha/beta heterooligomers to dendritic spines. Neuron, 21, 593–606.

    Article  PubMed  CAS  Google Scholar 

  • Shen, K., Teruel, M. N., Connor, J. H., Shenolikar, S., & Meyer, T. (2000). Molecular memory by reversible translocation of calcium/calmodulin-dependent protein kinase II. Nature Neuroscience, 3, 881–886.

    Article  PubMed  CAS  Google Scholar 

  • Sheng, M., & Hoogenraad, C. C. (2007). The postsynaptic architecture of excitatory synapses: a more quantitative view. Annual Review of Biochemistry, 76, 823–847.

    Article  PubMed  CAS  Google Scholar 

  • Shroff, H., Galbraith, C. G., Galbraith, J. A., & Betzig, E. (2008). Live-cell photoactivated localization microscopy of nanoscale adhesion dynamics. Nature Methods, 5, 417–423.

    Article  PubMed  CAS  Google Scholar 

  • Yang, L., Parton, R., Ball, G., Qiu, Z., Greenaway, A. H., Davis, I., & Lu, W. (2010). An adaptive non-local means filter for denoising live-cell images and improving particle detection. Journal of Structural Biology, 172, 233–243.

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Dr Steven Andrews for advice and discussion regarding Smoldyn and Dr Ayse Dosemici for comments on the manuscript. Ayisha Shabbir was supported by start-up funds from the LUMS School of Science & Engineering (to S.K).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shahid Khan.

Additional information

Action Editor: Upinder Singh Bhalla

Supplemental materials

Below is the link to the electronic supplementary material.

(PAalpha.mpg): Movie of de-noised image sequence showing sequestration of GFP*-CaMKIIa to spine tip (MPG 5488 kb)

(PAbetaK.mpg): Movie of de-noised image sequence showing sequestration of GFP*-CaMKIIb to spine body. (MPG 3786 kb)

(PAgfp.mpg): Movie of Smoldyn simulation demonstrating trapping of GFP* in mushroom spine. (MPG 4474 kb)

Script 1

(spine-PAgfpS1D80.txt): Example Smoldyn script for computation of GFP*-CaMKIIa residence times. (TXT 3 kb)

Script 2

(spine-PAgfpS2.txt): Example Smoldyn script for computation of GFP*-CaMKIIb residence times. Surface and solution reactions with the dendritic cortical actin and spine actin cytoskeleton are included to the reactions in Script 1. The dendrite geometry is different in the two scripts to illustrate virtual cell set-up (PDF 44.3 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Khan, S., Reese, T.S., Rajpoot, N. et al. Spatiotemporal maps of CaMKII in dendritic spines. J Comput Neurosci 33, 123–139 (2012). https://doi.org/10.1007/s10827-011-0377-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10827-011-0377-1

Keywords

Navigation