Skip to main content
Log in

The effects of DBS patterns on basal ganglia activity and thalamic relay

A computational study

  • Published:
Journal of Computational Neuroscience Aims and scope Submit manuscript

Abstract

Thalamic neurons receive inputs from cortex and their responses are modulated by the basal ganglia (BG). This modulation is necessary to properly relay cortical inputs back to cortex and downstream to the brain stem when movements are planned. In Parkinson’s disease (PD), the BG input to thalamus becomes pathological and relay of motor-related cortical inputs is compromised, thereby impairing movements. However, high frequency (HF) deep brain stimulation (DBS) may be used to restore relay reliability, thereby restoring movements in PD patients. Although therapeutic, HF stimulation consumes significant power forcing surgical battery replacements, and may cause adverse side effects. Here, we used a biophysical-based model of the BG-Thalamus motor loop in both healthy and PD conditions to assess whether low frequency stimulation can suppress pathological activity in PD and enable the thalamus to reliably relay movement-related cortical inputs. We administered periodic pulse train DBS waveforms to the sub-thalamic nucleus (STN) with frequencies ranging from 0–140 Hz, and computed statistics that quantified pathological bursting, oscillations, and synchronization in the BG as well as thalamic relay of cortical inputs. We found that none of the frequencies suppressed all pathological activity in BG, though the HF waveforms recovered thalamic reliability. Our rigorous study, however, led us to a novel DBS strategy involving low frequency multi-input phase-shifted DBS, which successfully suppressed pathological symptoms in all BG nuclei and enabled reliable thalamic relay. The neural restoration remained robust to changes in the model parameters characterizing early to late PD stages.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Agarwal, R., & Sarma, S. V. (2011). An analytical study of relay neuron’s reliability: Dependence on input and model parameters. In Proceedings of the 33rd IEEE EMBS conference (pp. 2426–2429).

  • Albin, R. L., Young, A. B., & Penney, J. B. (1989). The functional anatomy of basal ganglia disorders. Trends in Neurosciences, 12, 366–375.

    Article  PubMed  CAS  Google Scholar 

  • Amirnovin, R., Williams, Z. M., Cosgrove, G. R., & Eskandar, E. N. (2004). Visually guided movements suppress subthalamic oscillations in Parkinsons disease patients. Journal of Neuroscience, 24, 11302–11306.

    Article  PubMed  CAS  Google Scholar 

  • Anheim, M., Fraix, V., Chabards, S., Krack, P., Benabid, A. L., & Pollak, P. (2007). Lifetime of itrel ii pulse generators for subthalamic nucleus stimulation in Parkinson’s disease. Movement Disorders, 22, 2436–2439.

    Article  PubMed  Google Scholar 

  • Aybek, S., & Vingerhoets, F. J. G. (2000). Does deep brain stimulation of the subthalamic nucleus in Parkinson’s disease affect cognition. Lancet Neurology, 5, 578–588.

    Google Scholar 

  • Bergman, H., Wichmann, T., & DeLong, M. R. (1990). Reversal of experimental Parkinsonism by lesions book series mathematics in industry (Vol. 8). Berlin Heidelberg: Springer.

    Google Scholar 

  • Bokil, H., Pesaran, B., Andersen, A. R., & Mitra, P. P. (2006a). A method for detection and classification of events in neural activity. IEEE Transactions on Biomedical Engineering, 53, 1678–1687.

    Article  PubMed  Google Scholar 

  • Bokil, H., Purpura, K., Schofflen, J. M., Thompson, D., Pesaran, B., & Mitra, P. P. (2006b). Comparing spectra and coherencesfor groups of unequal size. Journal of Neuroscience Methods, 159, 337–345.

    Article  PubMed  Google Scholar 

  • Brown, P. (2003). Oscillatory nature of human basal ganglia activity: Relationship to the pathophysiology of Parkinson’s disease. Movement Disorders, 18, 357–363.

    Article  PubMed  Google Scholar 

  • Cagnan, H., Meijer, H. G. E., van Gils, S. A., Krupa, M., Heida, T., Rudolph, M., et al. (2009). Frequency-selectivity of a thalamocortical relay neuron during Parkinsons disease and deep brain stimulation: A computational study. European Journal of Neuroscience, 30, 1306–1317.

    Article  PubMed  Google Scholar 

  • Cooper, S. E., Kuncel, A. M., Wolgamuth, B. R., Rezai, A. R., & Gril, W. M. (2008). A model predicting optimal parameters for deep brain stimulation in essential tremor. Journal of Clinical Neurophysiology, 25(5), 265–273.

    Article  PubMed  Google Scholar 

  • Davie, C. A. (2008). A review of Parkinson’s disease. British Medical Bulletin, 86(1), 109–127.

    Article  PubMed  CAS  Google Scholar 

  • Dorval, A. D., Panjwani, N., Qi, R. Y., & Grill, W. M. (2009). Deep brain stimulation that abolishes Parkinsonian activity in basal ganglia improves thalamic relay fidelity in a computational circuit. In 31st annual international conference of the IEEE EMBS.

  • Dorval, A. D., Russo, G. S., Hashimoto, T., Xu, W., Grill, W. M., & Vitek, J. L. (2008). Deep brain stimulation reduces neuronal entropy in the mptp-primate model of Parkinson’s disease. Journal of Neurophysiology, 100, 2807–2818.

    Article  PubMed  Google Scholar 

  • Ermentrout, B. (2002). Simulating, analyzing and animating dynamical systems. Philadelphia: SIAM Press.

    Book  Google Scholar 

  • Feng, X., Greenwald, B., Rabitz, H., Shea-Brownxy, E., & Kosutz, R. (2007). Toward closed-loop optimization of deep brain stimulation for Parkinsons disease: Concepts and lessons from a computational model. Journal of Neuroengineering, 4, L14–L21.

    Article  Google Scholar 

  • Galvan, A., & Wichmann, T. (2008). Pathophysiology of Parkinsonism. Clinical Neurophysiology, 119(1), 1459–1474.

    Article  PubMed  CAS  Google Scholar 

  • Guo, Y., Rubin, J. E., McIntyre, C. C., Vitek, J. L., & Terman, D. (2008). Thalamocortical relay fidelity varies in deep brain stmulation protocols in data-driven computational models. Journal of Neurophysiology, 99, 1477–1492.

    Article  PubMed  Google Scholar 

  • Hammond, C., Bergman, H., & Brown, P. (2007). Pathological synchronization in Parkinsons disease: Networks, models and treatments. Trends in Neuroscience, 30, 357–364.

    Article  CAS  Google Scholar 

  • Hashimoto, T., Elder, C. M., Okun, M. S., Patrick, S. K., & Vitek, J. L. (2003). Basis of periodic activities in the basal ganglia-thalamic-cortical system of the Rhesus Macaque. Journal of Neuroscience, 23, 1916–1923.

    PubMed  CAS  Google Scholar 

  • Hauptmann, C., Omel’chenko, O., Popovych, O. V., Maistrenko, Y., & Tass, P. A. (2007a). Control of spatially patterned synchrony with multisite delayed feedback. Physical Review. E, 76(6), 066209.

    Article  CAS  Google Scholar 

  • Hauptmann, C., Popovych, O., & Tass, P. A. (2007b). Desynchronizing the abnormally synchronized neural activity in the subthalamic nucleus: A modeling study. Expert Review of Medical Devices, 4, 633–635.

    Article  PubMed  Google Scholar 

  • Hauptmann, C., & Tass, P. A. (2009). Cumulative and after-effects of short and weak coordinated reset stimulation: A modeling study. J. Neural Eng., 6.

  • Jankovic, J. (2008). Parkinson’s disease: Clinical features and diagnosis. Journal of Neurology, Neurosurgery and Psychiatry, 79(4), 368–376.

    Article  CAS  Google Scholar 

  • Kleiner-Fisman, G., Herzog, J., Fisman, D. N., Tamma, F., Lyons, K. E., Pahwa, R., et al. (2006). Subthalamic nucleus deep brain stimulation: Summary and meta-analysis of outcomes. Movement Disorders, 14, S290–S304.

    Article  Google Scholar 

  • Modolo, J., Mosekilde, E., & Beuter, A. (2007). New insights offered by a computational model of deep brain stimulation. Journal of Physiology Paris, 101, 56–63.

    Article  CAS  Google Scholar 

  • Montgomery, E., Jr., & Baker, K. (2000). Mechanism of deep brain stimulation and future technical developments. Neurological Research, 22, 259–266.

    PubMed  Google Scholar 

  • Narayana, S., Jacks, A., Robin, D. A., Poizner, H., Zhang, W., Franklin, C., et al. (2009). A noninvasive imaging approach to understanding speech changes following deep brain stimulation in Parkinsons disease. American Journal of Speech-Language Pathology, 18, 146–161.

    Article  PubMed  Google Scholar 

  • Obeso, J., Rodriguez, M., & DeLong, M. (1997). Basal ganglia pathophysiology: A critical review. Advances in Neurology, 74, 3–18.

    PubMed  CAS  Google Scholar 

  • Obeso, J. A., Rodrguez-Oroz, M. C., Benitez-Temino, B., Blesa, F. J., Guridi, J., Marin, C., et al. (2008). Functional organization of the basal ganglia: Therapeutic implications for Parkinson’s disease. Movement Disorders, 23, S548–S559.

    Article  PubMed  Google Scholar 

  • Ogura, M., & Kita, H. (2000). Dynorphin exerts both postsynaptic and presynaptic effects in the globus pallidus of the rat. Journal of Neurophysiology, 83, 3366–3376.

    PubMed  CAS  Google Scholar 

  • Orosz, G., Moehlis, J., & Murray, R. M. (2009). Controlling biological networks by time-delayed signals. Philosophical Transactions of the Royal Society, 368, 439–454.

    Google Scholar 

  • Pirini, M., Rocchi, L., Sensi, M., & Chiari, L. (2009). A computational modelling appraoch to investigate different targets in deep brain stimulation for Parkinson’s disease. JCNS, 26(1), 91–107.

    Google Scholar 

  • Raz, A., Vaadia, E., & Bergman, H. (2000). Firing patterns and correlations of spontaneous discharge of pallidal neurons in the normal and tremulous 1-methyl-4-phenyl-1,2,3,6 tetrahydropyridine vervet model of Parkinsonism. Journal of Neuroscience, 20, 8559–8571.

    PubMed  CAS  Google Scholar 

  • Rubin, J. E., & Terman, D. (2004). High frequency stimulation of the subthalamic nucleus eliminates pathological thalamic rhythmicity in a computational model. Journal of Computational Neuroscience, 16(3), 211–235.

    Article  PubMed  Google Scholar 

  • Santaniello, S., Fiengo, G., Glielmo, L., & Grill, W. M. (2007). Basal ganglia modeling in healthy and Parkinsons disease state. II. Network-based multi-units simulation. In 26th IEEE American control conference.

  • Sarma, S. V., Cheng, M., Williams, Z., Hu, R., Eskandar, E., & Brown, E. N. (2010). Using point process models to compare neuronal activity in subthalamic nucleus of Parkinson’s patients and a healthy primate. IEEE Transactions on Biomedical Engineering, 57(6), 1297–1305.

    Google Scholar 

  • Schiff, S. J. (2010). Towards model-based control of Parkinson’s disease. Philosophical Transactions of the Royal Society A, 368(1918), 2269–2308.

    Article  Google Scholar 

  • Stanford, I., & Cooper, A. (1999). Presynaptic μ and δ opioid receptor modulation of gabaa ipscs in the rat globus pallidus in vitro. Journal of Neuroscience, 19, 4796–4803.

    PubMed  CAS  Google Scholar 

  • Tass, P. A. (2003). A model of desynchronizing deep brain stimulation with a demand-controlled coordinated reset of neural subpopulations. Biological Cybernetics, 89, 81–88.

    Article  PubMed  Google Scholar 

  • Terman, D., Rubin, J. E., Yew, A. C., & Wilson, C. J. (2002). Activity patterns in a model for the subthalamopallidal network of the basal ganglia. Journal of Neuroscience, 22(7), 2963–2976.

    PubMed  CAS  Google Scholar 

  • Tommasi, G., Lanotte, M., Albert, U., Zibetti, M., Castelli, L., Maina, G., et al. (2008). Transient acute depressive state induced by subthalamic region stimulation. Journal of Neurological Science, 273, 135–138.

    Article  Google Scholar 

  • Wei, X. F., & Grill, W. M. (2009). Impedance characteristics of deep brain stimulation electrodes in vitro and in vivo. Journal of Neural Engineer, 6, 016004.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rahul Agarwal.

Additional information

Action Editor: Charles Wilson

This work was supported by Burroughs Wellcome Fund CASI 1007274 and NSF CAREER 1055560 to S.V.S.

Appendix

Appendix

Below we present the details of the RT model that we used in our study. The network topology used in this model is shown in Fig. 11.

Fig. 11
figure 11

The network topology of our model. The synaptic connections between different neurons in the basal ganglia thalamus network are shown. The network is divided into groups of four neurons which project to group of four neurons in a different structure. Solid arrows depict a strong synaptic connection whereas dashed arrows depict a weaker synaptic connection. Note that internal synaptic connections between GPe neurons are not shown due to their random nature

1.1 A. STN

$$ \begin{array}{rll} v'&=&-(I_{l}(v) + I_{na}(v,h)+I_{k}(v,n)+I_{ahp}(v,ca)+I_{ca}(v)\\ &&\quad +\,I_{t}(v,r))-I_{gpe\rightarrow stn}+ hets + dbs(t) \end{array} $$
$$ h'\!=\!\frac{\phi(h_{\infty}(v)\!-\!h)}{\tau_{h}(v)}; n'\!=\!\frac{\phi(n_{\infty}(v)\!-\!h)}{\tau_{n}(v)}; r'\!=\!\frac{\phi_{r}(r_{\infty}(v)\!-\!r)}{\tau_{r}(v)} $$
$$ ca'= \phi \times eps (-I_{ca}(v) - I_{t}(v,r) - k_{ca} \times ca) $$
$$ s'=\alpha(1-s) \times s_{\infty}(v+ab) - \beta \times s $$
$$ si'=\alpha i \ast (1-si)\times s_{\infty}(v+ab)-\beta i \times si $$

Here, \(I_{l}(v)\!=\!g_{l}(v\!-\!v_{l});\! I_{na}(v,h)\!=\!g_{na}(m_{\infty}(v))^{3}h(v\!-\!v_{na})\); \(I_{k}(v,n)\!=\!g_{k}n^{4}(v\!-\!v_{k})\); \(I_{ahp}(v,ca)=\frac{g_{ahp}(v-v_{k})ca}{ca+k1}\); \(i_{ca}(v)=g_{ca}((s_{\infty}(v))^{2}) \!\times\! (v\!-\!v_{ca})\); \(i_{t}(v,r)\!=\!g_{t}(t_{\infty}(v)^{3}) r_{new}(r)^{2}(v\!-\!vca)\); I gpestn  = g gpestn sg) × (v − v syngg )

$$ \begin{array}{rll} s_{\infty}(v)&=&\frac{1}{1+\exp\left(\frac{v+\theta_{s}}{ss}\right)}; m_{\infty}(v)=\frac{1}{1+\exp\left(\frac{v+\theta_{m}}{sm}\right)};\\ h_{\infty}(v)&=&\frac{1}{1+\exp\left(\frac{v-\theta_{h}}{sh}\right)}; n_{\infty}(v)=\frac{1}{1+\exp\left(\frac{v-\theta_{n}}{sn}\right)}; \end{array} $$
$$ \begin{array}{rll} r_{\infty}(v)&=&\frac{1}{1+\exp\left(\frac{v-\theta_r}{kr}\right)}; t_{\infty}(v)=\frac{1}{1+\exp\left(\frac{v-\theta_t}{kt}\right)};\\ r_{new}(r)&=&\frac{1}{1+\exp\left(\frac{r-r_{th}}{r_{sig}}\right)}- \frac{1}{1+\exp\left(-\frac{r_{th}}{r_{sig}}\right)} \end{array} $$
$$ \begin{array}{rll} \tau_{n}(v)&=&\tau_{n0}+\frac{\tau_{n1}}{1+\exp\left(\frac{v+th_{n}}{\sigma_{n}}\right)};\\ \tau_{h}(v)&=&\tau_{h0}+\frac{\tau_{h1}}{1+\exp\left(\frac{v+th_{h}}{\sigma_{h}}\right)};\\ \tau_{r}(v)&=&\tau_{r0}+\frac{\tau_{r1}}{1+\exp\left(\frac{v+th_{r}}{\sigma_{r}}\right)}; \end{array} $$

Parameter values used are:

$$ \begin{array}{rll} &&{\kern-6pt} v_{l}=-60, v_{na}=55, v_{k}=-80, \theta_{m}=30, sm=15, \\ &&{\kern-6pt} g_{l}=2.25, g_{na}=37.5, g_{k}=45, tn=1, th=0.05, \\ &&{\kern-6pt} g_{ahp}=9, g_{ca}=0.5, v_{ca}=140, k1=15, eps=5e-05,\\ &&{\kern-6pt} kca=22.5, \theta_s=39, ss=8, xp=1, i=0, \theta_h=-39,\\ &&{\kern-6pt} sh\!=\!3.1, \theta_n\!=\!-32, sn=-8, \tau_{n0}\!=\!1, \tau_{n1}\!=\!100, th_{n}\!=\!80, \\ &&{\kern-6pt}\sigma_{n}=26, \tau_{h0}=1, \tau_{h1}=500, th_{h}=57, \sigma_{h}=3, \phi=0.75 \end{array} $$
$$ \begin{array}{rll} &&{\kern-6pt}\theta_{t}\!=\!-63, kt=-7.8, g_{t}=0.5, \phi_{r}=0.5; \theta_{r}=-67, kr\!=\!2, \\ &&{\kern-6pt}\tau_{r0}=7.1, \tau_{r1}=17.5, th_{r}=-68, \sigma_{r}=2.2, \alpha=5, \beta=1,\\ &&{\kern-6pt}ab=-30, g_{syn}=0.9, v_{syn}=-100, r_{th}=0.25,\\ &&{\kern-6pt}r_{sig}=-0.07, \rho1=0.097, a1=0.6, i1=200, hets=2, \\ &&{\kern-6pt}\alpha i =1, \beta i = .2, g_{gpe\rightarrow stn} = 0.1, v_{syngg}=-80 \end{array} $$

1.2 B. GPe and GPi

$$ \begin{array}{rll} v'&=&-(I_{l}(v)+I_{na}(v,h)+I_{k}(v,n)+I_{ahp}(v,ca)+I_{ca}(v)\\ &&+\,I_{t}(v,r)) + I_{\rm app} - I_{gpe\rightarrow gp} - I_{stn\rightarrow gp} + hetg \end{array} $$
$$ \begin{array}{rll} h'\!=\!\frac{\delta_{h}(h_{\infty}(v)\!-\!h)}{\tau_{h}(v)}; n'\!=\!\frac{\delta_{n}(n_{\infty}(v)\!-\!n)}{\tau_{n}(v)}; r'\!=\!\frac{\phi_{r}(r_{\infty}(v)\!-\!r)}{\tau_{r}(v)} \end{array} $$
$$ ca'=\phi \times eps (-I_{ca}(v)- I_{t}(v,r)-k_{ca} \times ca) $$
$$ sg'=\alpha(1-sg) \times s_{\infty}(v+ab) - \beta \times s $$
$$ \begin{array}{rll} sggi' &=& \alpha i \times (1-sggi) \times s_{\infty} (v+ab) - \beta i \times sggi \\ &&{\mbox{(only for GPe)}} \end{array} $$

Here,

$$ \begin{array}{rll} &&{\kern-6pt} I_{l}(v)=g_{l}(v-v_{lg}); I_{nag}(v,h)=g_{na}(m_{\infty}(v))^{3} h(v-v_{na}); \\ &&{\kern-6pt} I_{k}(v,n)=g_{k}n^{4}(v-v_{k}); I_{ahp}(v,ca)=\frac{g_{ahp}(v-v_k)ca}{ca+k1};\\ &&{\kern-6pt} i_{ca}(v)=g_{ca}((s_{\infty}(v))^{2}) \times (v-v_{ca});\\ &&{\kern-6pt} i_{t}(v,r)=g_{t}(s_{\infty}(v)^{3})r(v-vca);\\ &&{\kern-6pt} I_{gpe\rightarrow gpe} = g_{syngg}(\Sigma sg) \times (v-v_{syngg});\\ &&{\kern-6pt}I_{stn\rightarrow gpe} = g_{stn\rightarrow gpe} (\Sigma s) \times (v-v_{syng}) \end{array} $$

For GPi, the synaptic currents are:

$$ \begin{array}{rll} &&{\kern-6pt}I_{stn\rightarrow gpi} = g_{stn\rightarrow gpi} si (v-v_{syng});\\ &&{\kern-6pt}I_{gpe\rightarrow gpi}=g_{synggi} sggi(v-vsyn) \end{array} $$

Different functions above are:

$$ \begin{array}{rll} &&{\kern-6pt} s_{\infty}(v)=\frac{1}{1+\exp\left(\frac{v+\theta_s}{ks}\right)}; s1_{\infty}(v)=\frac{1}{1+\exp\left(\frac{v+\theta_{s1}}{ks1}\right)};\\ &&{\kern-6pt} m_{\infty}(v)=\frac{1}{1+\exp\left(\frac{v+\theta_m}{sm}\right)}; h_{\infty}(v)=\frac{1}{1+\exp\left(\frac{v-\theta_h}{\sigma_h}\right)};\\ &&{\kern-6pt} n_{\infty}(v)=\frac{1}{1+\exp\left(\frac{v-\theta_n}{sn}\right)}; r_{\infty}(v)=\frac{1}{1+\exp\left(\frac{v-\theta_r}{kr}\right)};\\ &&{\kern-6pt} \tau_{n}(v)=\tau_{n0}+\frac{\tau_{n1}}{1+\exp\left(\frac{v+th_n}{sn}\right)};\\ &&{\kern-6pt} \tau_{h}(v)=\tau_{h0}+\frac{\tau_{h1}}{1+\exp\left(\frac{v+th_h}{sh}\right)}; hv(v)=\frac{1}{1+\exp\left(\frac{v}{.001}\right)}; \end{array} $$

Parameter values used are:

$$ \begin{array}{rll} &&{\kern-6pt}g_{na}=120, g_{k}=30, g_{ahp}=30, g_{t}=.5, g_{ca}=.1, g_{l}=.1,\\ &&{\kern-6pt}v_{na}=55, v_{k}=-80, v_{ca}=120, v_{l}=-55, \theta_s=-57,\\ &&{\kern-6pt}ks=2, \theta_{s1}=-35, ks1=2, \theta_r=-70, k_r=-2, \tau_r=30,\\ &&{\kern-6pt}\theta_{m}=-37, \sigma_{m}=10, \theta_n=-50, \sigma_n=14, \tau_{n0}=.05, \\ &&{\kern-6pt}\tau_{n1}=.27, thn=-40, sn=-12, \theta_h=-58, \sigma_h=-12, \\ &&{\kern-6pt}\tau_{h0}=.05, \tau_{h1}=.27, thh=-40, sh=-12, k1=30, \\ &&{\kern-6pt}kca=20, eps=0.0001, \phi=1, \delta_{n}=.05, \delta_h=.05,\\ &&{\kern-6pt}I_{\rm app}=-0.5, g_{gpe\rightarrow gpe}=2, v_{synng}=-80, g_{stn\rightarrow gpe}=0.3,\\ &&{\kern-6pt}v_{syn}=0,\alpha=2, \beta=.04, \alpha i =0.1, \beta i = .08, ab=-20,\\ &&{\kern-6pt}thresg=0.0, hetg =0.3 \end{array} $$

For PD we use:

$$ I_{\rm app}=-3,g_{gpe\rightarrow gpe}=.1 $$

Parameters that differ for GPi:

$$ \begin{array}{rll} &&{\kern-6pt}I_{\rm app}=-2.8, \beta=.08, kca=20, \\&&{\kern-6pt}g_{stn\rightarrow gpi}=0.7,g_{gpe\rightarrow gpi}=1 \end{array} $$

1.3 C. Thalamus

$$ \begin{array}{rll} v'&=&-(I_{l}(v)+ I_{na}(v,h)+I_{k}(v,h)+ I_{t}(v,r))\\&&+ I_{sm}- g_{gpi \rightarrow tc}\Sigma sg \times (v-v_{syntc})\\ h'&=&\frac{tadj (h_\infty (v)-h)}{\tau_{h}(v)}; r'\frac{qht(r_\infty (v)-r)}{\tau_{r}(v)} \end{array} $$

Different Currents in above equation are:

$$ \begin{array}{lll}I_{na}(v,h)&=&g_{na}m_{\infty}(v)^{3}h(v-e_{na});\\[3pt] I_k(v,h)&=&g_k(0.75(1-h))^4(v-e_k);\\[3pt] I_l(v)&=&g_l(v-e_l);I_t(v,r)=g_{t}mt_{\infty}(v)^{2}r\times{v} \end{array} $$

Different function in above equations are:

$$ \begin{array}{rll} &&{\kern-6pt}m_{\infty}(v)=\frac{1}{1+\exp\left(\frac{v+37}{7}\right)};mt_{\infty}(v)=\frac{1}{1+\exp\left(\frac{v+60}{6.2}\right)};\\ &&{\kern-6pt}ah(v)=0.128*\exp\left(-\frac{46+v}{18}\right);\\ &&{\kern-6pt}bh(v)=\frac{apr}{1+\exp\left(\frac{23+v}{5}\right)};\\ &&{\kern-6pt}\tau_{h}(v)=\frac{1}{ah(v)+bh(v)};h_{\infty}(v)=\frac{1}{1+\exp\left(\frac{v+41}{4}\right)};\\ &&{\kern-6pt}r_{\infty}(v)=\frac{1}{1+\exp\left(\frac{v+84}{4}\right)};\\ &&{\kern-6pt}\tau_{r}(v)=0.4\left(28+apt * \exp\left(\frac{v+25}{-10.5}\right)\right) \end{array} $$

Parameter values are:

$$ \begin{array}{rll} &&{\kern-6pt}v_{syn}=-85, g_{gpi\rightarrow{tc}}=.15, asg=200, bsg=.4,itc=6.5,\\ &&{\kern-6pt}shi=-80,dur=5,g_{na}=3, g_{k}=5,g_{l}=.05,e_{na}=50,\\ &&{\kern-6pt}e_{k}=-90,e_{l}=-70,g_{t}=5,qht=2.5,tadj=1,\\&&{\kern-6pt}apr=4,apt=1 \end{array} $$

Rights and permissions

Reprints and permissions

About this article

Cite this article

Agarwal, R., Sarma, S.V. The effects of DBS patterns on basal ganglia activity and thalamic relay. J Comput Neurosci 33, 151–167 (2012). https://doi.org/10.1007/s10827-011-0379-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10827-011-0379-z

Keywords

Navigation