Skip to main content

Advertisement

Log in

Computational model of excitatory/inhibitory ratio imbalance role in attention deficit disorders

  • Published:
Journal of Computational Neuroscience Aims and scope Submit manuscript

Abstract

Impairments in attentional behaviors, including over-selectivity, under-selectivity, distractibility and difficulty in shift of attention, are widely reported in several developmental disorders, including autism. Uncharacteristic inhibitory to excitatory neuronal number ratio (IER) and abnormal synaptic strength levels in the brain are two broadly accepted neurobiological disorders observed in autistic individuals. These neurobiological findings are contrasting and their relation to the atypical attentional behaviors is not clear yet. In this paper, we take a computational approach to investigate the relation of imbalanced IER and abnormal synaptic strength to some well-documented spectrum of attentional impairments. The computational model is based on a modified version of a biologically plausible neural model of two competing minicolumns in IT cortex augmented with a simple model of top-down attention. Top-down attention is assumed to amplify (attenuates) attended (unattended) stimulus. The inhibitory synaptic strength parameter in the model is set such that typical attentional behavior is emerged. Then, according to related findings, the parameter is changed and the model’s attentional behavior is considered. The simulation results show that, without any change in top-down attention, the abnormal inhibitory synaptic strength values – and IER imbalance- result in over-selectivity, under-selectivity, distractibility and difficulty in shift of attention in the model. It suggests that the modeled neurobiological abnormalities can be accounted for the attentional deficits. In addition, the atypical attentional behaviors do not necessarily point to impairments in top-down attention. Our simulations suggest that limited changes in the inhibitory synaptic strength and variations in top-down attention signal affect the model’s attentional behaviors in the same way. So, limited deficits in the inhibitory strength may be alleviated by appropriate change in top-down attention biasing. Nevertheless, our model proposes that this compensation is not possible for very high and very low values of the inhibitory strength.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Allen, G., & Courchesne, E. (2001). Attention function and dysfunction in autism. Frontiers in Bioscience, 6(3), 105–119.

    Article  Google Scholar 

  • Baron-Cohen, S. (1995). Mind blindness: an essay on autism and theory of mind. Cambridge: MIT Press.

    Google Scholar 

  • Belmonte, M. (2000). Abnormal attention in autism shown by steady-state visual evoked potentials. Autism, 4(3), 269–285.

    Article  Google Scholar 

  • Belmonte, M., Cook, E. J., Anderson, G., Rubenstein, J., Greenough, W., Beckel-Mitchener, A., et al. (2004). Autism as a disorder of neural informationprocessing: directions for research andtargets for therapy. Molecular Psychiatry, 9(7), 646–663.

    PubMed  CAS  Google Scholar 

  • Belmonte, M. K., & Yurgelun-Todd, D. A. (2003). Functional anatomy of impaired selective attention and compensatory processing in autism. Cognitive Brain Research, 17(3), 651–664.

    Article  PubMed  Google Scholar 

  • Bird, G., Catmur, C., Silani, G., Frith, C., & Frith, U. (2006). Attention does not modulate neural responses to social stimuli in autism spectrum disorders. NeuroImage, 31(4), 1614–1624.

    Article  PubMed  Google Scholar 

  • Blake, R., & Logothetis, N. K. (2002). Visual competition. Nature Reviews Neuroscience, 3(1), 13–23.

    Article  PubMed  CAS  Google Scholar 

  • Börgers, C., Epstein, S., & Kopell, N. J. (2008). Gamma oscillations mediate stimulus competition and attentional selection in a cortical network model. Proceeding of the National Academy of Science, 46(105), 18023–18028.

    Article  Google Scholar 

  • Broadbent, D. (1958). Perception and communication. Oxford: Oxford University Press.

    Book  Google Scholar 

  • Buehlmann, A., & Deco, G. (2008). The neuronal basis of attention: rate versus synchronization modulation. Journal of Neuroscience, 28(30), 7679–7686.

    Article  PubMed  CAS  Google Scholar 

  • Buia, C., & Tiesinga, P. (2006). Attentional modulation of firing rate and synchrony in a model cortical network. Journal of Computational Neuroscience, 20(3), 247–264.

    Google Scholar 

  • Buia, C., & Tiesinga , P. (2008). Role of Interneuron Diversity in the Cortical Microcircuit for Attention. Current Issue: March 2012, 99(5), 2158–2182.

    Google Scholar 

  • Burack, J. A., Enns, J. T., Stauder, J. E., Mottron, J. E., & Rondolph, B. (1958). Attention and autism: behavioral and electrophysiological evidence. New York: Wiley.

    Google Scholar 

  • Buxhoeveden, D. P., & Casanova, M. F. (2002). The minicolumn hypothesis in neuroscience. Brain, 125(5), 935–951.

    Article  PubMed  Google Scholar 

  • Carlsson, M. L., Martin, P., Nilsson, M., Sorensen, S. M., Water, S., & Waters, N. (1999). The5-HT2A receptor antagonist M100907 is more effective in counteracting NMDAantagonistthan dopamine agonist–induced hyperactivityin mice. Journal of Neural Transmission, 106(2), 123–129.

    Article  PubMed  CAS  Google Scholar 

  • Casanova, M. F., Buxhoeveden, D. P., Switala, A. E., & Roy, E. (2002). Minicolumnar pathology in autism. Neurology, 58(3), 428–432.

    Article  PubMed  Google Scholar 

  • Casanova, M., & Trippe, J. (2009). Radial cytoarchitecture and patterns of cortical connectivity in autism. Philosophical Transactions of the Royal Society B: Biological Sciences, 364(1522), 1433–1436.

    Article  Google Scholar 

  • Casanova, M. F., van Kooten, A. J., Switala, A. J., Engeland, H., & Heinsen, H. (2006). Minicolumnar abnormalities in autism. Acta Neuropathologica, 12(13), 287–303.

    Article  Google Scholar 

  • Caseya, B. J., Gordona, C. T., Mannheim, G. B., & Rumsey, J. M. (1993). Dysfunctional attention in autistic savants. Journal of Clinical and Experimental Neuropsychology, 15(6), 933–946.

    Article  Google Scholar 

  • Chelazzi, L., Duncan, J., Miller, E. K., & Desimon, R. (1998). Responses of neurons in inferior temporal cortex during memory-guided visual search. Journal of Neurophysiol, 80(6), 2918–2940.

    CAS  Google Scholar 

  • Chong, S., Tadin, D., & Blake, R. (2005). Endogenous attention prolongs dominance durantions in binocular rivalry. Journal of Vision, 1004–1012.

  • Ciesielski, K. T., Courchesne, E., & Elmasian, R. (1990). Effects of focused selective attention tasks on event-related potentials in autistic and normal individuals. Electroencephalography and Clinical Neurophysiology, 75(3), 207–220.

    Article  PubMed  CAS  Google Scholar 

  • Coben, R., Linden, M., & Myers, T. (2010). Applied Psychophysiology and Biofeedback, 35, 83–105.

    Article  PubMed  Google Scholar 

  • Coben, R., & Myers, T. (2010). The relative efficacy of connectivity guided and symptom based EEG biofeedback for Autistic disorders. Applied Psychophysiology and Biofeedback, 35(1), 13–23.

    Article  PubMed  Google Scholar 

  • Cowan, J., & Markham, L. (1994). EEG biofeedback for the attention problems of autism: a case study. The 25th Annual Meeting of the Association for Applied Psychophysiology and biofeedback. Atlanta, GA.

  • Dawson, G., & Lewy, A. (1989). Arousal, attention, and the socioemotional impairments of individuals with autism. Autism: Nature, diagnosis & treatment, 49–74.

  • Deco, G., & Rolls, E. T. (2005). Neurodynamics of biased competition and cooperation for attention: a model with spiking neurons. Journal of Neurophysiology, 94(1), 295–313.

    Article  PubMed  CAS  Google Scholar 

  • Demos, J. (2005). Getting started with neurofeedback. New York: WW Norton & Company.

    Google Scholar 

  • Desimone, R. (1998). Visual attention mediated by biased competition in extrastriate visual cortex. Philosophical Transactions of the Royal Society B: Biological Sciences, 353(1373), 1245–1255.

    Article  CAS  Google Scholar 

  • Desimone, R., & Duncan, J. (1995). Neural mechanisms of selective visual attention. Annual Review of Neuroscience, 18, 193–222.

    Article  PubMed  CAS  Google Scholar 

  • Fries, P., Reynolds, J. H., Rorie, A. E., & Desimone, R. (2001). Modulation of oscillatory neuronal synchronization by selective visual attention. Science, 291(5508), 1560–1563.

    Article  PubMed  CAS  Google Scholar 

  • Fries, P., Womelsdorf, T., Oostenveld, R., & Desimone, R. (2008). The effects of visual stimulation and selective visual attention on rhythmic neuronal synchronization in macaque area V4. Journal of Neuroscience, 28(18), 4835–4823.

    Article  Google Scholar 

  • Goldstein, G., Johnson, C. R., & Minshew, N. J. (2001). Attentional processes in autism. Journal of Autism and Developmental Disorders, 31(4), 433–440.

    Article  PubMed  CAS  Google Scholar 

  • Greenaway, R., & Plaisted, K. (2005). Top-down attentional modulation in autistic spectrum disorders is stimulus-specific. Psychological Science, 16(12), 987–994.

    Article  PubMed  Google Scholar 

  • Hancocok, S., & Andrews, T. (2007). The role of voluntary and involuntary attention in selecting perceptual dominance during binocular rivalry. Perception, 288–298.

  • Hughes, J. R. (2008). A review of recent reports on autism: 1000 studies published in 2007. Epilepsy & Behavior, 13(3), 425–437.

    Article  Google Scholar 

  • Hughes, J. R. (2009). Update on autism: a review of 1300 reports published in 2008. Epilepsy & Behavior, 16(4), 569–589.

    Article  Google Scholar 

  • Jamain, S., Betancur, C., & Quach, H. (2002). Linkageand association of the glutamate receptor6 gene with autism. Molecular Psychiatry, 7(3), 302–310.

    Article  PubMed  CAS  Google Scholar 

  • Jarusiewicz, B. (2002). Efficacy of neurofeedback for children in the autistic spectrum: a pilot study. Journal of Neurotherapy, 6(4), 39–49.

    Article  Google Scholar 

  • Kastner, S., & Ungerleider, L. G. (2001). The neural basis of biased competition in humanvisual cortex. Neuropsychologia, 39(12), 1263–1276.

    Article  PubMed  CAS  Google Scholar 

  • Kiani, R., Esteky, H., Mirpour, K., & Tanaka, K. (2007). Object category structure in response patterns of neuronal population in monkey inferior temporal cortex. Journal of Neurophysiology, 97, 4296–4309.

    Article  PubMed  Google Scholar 

  • Korvatska, E., Van de Water, J., & Anders, T. F. (2002). Genetic and immunologic considerations in autism. Neurobiology of Disease, 9(2), 107–125.

    Article  PubMed  CAS  Google Scholar 

  • Kouijzer, M., de Moor, J., Gerrits, B., Congedo, M., Van Schie, H., (2009). Neurofeedback improves executive functioning in children with autism spectrum disorders. Research in Autism Spectrum Disorders, 3(1), 145–162

    Article  Google Scholar 

  • Landry, R., & Bryson, S. E. (2004). Impaired disengagement of attention in young children with autism. Journal of Child Psychology and Psychiatry, 45(6), 1115–1122.

    Article  PubMed  Google Scholar 

  • Levelt, W. J. M. (1965). On binocular rivalry. Soesterberg, The Netherlands: Institute for 906 Perception RVO-TNO.

    Google Scholar 

  • Linden, M. (2004). Case studies of QEEG mapping and neurofeedback with autism. 12th Annual Conference of the International Society for Neuronal Regulation. Fort Lauderdale, FL.

  • Logothetis, N., & Sheinberg, D. (1996). Visual object recognition. Annual Review of Neurosience, 19, 577–621.

    Article  CAS  Google Scholar 

  • Lovaas, O. I., Schreibman, L., Koegel, R. L., & Rehm, R. (1971). Selective responding by autistic children to multiple sensory input. Journal ofAbnormal Psychology, 77(3), 211–222.

    Article  CAS  Google Scholar 

  • Matthews, B., Shute, R., & Rees, R. (2001). An analysis of stimulus overselectivity in adults with autism. Journal of Intellectual and Developmental Disability, 26(2), 161–176.

    Article  Google Scholar 

  • Mirpour, K., & Esteky, H. (2009). State-dependent effects of stimulus presentation duration on the temporal dynamics of neural responses in the inferotemporal cortex of macaque monkeys. Journal of Neurophysiology, 102(3), 1790–1800.

    Article  PubMed  Google Scholar 

  • Moldakarimov, S., Rollenhagen, J. E., Olson, C., & Chow, C. (2005). Competitive dynamics in cortical responses to visual stimuli. Journal of Neurophysiol, 94(5), 3388–3396.

    Article  Google Scholar 

  • Ohshiro, T., Angelaki, D., & DeAngelis, G. (2011). A normalization model of multisensory integration. Nature Neuroscience, 14(6), 775–782.

    Google Scholar 

  • Paffen, C.L., & Alais, D. (2011). Attentional modulation of binocular rivalry. Frontiers in Human Neuroscience, 1–10.

  • Paffen, C., Alais, D., & Verstraten, F. (2006). Attention speeds binocular rivalry. Psychological Science, 752–756.

  • Paffen, C., & Hooge, I. (2011). The effect of set size on the dynamics of binocular rivalry. Seeing Perceiving, 19–35.

  • Polleux, F., & Lauder, J. M. (2004). Toward a developmental neurobiology of autism. Mental Retardation and Developmental Disabilities, 10(4), 303–317.

    Article  Google Scholar 

  • Purcel, A. E., Jeon, O. H., Zimmerman, A. W., Blue, M. E., & Pevsner, J. (2001). Postmortem brain abnormalities of theglutamate neurotransmitter system in autism. Neurology, 57(9), 1618–1628.

    Article  Google Scholar 

  • Reed, P., & Gibson, E. (2005). The effect of concurrent task load on stimulus over-selectivity. Journal of Autism and Developmental Disorders, 35(5), 601–614.

    Article  PubMed  Google Scholar 

  • Remington, A., Swettenham, J., Campbell, R., & Colem, M. (2009). Selective attention and perceptual load in autism spectrum disorder. Psychological Science, 20(11), 1388–1393.

    Article  PubMed  Google Scholar 

  • Reynolds, J., Chelazzi, L., & Desimone, R. (1999). Competitive mechanisms subserve attention in Macaque reas V2 and V4. The Journal of Neuroscience, 1(5), 1736–1753.

    Google Scholar 

  • Reynolds, J., Pasternak, T., & Desimone, R. (2000). Attention increases sensitivity of V4 neurons. Neuron, 26(3), 703–714.

    Article  PubMed  CAS  Google Scholar 

  • Rinehart, N. J., Bradshaw, J. L., Moss, S. A., Brereton, A. V., & Tonge, B. J. (2001). A deficit in shifting attention present in high-functioning autism but not asperger’s disorder. Autism, 5(1), 67–80.

    Article  PubMed  CAS  Google Scholar 

  • Rollenhagen, E., & Olson, C. (2005). Low-frequency oscillations arising from competitive interactions between visual stimuli in Macaque inferotemporal cortex. Journal of Neurophysiology, 94(5), 3368–3387.

    Article  PubMed  Google Scholar 

  • Rubenstein, J. L., & Merzenich, M. M. (2003). Model of autism: increased ratio of excitation /inhibition in key neural systems. Genes, Brain, and Behavior, 2(2), 255–267.

    Article  PubMed  CAS  Google Scholar 

  • Ruggieri, V. L. (2006). Atentional processes and attention deficit disorders in autism. Revista de Neurologia, 42(3), 51–56.

    Google Scholar 

  • Steinmetz, P. N., Roy, A., Fitzgerald, P. J., Hsiao, S. S., Johnson, K. O., & Niebur, E. (2000). Attention modulates synchronized neuronal firing in primate somatosensory cortex. Nature, 404, 187–190.

    Article  PubMed  CAS  Google Scholar 

  • Swettenham, J., Baron-Cohen, S., Charman, T., Cox, A., Baird, G., Drew, A., et al. (1998). The frequency and distribution of spontaneous attention shifts between social and nonsocial stimuli in autistic, typically developing, and nonautistic developmentally delayed infants. Journal of Child Psychology and Psychiatry, 39(5), 747–753.

    Article  PubMed  CAS  Google Scholar 

  • Tanaka, K. (1996). Inferotemporal cortex and object vision. Annual Review of Neuroscience, 19, 109–139.

    Article  PubMed  CAS  Google Scholar 

  • Townsend, J., & Courchesne, E. (1994). Parietal damage and narrow “spotlight” spatial attention. Journal of Cognitive Neuroscience, 6(3), 220–232.

    Article  Google Scholar 

  • Wang, X.-J. (2002). Probabilistic Decision Making by Slow Reverberation in Cortical Circuits. Neuron, 36(5), 955–968.

    Google Scholar 

  • White, S., O’Reilly, H., & Frith, U. (2009). Big heads, small details and autism. Neuropsychologia, 47(5), 1274–1281.

    Article  PubMed  Google Scholar 

  • Wilhelm, H., & Lovaas, O. I. (1976). Stimulus overselectivity: a common feature in autism and mental retardation. American Journal of Mental Deficiency, 81(1), 26–31.

    PubMed  CAS  Google Scholar 

Download references

Acknowledgment

The authors would like to thank Mr. Hosein Vahabi for the fruitful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Reyhaneh Bakhtiari.

Additional information

Action Editor: P. Dayan

Reyhaneh Bakhtiari and Nazanin Mohammadi Sephavand have equally contributed to this paper.

Appendix

Appendix

In this section, detailed equations and the parameters’ values in the simulations are given. For more information, refer to (Moldakarimov et al. 2005). In Eqs. (1) and (2), \( {I_{{mem}}}\left( {V,n,h} \right) \) is the membrane current and is modeled by:

$$ {I_{{mem}}}\left( {V,n,h} \right) = {g_{_L}}.\left( {V - {V_L}} \right) + {g_{_K}}.{n^4}.\left( {V - {V_K}} \right) + {g_{{Na}}}.m_{\infty }^3.h.\left( {V - {V_{{Na}}}} \right) $$

where

$$ \begin{array}{*{20}{c}} {{m_{\infty }}(V) = {\alpha_m}(V)/\left[ {{\alpha_m}(V) + {\beta_m}(V)} \right]} \hfill \\ {{\alpha_m}(V) = 0.1.\left( {V + 30} \right)/\left( {1 - \exp \left[ { - 0.1.\left( {V + 30} \right)} \right]} \right),{\beta_m}(V) = 4.\exp \left. {\left[ { - \left( {V + 55} \right)/18} \right]} \right)} \hfill \\ {\frac{{{\text{d}}n}}{{{\text{d}}t}} = \psi .\left[ {{\alpha_n}(V).\left( {1 - n} \right) - {\beta_n}(V).n} \right]} \hfill \\ {{\alpha_n}(V) = 0.01.\left( {V + 34} \right)/\left( {1 - \exp \left[ { - 0.1.\left( {V + 34} \right)} \right]} \right),\left. {{\beta_n}(V) = 0.125.\exp \left[ { - \left( {V + 44} \right)/80} \right]} \right)} \hfill \\ {\frac{{{\text{d}}h}}{{{\text{d}}t}} = \psi \left[ {{\alpha_h}(V).\left( {1 - h} \right) - {\beta_h}(V).h} \right]} \hfill \\ {\left. {{\alpha_h}(V) = 0.07.\exp \left[ { - \left( {V + 44} \right)/20} \right]} \right),{\beta_h}(V) = 1/\left( {1 + \exp \left[ { - 0.01.\left( {V + 14} \right)} \right]} \right)} \hfill \\ \end{array} $$

With V L  = −65, V Na  = 55, V K  = −80, V Ca  = 120, g L  = 0.05, g Na  = 100, g K  = 40, ψ = 3.

\( {I_{{AHP}}}\left( {{V_e},\left[ {Ca} \right]} \right) \), the calcium-dependent potassium adaptation current, obeys

$$ {I_{{AHP}}}\left( {{V_e},\left[ {Ca} \right]} \right) = {g_{{AHP}}}.\left[ {Ca} \right]/\left( {\left[ {Ca} \right] + 1} \right).\left( {{V_e} - {V_K}} \right) $$

where

$$ \frac{{{\text{d}}[Ca]}}{{{\text{d}}t}} = - 0.002.{g_{{Ca}}}({V_e} - {V_{{Ca}}})/(1 + \exp ( - ({V_e} + 25)/2.5)) - [Ca]/{\tau_{{AHP}}} $$

With g Ca  = 0.975, τ AHP  = 100, and g AHP  = 0.25.

In Eqs. (3) and (4), the synaptic gating variables, s e [k] and s i [k], and the depression factors, ϕ e [k] and ϕ i [k], are given by:

$$ \matrix{{*{20}{c}} {\frac{{{\text{d}}{s_e}\left[ k \right]}}{{{\text{d}}t}} = \left( {A.\sigma \left( {{V_e}} \right).\left( {1 - {s_e}\left[ k \right]} \right) - {s_e}\left[ k \right]} \right)/{\tau_e}} \\ {\frac{{{\text{d}}{s_i}\left[ k \right]}}{{{\text{d}}t}} = \left( {A.\sigma \left( {{V_i}} \right).\left( {1 - {s_i}\left[ k \right]} \right) - {s_i}\left[ k \right]} \right)/{\tau_i}} \\ {\frac{{{\text{d}}{\phi_e}\left[ k \right]}}{{{\text{d}}t}} = \left( { - {f_e}.\sigma \left( {{V_e}} \right).{\phi_e}\left[ k \right] + \left( {1 - {\phi_e}\left[ k \right]} \right)} \right)/{\tau_{{ge}}}} \\ {\frac{{{\text{d}}{\phi_i}\left[ k \right]}}{{{\text{d}}t}} = \left( { - {f_i}.\sigma \left( {{V_i}} \right).{\phi_i}\left[ k \right] + \left( {1 - {\phi_i}\left[ k \right]} \right)} \right)/{\tau_{{gi}}}} \\ {\sigma (V) = 1/\left( {1 + \exp \left( { - \left( {V + 20} \right)/4} \right)} \right)} \\ } $$

where V ei  = −80, V ee  = 0, A = 20, τ e  = 8, τ i  = 10, τ ge  = 1,000, τ gi  = 800, J ie  = 0.55, J ee  = 0.01, f e =0.02, and f i =0.015. J ei varies from 0 to 1. The exact value of J ei is mentioned in the caption of each figure.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bakhtiari, R., Mohammadi Sephavand, N., Nili Ahmadabadi, M. et al. Computational model of excitatory/inhibitory ratio imbalance role in attention deficit disorders. J Comput Neurosci 33, 389–404 (2012). https://doi.org/10.1007/s10827-012-0391-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10827-012-0391-y

Keywords

Navigation