Skip to main content

Advertisement

Log in

Proposing a two-level stochastic model for epileptic seizure genesis

  • Published:
Journal of Computational Neuroscience Aims and scope Submit manuscript

Abstract

By assuming the brain as a multi-stable system, different scenarios have been introduced for transition from normal to epileptic state. But, the path through which this transition occurs is under debate. In this paper a stochastic model for seizure genesis is presented that is consistent with all scenarios: a two-level spontaneous seizure generation model is proposed in which, in its first level the behavior of physiological parameters is modeled with a stochastic process. The focus is on some physiological parameters that are essential in simulating different activities of ElectroEncephaloGram (EEG), i.e., excitatory and inhibitory synaptic gains of neuronal populations. There are many depth-EEG models in which excitatory and inhibitory synaptic gains are the adjustable parameters. Using one of these models at the second level, our proposed seizure generator is complete. The suggested stochastic model of first level is a hidden Markov process whose transition matrices are obtained through analyzing the real parameter sequences of a seizure onset area. These real parameter sequences are estimated from real depth-EEG signals via applying a parameter identification algorithm. In this paper both short-term and long-term validations of the proposed model are done. The long-term synthetic depth-EEG signals simulated by this model can be taken as a suitable tool for comparing different seizure prediction algorithms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Albert, P. S. (1991). A two-state Markov mixture model for a time series of epileptic seizure counts. Biometrics, 47, 1371–1381.

    Article  CAS  PubMed  Google Scholar 

  • Ching W.-K., & Ng, M. K. (2006). Markov Chains: Models, Algorithms and Applications, Springer Science & Business Media, Inc.

  • da Silva, F. H. L., Hoeks, A., Smits, H., & Zetterberg, L. H. (1974). Model of brain rhythmic activity. The alpha-rhythm of the thalamus. Kybernetik, 15(1), 27–37.

    Article  Google Scholar 

  • da Silva, F. H. L., Blanes, W., Katizlan, S. N., Parra, J., Suffczynski, P., & Velis, D. N. (2003a). Dynamical diseases of brain systems: different routes to epileptic seizure. IEEE Trans. on Biomedical Enginnering, 50(5), 540–548.

    Article  Google Scholar 

  • da Silva, F. H. L., Blanes, W., Katizlan, S. N., Parra, J., Suffczynski, P., & Velis, D. N. (2003b). Epilepsies as dynamical diseases of brain systems: basic models of transition between normal and epileptic activity. Epilepsia, 44(12), 72–83.

    Article  Google Scholar 

  • David, O., & Friston, K. J. (2003). A neural mass model for MEG/EEG: coupling and neuronal dynamics. NeuroImage, 20, 1743–1755.

    Article  PubMed  Google Scholar 

  • David, S., Ferrer, M.A., Travieso, C.M., Alonso J.B. (2004). gpdsHMM: A Hidden Markov Model Toolbox in the Matlab Environment, CSIMTA, Complex Systems Intelligence and Modern Technological Applications, pp. 476–479.

  • Dempster, A., Laird, N., & Rubin, D. (1977). Maximum likelihood from incomplete data via the EM algorithm. Journal of the Royal Statistical Society, 39, 1–38.

    Google Scholar 

  • Franks, K. M., Bartol, T. M., & Sejnowski, T. J. (2002). A Monte Carlo model reveals independent signaling at central glutamatergic synapses. Biophysical Journal, 83, 2333–2348.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Freeman, W. J. (1975). Mass action in the nervous system. New York NY: Academic.

    Google Scholar 

  • Hastie, T., Tibshirani, R., & Friedman, J. (2001). The elements of statistical learning. New York: Springer. 2001.

    Book  Google Scholar 

  • Hopkins, A., Davies, P., & Dobson, C. (1985). Mathematical models of patterns of seizures; their use in the evaluation of drugs. Archives of Neurology, 42, 463–467.

    Article  CAS  PubMed  Google Scholar 

  • Kimmel, D. L., & Moore, T. (2007). Temporal patterning of saccadic eye movement signals. The Journal of Neuroscience, 27(29), 7619–7630.

    Article  CAS  PubMed  Google Scholar 

  • Kolb, B. (1995). Plasticity and Behavior, Lawrence Erlbaum Associates Inc.

  • Labyt, E., Uva, L., de Curtis, M., & Wendling, F. (2006). Realistic modeling of entorhinal cortex field potentials and interpretation of epileptic activity in the guinea-pig isolated brain preparation. Journal of Neurophysiology, 96(1), 363–377.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Labyt, E., Frogerais, P., Uva, L., Bellanger, J. J., & Wendling, F. (2007). Modeling of entorhinal cortex and simulation of epileptic activity: insights into the role of inhibition related parameters. IEEE Transactions on Information Technology in Biomedicine, 11(4), 450–461.

    Article  PubMed Central  PubMed  Google Scholar 

  • Lytton, W. W. (2008). Computer modelling of epilepsy. Nature Reviews Neuroscience, 9, 626–637.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Massimini, M., Ferrarelli, F., Huber, R., Esser, S. K., Singh, H., & Tononi, G. (2005). Breakdown of cortical effective connectivity during sleep. Science, 309(5744), 2228–2232.

    Article  CAS  PubMed  Google Scholar 

  • Milton, J. G., Gotman, J., & Remillard, G. M. (1987). Timing of seizure recurrence in adult epileptic patients: a statistical analysis. Epilepsia, 28(5), 471–478.

    Article  CAS  PubMed  Google Scholar 

  • Rabiner, L. R. (1989). A tutorial on hidden Markov models and selected applications in speech recognition”, proc. IEEE, 77(2), 257–286.

    Article  Google Scholar 

  • Ruppert, D., Wand, M. P. & Carroll, R. J. (2003). Semi-parametric Regression Cambridge University Press, p. 295.

  • Schelter, B., Winterhalder, M., Maiwald, T., Brandt, A., Schad, A., Schulze-Bonhage, A., et al. (2006). Testing statistical significance of multivariate time series analysis techniques for epileptic seizure prediction. Chaos, 16, 013108.

    Article  PubMed  Google Scholar 

  • Selesnick, I. W., Baraniuk, R. G, & Kingsbury, N. G. (2005). The Dual-Tree Complex Wavelet Transform, IEEE Signal Processing Magazine, pp. 123–151.

  • Shayegh, F., Sadri, S., AmirFattahi, R. (2009). A theoretical model for spontaneous seizure generation based on Markov chain process, 4th International IEEE/EMBS Conference on Neural Engineering, pp. 637–640.

  • Shayegh, F., Amirfattahi, R., Sadri, S., Ansari-Asl, K., & Saraaee, M. H. (2011). Defining a New Measure for Synchronization of Multi-Channel Epileptic Depth-EEG Signals based on Identification of Parameters of a Computational Model, Proceedings of the IASTED International Conference July 11–13, Cambridge, United Kingdom, pp. 344–350.

  • Soltesz, I., Staley, K. (2008). Computational Neuroscience in Epilepsy, chapter 25, Academic Press.

  • Steriade, M. (2003). Neuronal substrates of sleep and epilepsy, Cambridge University Press.

  • Suffczynski, P., da Silva, F. H. L., Parra, J., Velis, D. N., Bouwman, B. M., van Rijn, C. M., et al. (2006). Dynamics of epileptic phenomena determined from statistics of ictal transitions,". IEEE Transactions on Biomedical Engineering, 53(3), 524–532.

    Article  PubMed  Google Scholar 

  • Sunderam, S., Osorio, I., Frei, A., & Watkins, J. F. (2001). Stochastic modeling and prediction of experimental seizures in sprague–dawley rats. Journal of Clinical Neurophysiology, 18, 275–282.

    Article  CAS  PubMed  Google Scholar 

  • Sunderam, S., Osoriob, I., & Freib, M. G. (2007). Epileptic seizures are temporally interdependent under certain conditions epilepsy research. Vol., 76, 77–84.

    Google Scholar 

  • Taubøll, E., Lundervold, A., & Gjerstada, L. (1991). Temporal distribution of seizures in epilepsy epilepsy research. Vol., 8, 153–165.

    Google Scholar 

  • Ullah, M., & Wolkenhauer, O. (2007). Family tree of Markov models in systems biology. IET Systems Biology, 1, 247–254.

    Article  CAS  PubMed  Google Scholar 

  • Wendling, F., Bellanger, J. J., Bartolomei, F., & Chauvel, P. (2000). Relevance of nonlinear lumped-parameter models in the analysis of depth-EEG epileptic signals. Biological Cybernetics, 83, 367–378.

    Article  CAS  PubMed  Google Scholar 

  • Wendling, F., Bartolomei, F., Bellanger, J. J., & Chauvel, P. (2002). Epileptic fast activity can be explained by a model of impaired GABAergic dendritic inhibition. European Journal of Neuroscience, 15, 1499–1508.

    Article  CAS  PubMed  Google Scholar 

  • Wendling, F., Hernandez, A., Bellanger, J. J., Chauvel, P., & Bartolomei, F. (2005). Interictal to ictal transition in human temporal lobe epilepsy: insights from a computational model of intracerebral EEG. Journal of Clinical Neurophysiology, 22, 343–356.

    PubMed Central  PubMed  Google Scholar 

  • Wong, S., Gardner, A. B., Krieger, A. M., & Litt, B. (2007). A stochastic framework for evaluating seizure prediction algorithms using hidden Markov models. Journal of Neurophysiology, 97, 2525–2532.

    Article  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgement

The work of K. Ansari-Asl has been supported in part by Center for International Scientific Studies & Collaboration (CISSC) and French Embassy in Tehran.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. Shayegh.

Additional information

Action Editor: Frances K. Skinner, PhD

Appendices

Appendix A. Details of the depth-EEG model

The structure of depth-EEG model is shown in Fig. A1. As shown in this figure, in the depth-EEG model each synaptic process (excitatory, fast and slow inhibitory processes) is a combination of a linear system (pulse-to-wave conversion at a synaptic level) and a nonlinear function (wave-to-pulse operator at the soma of neurons, i.e., \( S(v)=2{e}_0/\left(1+{e}^{r\left({v}_0-v\right)}\right) \)), where v is the average potential of the pre-synaptic cells and S(v) is the mean firing rate of the post synaptic cells. This process is expressed by the following differential equations:

Fig. A1
figure 8

Organization of the depth-EEG model including four neuronal subsets: pyramidal cells, excitatory interneurons, dendritic projecting interneurons with slow synaptic kinetics and somatic-projecting interneurons (grey rectangle) with faster synaptic kinetics, x(t) denotes for the step function. (from (Wendling et al. 2002))

$$ \begin{array}{l}{\dot{y}}_0\left(\mathrm{t}\right)={y}_5\left(\mathrm{t}\right)\\ {}{\dot{y}}_5\left(\mathrm{t}\right)= Aa S\left[{y}_1\left(\mathrm{t}\right)-{y}_2\left(\mathrm{t}\right)-{y}_3\left(\mathrm{t}\right)\right]-2\tau {y}_5\left(\mathrm{t}\right)-{\tau}^2{y}_0\left(\mathrm{t}\right)\\ {}{\dot{y}}_1\left(\mathrm{t}\right)={y}_6\left(\mathrm{t}\right)\\ {}{\dot{y}}_6\left(\mathrm{t}\right)= Aa\left\{x\left(\mathrm{t}\right)+{C}_2S\left[{C}_1{y}_0\left(\mathrm{t}\right)\right]\right\}-2a{y}_6\left(\mathrm{t}\right)-{a}^2{y}_1\left(\mathrm{t}\right)\\ {}{\dot{y}}_2\left(\mathrm{t}\right)={y}_7\left(\mathrm{t}\right)\\ {}{\dot{y}}_7\left(\mathrm{t}\right)= Bb{C}_4S\left[{C}_3{y}_0\left(\mathrm{t}\right)\right]-2b{y}_7\left(\mathrm{t}\right)-{b}^2{y}_2(t)\\ {}{\dot{y}}_3\left(\mathrm{t}\right)={y}_8\left(\mathrm{t}\right)\\ {}{\dot{y}}_8= Gg{C}_7S\left[{C}_5{y}_0\left(\mathrm{t}\right)-{C}_6{y}_4\left(\mathrm{t}\right)\right]-2g{y}_3\left(\mathrm{t}\right)-{g}^2{y}_3\left(\mathrm{t}\right)\\ {}{\dot{y}}_4\left(\mathrm{t}\right)={y}_9\left(\mathrm{t}\right)\\ {}{\dot{y}}_9= Bb S\left[{C}_3{y}_0\left(\mathrm{t}\right)\right]-2b{y}_4\left(\mathrm{t}\right)-{b}^2{y}_4\left(\mathrm{t}\right)\\ {}{y}_{out}\left(\mathrm{t}\right)={y}_1\left(\mathrm{t}\right)-{y}_2\left(\mathrm{t}\right)-{y}_3\left(\mathrm{t}\right)\end{array} $$
(A1)

Interpretation of linear system parameters (C 1 to C 7 , a, b, g, A, B, G, τ) and nonlinear function parameters (e 0 , v 0 and r) and their standard values are presented in Table A1 based on (Wendling et al. 2002). The adjustable variables of the depth-EEG model are A, B, G, and τ, while other parameters are taken to be constant.

Table A1 Depth-EEG Model parameters, interpretation and standard values used to produce background EEG activity (Wendling et al. 2002)

In (A1) the signals named y 0 to y9 are the state signals underlying each subset of the hippocampus. According to Fig. A1, y0 to y4 are post-synaptic potentials of each subset of the model. y out is the model output and x is the model input corresponding to a white noise signal for the depth-EEG model of a single area.

Differential equations (A1) should be solved by a stochastic numerical algorithm; but, like (David and Friston, 2003) for the sake of simplicity, we opted for solving the equations by Euler algorithm.

Appendix B. The parameter tracking algorithm

To track the variation of parameters during the long-term depth-EEG signals, the optimization problem (3) should be solved consecutively for short windows of the signal.

For the first window of the signal there is no a priori knowledge about the amount of the parameter vector. In other words, the feasible parameter space of the first window of signal is as follows (this space is achieved through discretization):

$$ {\varOmega}_1=\left\{\begin{array}{l}\left.\left[ i\varDelta, j\varDelta, k\varDelta, l\varDelta \right]\right|\\ {}\kern3.25em i=1:R,j=1:R,\\ {}\kern3.25em k=1:R,l=1:R\end{array}\right\} $$
(B1)

But, after parameter identification of the first window, for other windows the full search is performed in the vicinity of the parameters obtained for their preceding windows. This ensures the extraction procedure of the parameter sequences underlying depth-EEG signals are performed efficiently in time. This vicinity is determined as follows: if for the tth window of signal the parameter θ t  = [A t , B t , G t , τ t ] = [, JΔ, kΔ, LΔ] has been identified, the feasible parameter space for the t + 1th window is:

$$ {\varOmega}_{t+1}=\left\{\begin{array}{l}\left.\left[ i\varDelta, j\varDelta, k\varDelta, l\varDelta \right]\right|\\ {}\kern3.25em i=I-1:I+1,j=J-1:J+1,\\ {}\kern3.25em k=K-1:K+1,l=L-1:L+1\\ {}\kern2.75em and\ {F}_{onset}\left(\left[ i\varDelta, j\varDelta, k\varDelta, l\varDelta \right],{W}^{*}\right)< th\end{array}\right\} $$
(B2)

where W * is the optimum weight vector obtained for the considered parameter vector. We set th = 10. However, when the type of EEG activity changes (e.g., transition from normal state to the sustained discharge of spikes), a sudden jump in the parameter sequence may occur, such that the feasible parameter space Ω t + 1 becomes a null set. In these situations the search space of parameter vectors must be reset again, i.e. Ω t + 1 = Ω 1.

Although according to this procedure, which assumes the continuity of the parameters, the optimum parameter sequence may not be obtained, but a smoother sub-optimal parameter sequence has been concluded in much shorter time.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shayegh, F., Sadri, S., Amirfattahi, R. et al. Proposing a two-level stochastic model for epileptic seizure genesis. J Comput Neurosci 36, 39–53 (2014). https://doi.org/10.1007/s10827-013-0457-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10827-013-0457-5

Keywords

Navigation