Skip to main content

Advertisement

Log in

Coupled left-shift of Nav channels: modeling the Na+-loading and dysfunctional excitability of damaged axons

  • Published:
Journal of Computational Neuroscience Aims and scope Submit manuscript

An Erratum to this article was published on 31 July 2012

Abstract

Injury to neural tissue renders voltage-gated Na+ (Nav) channels leaky. Even mild axonal trauma initiates Na+ -loading, leading to secondary Ca2+-loading and white matter degeneration. The nodal isoform is Nav1.6 and for Nav1.6-expressing HEK-cells, traumatic whole cell stretch causes an immediate tetrodotoxin-sensitive Na+-leak. In stretch-damaged oocyte patches, Nav1.6 current undergoes damage-intensity dependent hyperpolarizing- (left-) shifts, but whether left-shift underlies injured-axon Nav-leak is uncertain. Nav1.6 inactivation (availability) is kinetically limited by (coupled to) Nav activation, yielding coupled left-shift (CLS) of the two processes: CLS should move the steady-state Nav1.6 “window conductance” closer to typical firing thresholds. Here we simulated excitability and ion homeostasis in free-running nodes of Ranvier to assess if hallmark injured-axon behaviors—Na+-loading, ectopic excitation, propagation block—would occur with Nav-CLS. Intact/traumatized axolemma ratios were varied, and for some simulations Na/K pumps were included, with varied in/outside volumes. We simulated saltatory propagation with one mid-axon node variously traumatized. While dissipating the [Na+] gradient and hyperactivating the Na/K pump, Nav-CLS generated neuropathic pain-like ectopic bursts. Depending on CLS magnitude, fraction of Nav channels affected, and pump intensity, tonic or burst firing or nodal inexcitability occurred, with [Na+] and [K+] fluctuating. Severe CLS-induced inexcitability did not preclude Na+-loading; in fact, the steady-state Na+-leaks elicited large pump currents. At a mid-axon node, mild CLS perturbed normal anterograde propagation, and severe CLS blocked saltatory propagation. These results suggest that in damaged excitable cells, Nav-CLS could initiate cellular deterioration with attendant hyper- or hypo-excitability. Healthy-cell versions of Nav-CLS, however, could contribute to physiological rhythmic firing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Allen, D. G., Zhang, B. T., & Whitehead, N. P. (2010). Stretch-induced membrane damage in muscle: comparison of wild-type and mdx mice. Advances in Experimental Medicine and Biology, 682, 297–313.

    Article  PubMed  CAS  Google Scholar 

  • Bailes, J. E., & Mills, J. D. (2010). Docosahexaenoic acid (DHA) reduces traumatic axonal injury in a rodent dead injury model. Journal of Neurotrauma, 27, 1617–1624.

    Article  PubMed  Google Scholar 

  • Banderali, U., Juranka, P. F., Clark, R. B., Giles, W. R., & Morris, C. E. (2010). Impaired stretch modulation in potentially lethal cardiac sodium channel mutants. Channels (Austin, Texas), 4, 12–21.

    Article  CAS  Google Scholar 

  • Beyder, A., Rae, J. L., Bernard, C., Strege, P. R., Sachs, F., & Farrugia, G. (2010). Mechanosensitivity of Nav1.5, a voltage-sensitive sodium channel. The Journal of Physiology, 588, 4969–4985.

    Article  PubMed  CAS  Google Scholar 

  • Blyth, B. J., & Bazarian, J. J. (2010). Traumatic alterations in consciousness: traumatic brain injury. Emergency Medicine Clinics of North America, 28, 571–594.

    Article  PubMed  Google Scholar 

  • Börjesson, S. I., Parkkari, T., Hammarström, S., & Elinder, F. (2010). Electrostatic tuning of cellular excitability. Biophysical Journal, 98, 396–403.

    Article  PubMed  Google Scholar 

  • Bostock, H., & Rothwell, J. C. (1997). Latent addition in motor and sensory fibres of human peripheral nerve. The Journal of Physiology, 498, 277–294.

    PubMed  CAS  Google Scholar 

  • Bruno, M. J., Koeppe, R. E., & Andersen, O. S. (2007). Docosahexaenoic acid alters bilayer elastic properties. Proceedings of the National Academy of Sciences of the United States of America, 104, 9638–9643.

    Article  PubMed  CAS  Google Scholar 

  • Burbidge, S. A., Dale, T. J., Powell, A. J., Whitaker, W. R., Xie, X. M., Romanos, M. A., & Clare, J. J. (2002). Molecular cloning, distribution and functional analysis of the NaV1.6. Voltage-gated sodium channel from human brain. Molecular Brain Research, 103, 80–90.

    Article  PubMed  CAS  Google Scholar 

  • Charras, G., & Paluch, E. (2008). Blebs lead the way: how to migrate without lamellipodia. Nature Reviews Molecular Cell Biology, 9, 730–736.

    Article  PubMed  CAS  Google Scholar 

  • Coggan, J. S., Prescott, S. A., Bartol, T. M., & Sejnowski, T. J. (2010). Imbalance of ionic conductances contributes to diverse symptoms of demyelination. Proceedings of the National Academy of Sciences of the United States of America, 107, 20602–20609.

    Article  CAS  Google Scholar 

  • Coggan, J. S., Ocker, G. K., Sejnowski, T. J., & Prescott, S. A. (2011). Explaining pathological changes in axonal excitability through dynamical analysis of conductance-based models. Journal of Neural Engineering, 8, 065002.

    Article  PubMed  Google Scholar 

  • Devor, M. (2009). Ectopic discharge in Aβ afferents as a source of neuropathic pain. Experimental Brain Research, 196, 115–128.

    Article  CAS  Google Scholar 

  • Di, X., Goforth, P. B., Bullock, R., Ellis, E., & Satin, L. (2000). Mechanical injury alters volume activated ion channels in cortical astrocytes. Acta Neurochirurgica. Supplement, 76, 379–383.

    PubMed  CAS  Google Scholar 

  • Draeger, A., Monastyrskaya, K., & Babiychuk, E. B. (2011). Plasma membrane repair and cellular damage control: the annexin survival kit. Biochemical Pharmacology, 81, 703–712.

    Article  PubMed  CAS  Google Scholar 

  • Duflocq, A., Chareyre, F., Giovannini, M., Couraud, F., & Davenne, M. (2011). Characterization of the axon initial segment (AIS) of motor neurons and identification of a para-AIS and a juxtapara-AIS, organized by protein 4.1B. BMC Biology, 9, 66–84.

    Article  PubMed  CAS  Google Scholar 

  • Finol-Urdaneta, R. K., McArthur, J. R., Juranka, P. F., French, R. J., & Morris, C. E. (2010). Modulation of KvAP unitary conductance and gating by 1-alkanols and other surface active agents. Biophysical Journal, 98, 762–772.

    Article  PubMed  CAS  Google Scholar 

  • Fried, K., Sessle, B. J., & Devor, M. (2011). The paradox of pain from tooth pulp: Low-threshold “algoneurons”? Pain, 152, 2685–2689.

    Article  PubMed  Google Scholar 

  • Gu, C., & Gu, Y. (2011). Clustering and activity tuning of Kv1 channels in myelinated hippocampal axons. Journal of Biological Chemistry, 286, 25835–25847.

    Article  PubMed  CAS  Google Scholar 

  • Hirn, C., Shapovalov, G., Petermann, O., Roulet, E., & Ruegg, U. T. (2008). Nav1.4 deregulation in dystrophic skeletal muscle leads to Na+ overload and enhanced cell death. Journal of General Physiology, 132, 199–208.

    Article  PubMed  CAS  Google Scholar 

  • Hodgkin, A. L. (1948). The local electric changes associated with repetitive action in a non-medullated axon. The Journal of Physiology, 107, 165–181.

    PubMed  CAS  Google Scholar 

  • Hodgkin, A. L., & Huxley, A. F. (1952). A quantitative description of membrane current and its application to conduction and excitation in nerve. The Journal of Physiology, 117, 500–544.

    PubMed  CAS  Google Scholar 

  • Hogg, R. R., Lewis, R. J., & Adams, D. J. (2002). Ciguatoxin-induced oscillations in membrane potential and firing in rat parasympathetic neurons. European Journal of Neuroscience, 16, 242–248.

    Article  PubMed  CAS  Google Scholar 

  • Huff, T. B., Shi, Y., Sun, W., Wu, W., Shi, R., & Cheng, J. X. (2011). Real-time CARS imaging reveals a calpain-dependent pathway for paranodal myelin retraction during high-frequency stimulation. PLoS One, 6(3), e17176.

    Article  PubMed  CAS  Google Scholar 

  • Isose, S., Misawa, S., Sakurai, K., Kanai, K., Shibuya, K., Sekiguchi, Y., Nasu, S., Noto, Y., Fujimaki, Y., Yokote, K., & Kuwabara, S. (2010). Mexiletine suppresses nodal persistent sodium currents in sensory axons of patients with neuropathic pain. Clinical Neurophysiology, 121, 719–724.

    Article  PubMed  CAS  Google Scholar 

  • Izhikevich, E. M. (2001). Resonate-and-fire neurons. Neural Network, 14, 883–894.

    Article  CAS  Google Scholar 

  • Kager, H., Wadman, W. J., & Somjen, G. (2000). Simulated seizures and spreading depression in a neuron model incorporating interstitial space and ion concentrations. Journal of Neurophysiology, 84, 495–512.

    PubMed  CAS  Google Scholar 

  • Kimelberg, H. K. (2004). Volume activated anion channel and astrocytic cellular edema in traumatic brain injury and stroke. Advances in Experimental Medicine and Biology, 559, 157–167.

    Article  PubMed  CAS  Google Scholar 

  • Kole, M. H. (2011). First node of Ranvier facilitates high-frequency burst encoding. Neuron, 71, 671–682.

    Article  PubMed  CAS  Google Scholar 

  • Kovalsky, Y., Amir, R., & Devor, M. (2009). Simulation in sensory neurons reveals a key role for delayed Na+ current in subthreshold oscillations and ectopic discharge: implications for neuropathic pain. Journal of Neurophysiology, 102, 1430–1442.

    Article  PubMed  CAS  Google Scholar 

  • Krepkiy, D., Mihailescu, M., Freites, J. A., Schow, E., Worcester, D., Gawrisch, K., Tobias, D. J., White, S. H., & Swartz, K. (2009). Structure and hydration of membranes embedded with voltage-sensing domains. Nature, 462, 473–479.

    Article  PubMed  CAS  Google Scholar 

  • Krishnan, G. P., & Bazhenov, M. (2011). Ionic dynamics mediate spontaneous termination of seizures and postictal depression state. Journal of Neuroscience, 31, 8870–8882.

    Article  PubMed  CAS  Google Scholar 

  • Kuwabara, S., Misawa, S., Tamura, N., Nakata, M., Kanai, K., Sawai, S., Ogawara, K., & Hattori, T. (2006). Latent addition in human motor and sensory axons: different site-dependent changes across the carpal tunnel related to persistent Na+ currents. Clinical Neurophysiology, 117, 810–814.

    Article  PubMed  CAS  Google Scholar 

  • Läuger, P. (1991). Electrogenic ion pumps. Distinguished lecture series of the Society of General Physiologists. Vol. 5. Sinauer Assoc., Sunderland (Mass).

  • Lemieux, D. R., Roberge, F. A., & Joly, D. (1992). Modeling the dynamic features of the electrogenic Na, K pump of cardiac cells. Journal of Theoretical Biology, 154, 335–338.

    Article  PubMed  CAS  Google Scholar 

  • Lenkey, N., Karoly, R., Epresi, N., Vizi, E., & Mike, A. (2011). Binding of sodium channel inhibitors to hyperpolarized and depolarized conformations of the channel. Neuropharmacology, 60, 191–200.

    Article  PubMed  CAS  Google Scholar 

  • Li, G. R., Sun, H. Y., Zhang, X. H., Cheng, L. C., Chiu, S. W., Tse, H. F., & Lau, C. P. (2009). Omega-3 polyunsaturated fatty acids inhibit transient outward and ultrarapid delayed rectifier K+ currents and Na+ current in human atrial myocytes. Cardiovascular Research, 81, 286–293.

    Article  PubMed  CAS  Google Scholar 

  • Lorincz, A., & Nusser, Z. (2010). Molecular identity of dendritic voltage-gated sodium channels. Science, 328, 906–909.

    Article  PubMed  CAS  Google Scholar 

  • Mantegazza, M., Curia, G., Biagini, G., Ragsdale, D. S., & Avoli, M. (2010). Voltage-gated sodium channels as therapeutic targets in epilepsy and other neurological disorders. Lancet Neurology, 9, 413–424.

    Article  PubMed  CAS  Google Scholar 

  • Marques, A., & Guerri, C. (1988). Effects of ethanol on rat brain (Na+K)ATPase from native and delipidized membranes. Biochemical Pharmacology, 15, 601–606.

    Article  Google Scholar 

  • Massimini, M., Boly, M., Casali, A., Rosanova, M., & Tononi, G. (2009). A perturbational approach for evaluating the brain’s capacity for consciousness. Progress in Brain Research, 177, 201–214.

    Article  PubMed  Google Scholar 

  • Maxwell, W. L. (1996). Histopathological changes at central nodes of Ranvier after stretch-injury. Microscopy Research and Technique, 34, 522–535.

    Article  PubMed  CAS  Google Scholar 

  • McGinn, M. J., Kelley, B. J., Akinyi, L., Oli, M. W., Liu, M. C., Hayes, R. L., Wang, K. K. W., & Povlishock, J. T. (2009). Biochemical, structural, and biomarker evidence for calpain-mediated cytoskeletal change after diffuse brain injury uncomplicated by contusion. Journal of Neuropathology and Experimental Neurology, 68, 241–249.

    Article  PubMed  CAS  Google Scholar 

  • Misawa, S., Sakurai, K., Shibuya, K., Isose, S., Kanai, K., Ogino, J., Ishikawa, K., & Kuwabara, S. (2009). Neuropathic pain is associated with increased nodal persistent Na+ currents in human diabetic neuropathy. Journal of the Peripheral Nervous System, 14, 279–284.

    Article  PubMed  CAS  Google Scholar 

  • Monnerie, H., Tang-Schomer, M. D., Iwata, A., Smith, D. H., Kim, H. A., & Le Roux, P. D. (2010). Dendritic alterations after dynamic axonal stretch injury in vitro. Experimental Neurology, 224, 415–423.

    Article  PubMed  CAS  Google Scholar 

  • Morris, C. E. (2011a). Why are so many ion channels mechanosensitive. In N. Sperelakis (Ed.), Cell physiology source book (pp. 493–505), 4th Edition. Elsevier.

  • Morris, C. E. (2011b). Voltage-gated channel mechanosensitivity. Fact or friction? Frontiers in Physiology, 2, 25.

    Article  Google Scholar 

  • Morris, C. E. (2011c). Pacemaker, potassium, calcium, sodium: stretch modulation of the voltage-gated channels. In P. Kohl, F. Sachs, M. R. Franz, editors. Cardiac mechano-electric coupling and arrhythmias (pp. 42–49), 2nd Edition. Oxford University Press.

  • Morris, C., & Lecar, H. (1981). Voltage oscillations in the barnacle giant muscle fiber. Biophysical Journal, 35, 193–213.

    Article  PubMed  CAS  Google Scholar 

  • Morris, C. E., Boucher, P-A., Joós, B. (2012). Left-shifted Nav channels in trauma-damaged bilayer: primary targets for neuroprotective Nav antagonists? Frontiers in Pharmacology 3, 19.

  • Ochab-Marcinek, A., Schmid, G., Goychuk, I., & Hänggi, P. (2009). Noise-assisted spike propagation in myelinated neurons. Physical Review E, 79, 11904.

    Article  Google Scholar 

  • Prescott, S. A., De Koninck, Y., & Sejnowski, T. J. (2008). Biophysical basis for three distinct dynamical mechanisms of initiation. PLoS Computational Biology, 4, e1000198.

    Article  PubMed  Google Scholar 

  • Ritter, A. M., Martin, W. J., & Thorneloe, K. S. (2009). The voltage-gated sodium channel Nav1.9 is required for inflammation-based urinary bladder dysfunction. Neuroscience Letters, 452, 28–32.

    Article  PubMed  CAS  Google Scholar 

  • Ross, S. T., & Soltesz, I. (2000). Selective depolarization of interneurons in the early posttraumatic dentate gyrus: involvement of the Na(+)/K(+)-ATPase. Journal of Neurophysiology, 83, 2916–2930.

    PubMed  CAS  Google Scholar 

  • Schafer, D. S., Jha, S., Liu, F., Akella, T., McCullough, L. D., & Rasband, M. N. (2009). Disruption of the axon initial segment cytoskeleton is a new mechanism for neuronal injury. Journal of Neuroscience, 29, 13242–13254.

    Article  PubMed  CAS  Google Scholar 

  • Schmidt, D., & MacKinnon, R. (2008). Voltage-dependent K+ channel gating and voltage sensor toxin sensitivity depend on the mechanical state of the lipid membrane. Proceedings of the National Academy of Sciences of the United States of America, 105, 19276–19281.

    Article  PubMed  CAS  Google Scholar 

  • Seifert, G., Huttmann, K., Binder, D. K., Hartmann, C., Wyczynski, A., Neusch, C., & Steinhauser, C. (2009). Analysis of astroglial K+ channel expression in the developing hippocampus reveals a predominant role of the Kir4.1 subunit. Journal of Neuroscience, 29, 7474–7488.

    Article  PubMed  CAS  Google Scholar 

  • Shi, R., & Sun, W. (2011). Potassium channel blockers as an effective treatment to restore impulse conduction in injured axons. Neuroscience Bulletin, 27, 36–44.

    Article  PubMed  Google Scholar 

  • Smith, D. H., Meaney, D. F., & Shull, W. H. (2003). Diffuse axonal injury in head trauma. The Journal of Head Trauma Rehabilitation, 18, 307–316.

    Article  PubMed  Google Scholar 

  • Smit, J. E., Hanekom, T., & Hanekom, J. J. (2009). Modelled temperature-dependent excitability behaviour of a single Ranvier node for a human peripheral sensory nerve fibre. Biological Cybernetics, 100, 49–58.

    Article  PubMed  Google Scholar 

  • Stys, P. K. (2004). White matter injury mechanisms. Current Molecular Medicine, 4, 113–130.

    Article  PubMed  CAS  Google Scholar 

  • Stys, P. K., Sontheimer, H., Ransom, B. R., & Waxman, S. G. (1993). Noninactivating, tetrodotoxin-sensitive Na+ conductance in rat optic nerve axons. Proceedings of the National Academy of Sciences of the United States of America, 90, 6976–6980.

    Article  PubMed  CAS  Google Scholar 

  • Sun, G. C., Werkman, T. R., & Wadman, W. J. (2006). Kinetic changes and modulation by carbamazepine on voltage-gated sodium channels in rat CA1 neurons after epilepsy. Acta Pharmacologica Sinica, 27, 1537–1546.

    Article  PubMed  CAS  Google Scholar 

  • Tabarean, I. V., Juranka, P., & Morris, C. E. (1999). Membrane stretch affects gating modes of a skeletal muscle sodium channel. Biophysical Journal, 77, 758–774.

    Article  PubMed  CAS  Google Scholar 

  • Taddese, A., & Bean, B. P. (2002). Subthreshold sodium current from rapidly inactivating sodium channels drives spontaneous firing of tuberomammillary neurons. Neuron, 33, 587–600.

    Article  PubMed  CAS  Google Scholar 

  • Thomas, E. A., Hawkins, R. J., Richards, K. L., Xu, R., Gazina, E. V., & Petrou, S. (2009). Heat opens axon initial segment sodium channels: a febrile seizure mechanism? Annals of Neurology, 66, 219–226.

    Article  PubMed  CAS  Google Scholar 

  • Tokuno, H. A., Kocsis, J. D., & Waxman, S. G. (2003). Noninactivating, tetrodotoxin sensitive Na+ conductance in peripheral axons. Muscle & Nerve, 28, 212–217.

    Article  CAS  Google Scholar 

  • Viano, D. C., Casson, I. R., Pellman, E. J., Bir, C. A., Zhang, L., Sherman, D. C., & Boitano, M. A. (2005). Concussion in professional football: comparison with boxing head impacts–part 10. Neurosurgery, 57, 1154–1172.

    Article  PubMed  Google Scholar 

  • Volman, V., Bazhenov, M., & Sejnowski, T. J. (2011). Pattern of trauma determines the threshold for epileptic activity in a model of cortical deafferentation. Proceedings of the National Academy of Sciences of the United States of America, 108, 15402–15407.

    Article  PubMed  CAS  Google Scholar 

  • Vucic, S., & Kiernan, M. C. (2010). Upregulation of persistent sodium conductances in familial ALS. Journal of Neurology, Neurosurgery, and Psychiatry, 81, 222–227.

    Article  PubMed  Google Scholar 

  • Wan, X., Juranka, P., & Morris, C. E. (1999). Activation of mechanosensitive currents in traumatized membrane. American Journal of Physiology, 276, C318–C327.

    PubMed  CAS  Google Scholar 

  • Wang, J. A., Lin, W., Morris, T., Banderali, U., Juranka, P. F., & Morris, C. E. (2009). Membrane trauma and Na+ leak from Nav1.6 channels. American Journal of Physiology Cell Physiology, 297, C823–C834.

    Article  PubMed  CAS  Google Scholar 

  • Weiss, S., Benoist, D., White, E., Teng, W., & Saint, D. A. (2010). Riluzole protects against cardiac ischaemia and reperfusion damage via block of the persistent sodium current. British Journal of Pharmacology, 160, 1072–1082.

    Article  PubMed  CAS  Google Scholar 

  • Wolf, J. A., Stys, P. K., Lusardi, T., Meaney, D., & Smith, D. H. (2001). Traumatic axonal injury induces calcium influx modulated by tetrodotoxin-sensitive sodium channels. Journal of Neuroscience, 21, 1923–1930.

    PubMed  CAS  Google Scholar 

  • Yuen, T. J., Browne, K. D., Iwata, A., & Smith, D. H. (2009). Sodium channelopathy induced by mild axonal trauma worsens outcome after a repeat injury. Journal of Neuroscience Research, 87, 3620–3625.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

We thank André Longtin and Na Yu for helpful discussions during the preparation of this manuscript. Our research was supported by funds from NSERC, HSF and CIHR.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Béla Joós or Catherine E. Morris.

Additional information

Action Editor: T. Sejnowski

Rights and permissions

Reprints and permissions

About this article

Cite this article

Boucher, PA., Joós, B. & Morris, C.E. Coupled left-shift of Nav channels: modeling the Na+-loading and dysfunctional excitability of damaged axons. J Comput Neurosci 33, 301–319 (2012). https://doi.org/10.1007/s10827-012-0387-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10827-012-0387-7

Keywords

Navigation