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Abstract
Natural sensory inputs, such as speech and music, are often rhythmic. Recent studies have
consistently demonstrated that these rhythmic stimuli cause the phase of oscillatory, i.e. rhythmic,
neural activity, recorded as local field potential (LFP), electroencephalography (EEG) or
magnetoencephalography (MEG), to synchronize with the stimulus. This phase synchronization,
when not accompanied by any increase of response power, has been hypothesized to be the result
of phase resetting of ongoing, spontaneous, neural oscillations measurable by LFP, EEG, or MEG.
In this article, however, we argue that this same phenomenon can be easily explained without any
phase resetting, and where the stimulus-synchronized activity is generated independently of
background neural oscillations. It is demonstrated with a simple (but general) stochastic model
that, purely due to statistical properties, phase synchronization, as measured by ‘inter-trial phase
coherence’, is much more sensitive to stimulus-synchronized neural activity than is power. These
results question the usefulness of analyzing the power and phase of stimulus-synchronized activity
as separate and complementary measures; particularly in the case of attempting to demonstrate
whether stimulus-phase-locked neural activity is generated by phase resetting of ongoing neural
oscillations.
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1. Introduction
Natural sensory inputs, such as speech, music and natural audio-visual scenes, are often
rhythmic. Low frequency neural activity in the brain, either local field potential (LFP),
electroencephalography (EEG) or magnetoencephalography (MEG), can synchronize to this
input rhythm (Lakatos et al., 2008; Luo & Poeppel, 2007). The dominant rhythm of natural
stimuli is usually below 10 Hz, and therefore the synchronized neural activity falls into the
delta and theta bands of neural oscillations. From this, low frequency stimulus-synchronized
activity is often hypothesized to be related to the intrinsic rhythm of large-scale neural
oscillations. The main support for this hypothesis is that when a rhythmic sensory input is
present, the phase of the oscillatory neural activity aligns with the input, as is demonstrated
by the high trial-to-trial coherence of the phase of the neural response. In other words,
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similar response phases are observed when a stimulus repeats. In contrast to the phase, the
power of the neural response is often not increased in the presence of the same stimulus
(Schroeder and Lakatos, 2009) and may not follow the stimulus rhythm (Luo & Poeppel,
2007). In short, it appears at first that the phase, rather than the power, of a neural response
is most sensitive to the stimulus. From this it is often concluded that stimulus-synchronized
activity, without accompanying increases in power, must be caused by phase resetting of
ongoing LFP/EEG/MEG oscillations (Shah et al., 2004)

Recently, however, Howard and Poeppel (2010) have suggested that even if the power of
oscillatory neural activity is truly synchronized by the stimulus, it may not be at all
observable experimentally, due to the presence of background, stimulus-irrelevant, neural
activity. In this study we prove this mathematically, and characterize the statistical
properties of the neural response phase and power, using a general model in which stimulus-
synchronized activity is generated independently of background neural oscillations.

2. Phase synchronization in a general model
2.1 A linear model for stimulus-synchronized neural response

Suppose the neural activity tracking a sensory stimulus is S(f) and background neural
activity is N(f), where both signals are represented in the frequency domain. The following
discussion analyzes responses at only a single frequency, and therefore the symbol f is
dropped. The results, however, hold without loss of generality to all frequencies, since any
measured neural response, even if broadband, can be converted into its constituent
frequencies using Fourier analysis. Since S and N are both complex Fourier coefficients,
they can be conveniently denoted as phasors, i.e. S = rSexp(jθS) and N = rNexp(jθN), where
r and θ represent the magnitude and phase respectively. For the stimulus-synchronized
component S, rS and θS are assumed to be constant over trials. Under the assumption that
stimulus-synchronized activity S is generated independently of background activity N, the
measured neural activity, M = rMexp(jθM), is modeled as the linear sum of the stimulus-
synchronized and background activity, i.e. M = S + N (Sahani & Linden, 2003).

We assume at first the stimulus-irrelevant background activity to be independent identically
distributed (i.i.d.) Gaussian noise in the time domain. Consequently, in the frequency
domain, the phase of N, θN, is uniformly distributed (from 0 to 2π), and the real and
imaginary parts of N are jointly Gaussian with equal variance, e.g. σ2. For a more general
case, we assume the stimulus-irrelevant background activity to be i.i.d. generalized Gaussian
noise. Under this assumption, the probability distribution of the background activity, n(t), at
any moment is pn(n(t)) = C0exp(−|n(t)/σ|c), where C0 is a normalization parameter and c is
the shape parameter that determines the kurtosis of the distribution. The generalized
Gaussian distribution reduces to a Gaussian distribution when c = 2, or a Laplacian
distribution when c = 1.

2.2 Distribution of the neural response phase
When the real and imaginary parts of background activity N are jointly Gaussian, the real
and imaginary parts of the measurement M, i.e. rMcos(θM) and rMsin(θM), are also jointly
Gaussian. The joint distribution of amplitude and phase of measured neural activity, i.e. rM
and θM, is then
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where ϕ (·,·) is the joint probability density function of two independent standard Gaussian
variables. The marginal distribution of θM can then be calculated to be

where d = cos(θM − θS), , and Φ(·) is the cumulative distribution function of a
standard Gaussian random variable (zero mean and unit variance). γ is the ratio between the
amplitude of the stimulus-related response and the amplitude of the stimulus-unrelated
response, and can be interpreted as a signal to noise ratio (SNR). When the neural response
amplitude is zero, γ is 0, and therefore pθ (θM) = 1/(2π), i.e. θ is uniformly distributed
across all phases. Nevertheless, as long as γ is not zero, pθ (θM) is non-uniform and is
maximal at θM = θS (Fig. 1a). When the background activity, N, is subject to a generalized
Gaussian distribution, the analytical form of the probability density function of θM is
unknown, but numerical results are shown in Fig. 2b.

3. Detecting oscillatory neural activity using power and phase
3.1 Detection of a neural response

In laboratory experiments, the existence of stimulus-synchronized activity must be validated
with a significance test. Here, we analyze the statistical properties of the significance test
based on the general model introduced in Section 2.1. In these significance tests the null
hypothesis, H0, is that there is no stimulus-synchronized neural response and therefore the
neural measurement contains only background activity, e.g. M = N. The alternative
hypothesis, H1, is that there is indeed a non-zero stimulus-synchronized neural response, e.g.
M = λS + N, with λ ≠ 0 the magnitude of stimulus-synchronized activity. The significance
level of a test, α (fixed at 0.05 in this study) is the probability that the test reports the
alternative hypothesis given that the null hypothesis is true, i.e. the false alarm rate. The
performance of a test is evaluated based on the statistical power, defined as the probability
that the test reports the alternative hypothesis when the alternative hypothesis is true, i.e. the
detection rate.

The testing of stimulus-synchronized activity can be based on any random variable, called a
test statistic, that is sensitive to the response, e.g. power or phase coherence. When the
stimulus-synchronized activity is generated independently from background activity, it
linearly increases with the power of neural responses, i.e. E(M2) = E(S2) + E(N2). Also, as
demonstrated in Section 2.2, the phase of neural measurement deviates from the uniform
distribution associated with H0, when stimulus-synchronized activity exists. Therefore,
power and phase based measures are both sensitive to stimulus-synchronized activity and
are commonly used for significance test.

For K independent experimental measurements, Mi = ricos(θi), i = {1, 2, …, K}, a few
commonly used test statistics are listed in table 1, including phase coherence, mean response
power and evoked power (Luo & Poeppel 2007; Shah et al., 2004). Phase coherence
measures the consistency of the response phase over trials. It is maximal (1) when the
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response has the same phase in every single trial, and is minimal (0) when the response
phase is uniformly distributed across all possible values. The evoked power is the power of
the evoked response, i.e. the response averaged over trials, and approximates the power of
the stimulus-synchronized response component, i.e. E(S2), when the trial number is large.
The response power, an estimate of E(M2), on the other hand, averages the power of single
trial responses and is independent of the phase consistency over trials. The response power
is also called the total power of a response, since it includes both the power of phase-locked
(evoked) activity and the power of non-phase-locked (induced) activity. Phase coherence
and response power are usually viewed as complimentary measures, since they rely on,
respectively, the phase and power of single trial responses. Nevertheless, they are
statistically dependent in general, just as the power and phase of a neural signal (e.g. Kayser
et al. 2009), and, critically, have very different statistical properties, as will be shown in the
following.

To quantify the theoretical limit for the performance of any significance test, we also
compare all results with that of the locally optimal significance test (Miller & Thomas,
1972; Poor, 1994, Chapter 3). The locally optimal test is optimal when the neural signal
contribution approaches zero amplitude, i.e. λ → 0. It requires a priori knowledge of the
underlying amplitude and phase of the neural response and therefore is impractical
experimentally. Under the generalized Gaussian noise assumption, based on a measured
time series m(t) = λs(t) + n(t), the locally optimal test statistic is

where m̂(t) = |m(t)|c−1sign(m(t)), and C1 is a constant. Since all discussions here focus on a
single frequency, s(t) is taken to be a sinusoid, i.e. a single Fourier component. Under this
assumption, the locally optimal test statistic can be easily computed using the Fourier
transform of m̂(t). In other words, instead of directly taking the Fourier transform of m(t) to
get M, the locally optimal test processes m(t) with a static nonlinearity, applies the Fourier
transform, and then projects the Fourier coefficient at the response frequency, M̂i, to the
phase of the response.

3.2 Numerical detection results
The statistical power of each of the statistical variables listed in Table 1 is analyzed as a
function of the neural response SNR in dB (i.e. 20log10(γ)). Each Monte Carlo experiment
uses 50 trials of the neural measurement. The results under the Gaussian assumption are
shown in Fig. 2a. Each curve in there can be well fitted by a sigmoidal function and
characterized by the SNR required for 80% statistical power. This SNR is shown in Fig. 2b
under the generalized Gaussian prior. The numerical estimates of generalized Gaussian
background activity use 5 second duration measurements m(t), but the results are not
sensitive to the duration of neural measurements. The response power is the least effective
statistic (of the four) for significance testing, and the phase coherence performs similarly to
the evoked power for Gaussian background activity.
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How the number of trials influences statistical power is illustrated in Fig. 3 for Gaussian and
Laplacian background activity. For a given SNR, the averaged-response-power based
significance test needs many more measurements to achieve similar performance to the
phase coherence based significance test. The effect is particularly stark when the SNR of
individual trials is poor (as is common in EEG/MEG measurements). In summary, when the
stimulus-synchronized response is relatively weak compared to the ongoing background
neural oscillation, it is very hard to detect an increase in the averaged response power, but
easy to detect an increase in phase coherence, even when the stimulus-synchronized
response is generated independently of background activity.

3.3 Statistical properties of background neural activity
Appropriate values for the generalized Gaussian distribution’s shape parameter can be
estimated experimentally. Here, as an example, it is estimated for MEG signals, either from
an empty chamber, or from an experiment with human subjects listening to rhythmic stimuli,
i.e. speech (Ding & Simon, 2012). When the subject is listening to speech, the recorded
MEG signal contains both background activity and the response to the speech, but is
dominated by background activity when not averaged over trials (Howard & Poeppel, 2010).
The MEG activity is fitted to a generalized Gaussian distribution, with its shape parameter
estimated as E(n(t)2)/E2(|n(t)|) (Mallat, 1999), where n(t) is the MEG recording from a
sensor. Outliers corresponding to MEG activity stronger than 2 pT are removed from the
analysis, as is routinely done in MEG analysis in the first step of artifact removal. The
estimated shape parameter, the median over MEG sensors, is 1.2 for the empty chamber, and
1.8 ± 0.2 for 10 subjects during speech listening.

4. Discussion
4.1 Phase and power of neural activity

It is frequently observed that the phase of oscillatory LFP/EEG/MEG activity is aligned to
rhythmic stimuli. This phenomenon could be a direct consequence of the “phase resetting”
of ongoing massive neural oscillations but could also be an epiphenomenon caused by the
generation of stimulus phase-locked activity, i.e. a stimulus phase-locked waveform. The
decomposition of a response waveform into power (amplitude) and phase, e.g. through
Fourier or Hilbert Transform, is nonlinear, and systematic characterizations of the statistical
properties of power and phase has been lacking. The physiological meanings of the power-
phase decomposition are also not established in general. In experiments, however, it is
frequently observed that the power and phase of a neural response have distinct properties,
e.g. the phase but not the power being sensitive to the stimulus. Here, we have demonstrated
that such differences may simply be caused by the intrinsic statistical properties of the two
measures rather than differences in underlying physiological mechanisms, and measured
stimulus encoding in response phase may be simply a reflection of stimulus encoding in the
entire response waveform, including amplitude. Therefore, the analysis of the response
phase can be a powerful tool to extract and characterize stimulus-driven neural activity (e.g.
Kayser et al. 2009; Lakatos et al. 2008; Luo & Poeppel, 2007), but its physiological
indications should be treated with caution.

4.2 Relation to spatial synchronization of neural activity
The fundamental difference between the phase resetting theory and the background activity
independent model presented here is whether the stimulus-synchronized neural response is
generated independently of the background neural oscillations measured by LFP/EEG/MEG.
However, it must be emphasized that LFP/EEG/MEG only measures spatially synchronized
neural activity. Therefore, the model proposed here is an alternative to the hypothesis that
the stimulus-synchronized neural activity is caused by the trial-to-trial phase resetting of
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spatially synchronized background activity, but is independent of the hypothesis that the
LFP/EEG/MEG measurable response is caused by the spatial phase resetting of neural
oscillations in local networks (Telenczuk et al., 2010).

More specifically, a stimulus-synchronized response can be generated through one of
several mechanisms:

1. the excitation of new neural generators (excitation of new oscillators).

2. increased spatial synchronization between neural generators, while the power of
each generator is constant (increased coupling between oscillators).

3. phase resetting of a single neural oscillator.

Mechanism (1) is clearly consistent with the linear model discussed in this study while
mechanism (3) is the phase resetting model. For spatially synchronized neural measures,
such as LFP, EEG, and MEG, mechanism (2) is also consistent with the linear model
discussed here, since the power of spatially synchronized activity, in single trials, is
influenced by both the power of individual neural generators and the synchronization
between generators. Therefore, the current study distinguishes mechanism (3) from
mechanisms (1) and (2). Of course, a stimulus can also lead to non-synchronized neural
responses, i.e. induced activity, but such responses are not discussed in the current study.

4.3 Generation of stimulus-synchronized activity
The current model assumes stimulus-synchronized activity to be generated independently
from background activity, i.e. that the neural measurement is a linear sum of stimulus-
synchronized and stimulus-irrelevant activity (e.g. Ding & Simon, 2009, Howard &
Poeppel, 2010, Sahani & Linden, 2003). How stimulus-synchronized activity is generated in
the neural system, however, is not specified in the above model. In the following, we
provide an additional simple linear-system model to demonstrate one way that stimulus-
synchronized activity can be generated independent of stimulus-irrelevant activity. In this
model, the neural generator is a damped oscillator that can be approximated as a linear
system with a transfer function Tran(f), and so the response to stimulus Stim(f) is S(f) =
Stim(f)Tran(f). The response S(f) is nonzero as long as the stimulus has energy at any
frequency f0 and the system responds at frequency f0, i.e. Tran(f0) ≠ 0. In this simple linear
system model, the response is purely driven by the stimulus and therefore independent of
any background activity.

4.5 Relation to the generation mechanism of the evoked response
The argument regarding the origin of the stimulus-synchronized neural response, discussed
here, is very similar to the one regarding the origin of event-related potentials/fields
(Sauseng et al., 2007; Shah et al., 2004): That is, whether the evoked response to a transient
stimulus, e.g. an audio click or a visual flash, is generated independently of the background
neural oscillations, or by the phase resetting of ongoing activity. Indeed, all the stimulus-
synchronized activity discussed above is only assumed to be consistent over trials, and
therefore generalizes to any evoked responses, even those generated by a transient, non-
rhythmic stimulus. For event-related potentials/fields, simulations have shown that either of
these two hypotheses may lead to phase synchronization of neural responses (Yeung et al.,
2004). The analytical results obtained here validate and provide a theoretical basis for the
results of those simulations.

4.6 Invariant null distribution for phase coherence
A distinct and important advantage of the phase coherence based significance test, over the
others analyzed here, is that the null hypothesis is frequency independent and even
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experiment independent. Namely, the null hypothesis is always that the phase is uniformly
distributed. In contrast, the null hypothesis of all other statistical variables discussed here,
e.g. probability density function of the power of background activity, is data dependent and
must be estimated from experiments.

4.7 Conclusion
This study characterizes the statistical properties of the power and phase of neural
measurements based on a general model where stimulus-synchronized activity is generated
independently from background activity. We analytically demonstrate that, even without
phase resetting of background activity, the neural response phase is synchronized over trials
and such phase synchronization is much more sensitive to the existence of stimulus-
synchronized activity than response power. In other words, statistically, stimulus-
synchronized activity may appear as a phase-resetting phenomenon, regardless of its
underlying mechanism. These analytical and numerical results, together with earlier
simulation results (Howard and Poeppel 2010; Yeung et al., 2004), question the validity of
attempting to prove a phase resetting theory by showing the combination of response phase
synchronization with the absence of power increase. Furthermore, the essence of the phase-
resetting model is that intrinsic, ongoing neural activity contributes to the encoding of an
external stimulus. This fundamental idea, however, does not even require the power of
neural activity to be insensitive to external stimuli. Therefore, more advanced analysis
methods, beyond simple power and phase analyses, would be required to establish any such
phase resetting model.
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Figure 1.
The probability density function of the phase of neural measurements when stimulus-
synchronized activity is generated independently of background activity. The probability
distribution is distinct from the uniform distribution (solid gray line), as long as stimulus-
synchronized activity has non-zero amplitude.
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Figure 2.
(a) The statistical power of four significance tests as a function of SNR when background
activity is subject to the Gaussian distribution. Each point in the figure is a Monte Carlo
numerical result; the theoretical statistical power, when available, is plotted as a solid gray
line. Test statistics whose curves lie more to the left possess greater statistical power at the
same SNR than those to the right. Similarly, to achieve 80% statistical power, each test
requires a different minimum SNR, where smaller SNR values demonstrate greater overall
statistical power. (b) The SNR required for 80% statistical power, for background activity
subject to the generalized Gaussian distribution (smaller SNR values demonstrate a more
effective significance test). Phase coherence is much more effective than response power
when testing the significance of a neural response.
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Figure 3.
The number of trials needed to achieve 80% statistical power at different SNR values, for
background activity subject to a Gaussian (c = 2) or Laplacian (c = 1) distribution. Each
point in the figure is a Monte Carlo numerical result. Theoretical values, when known, are
plotted as solid gray lines. Test statistics whose curves lie more to the left possess greater
statistical power at the same SNR than those to the right. To achieve similar statistical
power, the response power test needs dramatically more measurement trials compared with
other statistical tests.
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Table 1

Four random variables used for the detection of stimulus-synchronized activity, and their statistical power
when background activity is Gaussian. The response power is proportional to the total power, i.e. summed
over the individual power of every single trial response, while the evoked power is the power of the average
response (i.e. the response averaged over trials). The optimal detector is optimal for the detection of phase-
locked activity, i.e. S, from neural measurement Mi. See the text for symbol definitions.

Expression Statistical Power
(Gaussian Prior)

Phase Coherence analytic form unknown

Response Power

Evoked Power 1 − F (G−1 (1 − α), γ)

Optimal Detector 1 − Φ(Φ−1(1 − α) − γ)

Notes:
Γ(·,·) is the incomplete gamma function (Poor 1994, Chapter 3).
G(·) and F(·,·) are the cumulative distribution functions of central and non-central Chi distributions with two degrees of freedom respectively
(Johnson et al., 1995).
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