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Abstract

The sequential analysis of information in a coarse-to-fine manner is a fundamental mode of processing
in the visual pathway. Spatial frequency (SF) tuning, arguably the most fundamental feature of spatial
vision, provides particular intuition within the coarse-to-fine framework: low spatial frequencies convey
global information about an image (e.g., general orientation), while high spatial frequencies carry more
detailed information (e.g., edges). In this paper, we study the development of cortical spatial frequency
tuning. As feedforward input from the lateral geniculate nucleus (LGN) has been shown to have significant
influence on cortical coarse-to-fine processing, we present a firing-rate based thalamocortical model
which includes both feedforward and feedback components. We analyze the relationship between various
model parameters (including cortical feedback strength) and responses. We confirm the importance of the
antagonistic relationship between the center and surround responses in thalamic relay cell receptive fields
(RFs), and further characterize how specific structural LGN RF parameters affect cortical coarse-to-fine
processing. Our results also indicate that the effect of cortical feedback on spatial frequency tuning is
age-dependent: in particular, cortical feedback more strongly affects coarse-to-fine processing in kittens
than in adults. We use our results to propose an experimentally testable hypothesis for the function of the
extensive feedback in the corticothalamic circuit.

1 Introduction

The mode of information processing in neural sensory systems has been the subject of many experimental
and computational studies. It is intuitive that visual information is processed sequentially in a coarse-to-fine
manner—when looking quickly at a scene, we process the general features before focusing on individual
objects. Indeed, such dynamics have been documented for several tuning parameters in vision, e.g., orientation
selectivity (Ringach et al, 1997; Shapley et al, 2003; but see also Gillespie et al, 2001; Müller et al, 2001;
Mazer et al, 2002), spatial frequency selectivity (Bredfeldt and Ringach, 2002; Mazer et al, 2002; Frazor
et al, 2004; Nishimoto et al, 2005) and binocular disparity tuning (Ringach, 2003; Menz and Freeman, 2003).

In this paper, we focus on spatial frequency tuning. Spatial frequency (SF) provides special insight into
visual perception within the framework of the coarse-to-fine system. Low spatial frequencies convey global
information about an image (such as general orientation or proportion), whereas finer detail (such as edges) is
provided by higher spatial frequency information (Bar, 2004). In the following, we use the terms dynamic
spatial frequency tuning and spatial coarse-to-fine processing interchangeably.

The development of spatial coarse-to-fine processing is still an open problem. In mature animals, spatial
coarse-to-fine processing was initially thought to be primarily a cortical function, but has recently been
observed in the retina and lateral geniculate nucleus (LGN) (Enroth-Cugell et al, 1983; Allen and Freeman,
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2006). In fact, the spatial coarse-to-fine process in the primary visual cortex (V1) has been shown to be
largely due to feedforward contribution from the thalamus in adults (Allen and Freeman, 2006). In particular,
cortical SF tuning has been shown to arise from the center-surround organization in LGN spatiotemporal
receptive fields (Allen and Freeman, 2006). However, as the structure of these receptive fields (RFs) evolves
significantly throughout maturation, more detailed study is necessary to shed light on the development of this
process.

We present a model to investigate the development of dynamic SF tuning in the thalamocortical circuit.
Using published data from electrophysiological experiments in cats (Cai et al, 1997), we map the RFs
of LGN cells from kittens at 4 and 8 weeks postnatal and mature cats. These RFs are used to construct
a feedforward-feedback thalamocortical model. We study the response of this model to static sinusoidal
grating input in order to investigate how certain features of thalamic spatiotemporal RFs affect feedforward
contribution to SF tuning in the cortex.

A key property of the model is its simplicity, which allows us to thoroughly analyze the relationship
between its parameters and responses. In addition, because the model includes both feedforward and feedback
components, we evaluate how corticothalamic feedback affects the cortical coarse-to-fine dynamic throughout
the developmental process.

A striking feature of our results is that the effect of cortical feedback on coarse-to-fine processing is
age-dependent. Specifically, cortical feedback has a stronger effect on spatial frequency tuning early in
development. These results point to a role for the large amount of recurrent connections from the visual
cortex to the thalamus, the function of which has yet to be agreed upon.

In Section 2, we provide a thorough description of the structure of the model. We then describe our
numerical implementation and reason our choice of model parameters in Section 3. We present our results
in Section 4, focusing in particular on the effects of a few key parameters: relative surround intensity and
cortical feedback strength. In Section 5, we summarize and relate our results to previous findings, and use
them to put forward a hypothesis for the function of the extensive thalamocortical feedback in Section 6.

2 Model overview

To study the cortical coarse-to-fine dynamic during development, we construct a phenomenological tha-
lamocortical model. In our model, we measure responses from one excitatory cortical (V1) simple cell.
Feedforward connections from the thalamus are modeled explicitly, while corticothalamic feedback is mod-
eled implicitly through modifications to the LGN receptive field. For clarity of presentation, we organize this
section as follows.

We first give an overview of the integration of feedforward input from the LGN by cortical cells (Section
2.1). We then detail how this input is generated, first by describing the structure of the LGN population in
Section 2.2 and then by explaining how the RF of an LGN cell is used to compute a neural response (Section
2.3) and describing in detail the structure of an individual LGN RF (Section 2.4). Finally, we explain how
this RF structure is modified to simulate cortical feedback in Section 2.5.

2.1 Feedforward input

We construct two cortical simple cells whose RFs are 180◦ out of phase. This corresponds to having one
excitatory and one inhibitory cell. We are primarily concerned with the output of the excitatory cell. This
excitatory cell receives input from both the LGN cell population (described in Section 2.2), as well as from the
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Figure 1: Schematic of our feedforward-feedback model. In this figure, cells are represented by their
receptive fields (RFs) (see Section 2.3). Solid and dashed lines indicate excitatory and inhibitory connections,
respectively. Thalamic cells (bottom) connected to a cortical cell (top) have overlapping RFs; the offset
between LGN RFs has been exaggerated for clarity in this figure. In all spatiotemporal RFs presented in this
paper, red and blue contours enclose bright and dark excitatory regions, respectively.

antiphase cortical cell. The connection from the inhibitory cell functions to imitate inhibitory thalamocortical
input. See Figure 1 for a basic schematic of the model structure.

Traditionally, cortical simple cells in V1 are modeled using Gabor filters (DeAngelis et al, 1993). For
simplicity, we model simple cell RFs with two explicit subregions separated by 1◦, in accordance with data
from previous studies (Allen and Freeman, 2006). Flanking subregions are also sometimes present due to the
surround response in the LGN. See the bottom left panel of Figure 2.

Each cortical subregion receives input from n ON- and OFF-center LGN neurons, meaning each cortical
cell receives input from 2n thalamic cells (n for each of the two subregions). We choose n = 20, which
is within the rough range given by Alonso et al (2001) for the number of LGN cells that converge onto a
cortical simple cell (see Table 1 for a full list of parameter values). The response of an LGN cell is given as a
function of stimulus frequency f , phase φ , and time t (measured in ms); this corresponds to a conversion
to the frequency domain using a Fourier transform (see Sections 2.3 and 2.4 for more details). We define
inhibitory input as simply a weighted, time-delayed output from a population of LGN cells. Explicitly, the
total input to the excitatory cell is given as:

I( f ,φ , t) =
2n

∑
j=1

LGNe, j( f ,φ , t)−W
2n

∑
j=1

LGNi, j( f ,φ , t− τ). (1)

Here, LGNe( f ,φ , t) and LGNi( f ,φ , t) are the outputs of the thalamic neurons connected to the excitatory
and inhibitory cortical cells, respectively, W is the weight of the inhibitory connection, and τ is a delay to
account for the transmission of the impulse (see Table 1). Details on the computation of LGNe( f ,φ , t) and
LGNi( f ,φ , t) are given in Section 2.3; specifically, an explicit formulation is given in Equation 3.

Given input as in Equation 1, the output of the excitatory cell is the input integrated with a time constant
of 10 ms and rectified (Allen and Freeman, 2006):

R( f ,φ , t) =
1

10×2n

[∫ t

t−10
I( f ,φ , t ′)dt ′

]+
. (2)
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Figure 2: Representative spatiotemporal (left) and Fourier-transformed spectrotemporal (right) receptive
fields from LGN (top) and visual cortex (bottom). Rightward tilted contours in the spectrotemporal RF
indicate the presence of coarse-to-fine processing.

2.2 LGN population structure

To facilitate easier interpretation of model output, we fix parameters corresponding to the LGN cell population
structure. LGN cell receptive fields (Equation 5) are positioned at the center of the cortical subregion to
which they project. The size of the RF center σc is equal to the width of the subregions, while the size of the
surround is given as σs = 1.5×σc +0.4 (Cai et al, 1997).

Since cortical cells receive input from a nonhomogenous LGN cell population, we wish to demonstrate
robustness of the model response to variability in parameters controlling cell position and RF center and
surround size. To this end, we discuss the randomization of these population parameters in Section 3.3.

In the next section, we describe how the RF of an LGN cell is used to generate the output response given
an input stimulus.

2.3 Stimulus to response

A spatiotemporal receptive field RF(x, t) provides the relationship between an input stimulus S( f ,φ ,x) of
frequency f and phase φ and the cell response r( f ,φ , t):

r( f ,φ , t) =
∫

RF(x, t)S( f ,φ ,x)dx.

To calculate the firing rate of an LGN cell, we add the spontaneous geniculate firing rate (10 spikes/ms) to
this equation and rectify (Allen and Freeman, 2006):

LGN( f ,φ , t) = [r( f ,φ , t)+10]+ . (3)

This equation describes both excitatory cell (LGNe) and inhibitory cell (LGNi) responses. Computations
using such predicted spectrotemporal receptive fields have been shown to accurately reproduce directly
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measured SF tuning dynamics (Allen and Freeman, 2006).
We choose stimulus functions S( f ,φ ,x) to be static sinusoidal gratings:

S( f ,φ ,x) = cos(2π f x−φ). (4)

For values of SF f and phase φ used, see Table 1.
In Section 3.1, we explain our choice of metrics to quantify cortical coarse-to-fine processing from V1

cell output. Recall that the integration of LGN output to generate cortical dynamics was described in Section
2.1.

The particular structure of the RF of an individual LGN cell is described in detail in the following section.

2.4 LGN receptive fields

LGN cells have receptive fields with a center-surround antagonistic structure (Cai et al, 1997). LGN RFs are
typically modeled so as to consist of two components corresponding to the center and surround responses.
The peripheral area (“surround”) responds oppositely to light than the central region. We consider two types
of LGN cells: ON- and OFF-center cells. ON-center cells are stimulated when light is shined on the center,
and inhibited when light is shined on the surround. OFF-center cells display the opposite pattern. See the top
left panel in Figure 2 for an example of the spatiotemporal RF of an LGN ON-center cell.

We model LGN spatiotemporal RFs based on characterizations from Cai et al (1997). LGN RFs are
described by the expression:

RF(x, t) = Fc(x)Gc(t)−Fs(x)Gs(t), (5)

where F(x) and G(t) are spatial and temporal profiles, respectively, and subscripts c and s correspond to
center and surround responses. Temporal filters are given as difference of gamma functions:

Gc(t) = K1
c1(t− t1)n1e−c1(t−t1)

nn1
1 e−n1

−K2
c2(t− t2)n2e−c2(t−t2)

nn2
2 e−n2

, (6)

and Gs(t) = Gc(t−τd). Here, τd is the delay between the center and surround responses. All other parameters
are constants derived from model fits in Cai et al (1997).

A popular choice for modeling the spatial component of thalamic relay cell RFs is the difference-of-
Gaussians (DOG) model. We model the spatial component of the LGN RF in this way when there is no
cortical feedback. Center and surround spatial profiles are Gaussian functions; for example, the center spatial
filter is given as:

Fc(x) = Ace−x2/σ2
c , (7)

where Ac is the amplitude of the center response and 2σc is the size of the RF center. The surround spatial
profile Fs(x) is defined analogously. When cortical feedback is included, spatial profiles are modeled
according to the extended difference-of-Gaussians (eDOG) model, described in more detail in the next
section.

2.5 Feedback connections

We do not incorporate cortical feedback connections explicitly, but rather by modifying LGN spatial profiles
according to the extended difference-of-Gaussians (eDOG) model. A nice feature of this model is that (given
certain model choices, described in more detail below) it reduces to the familiar difference-of-Gaussians
model (up to a scaling constant) when cortical feedback parameters are set to 0.
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Symbol Physical meaning Units Eq. Ref. Adult 8 week 4 week Range
2n Num. LGN cells per V1 cell - 1 40 40 40 -
W Inhibition weight - 1 1.25 1.25 1.25 -
τ Inhibition time delay ms 1 4 4 4 -
f Stimulus frequency c/deg 4 - - - [0.001, 1.5]
φ Stimulus phase rad 4 - - - {0, π

2 ,π,
3π

2 }
K1 - - 6 1.05 1.05 1.05 -
K2 - - 6 0.7 0.7 0.7 -
c1 - - 6 0.15 0.15 0.15 -
c2 - - 6 0.1 0.1 0.1 -
t1 - ms 6 -6 -6 -6 -
t2 - ms 6 -6 -6 -6 -
n1 - - 6 7 7 7 -
n2 - - 6 8 8 8 -
τd Center-surround delay ms 6 8 12 16 [5, 20]
σc Center size deg 7 0.4 0.4 0.4 [0.2, 1]
σs Surround size deg 7 (related) 1.0 1.0 1.0 [0.5, 1.5]

As/Ac Relative surround strength - 7 (related) 0.3 0.2 0.1 [0, 1]
STC Space-time constant ms/deg2 14 -3.5 -3.5 -3.5 -
dm Median center size deg 14 1.15 1.15 1.15 -
C Cortical feedback strength - 9 0 0 0 [-0.75, 0.75]
a Cortical feedback spread deg 9 0.075 0.075 0.075 -

Table 1: Typical parameter values for each age group considered. Parameters with any biological relevance
(i.e., those that are not just a consequence of model fits to data) are listed by name. If the parameter was
varied in a numerical experiment, a range of values used is also given. More details on parameter choice can
be found in Section 3.2.
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In this section, we provide a brief overview of the eDOG framework and motivate our specific choice of
model structure. For further details, we refer the reader to Einevoll and Plesser (2011). The eDOG model is a
firing-rate based model that incorporates corticothalamic feedback implicitly via modifications to the LGN
receptive field structure. While this results in a more mathematically involved formulation for the RF than
the traditional DOG, our model still maintains its simplicity, namely a low number of parameters (many of
which can be attributed with a physiological meaning).

The eDOG model is a formulation for LGN RFs that directly derives from a mechanistic model for
an impulse-response function (here, interchangeable with the term receptive field; see, e.g., Equation 5)
for the thalamic relay cell. The model aims to account for feedback effects to the LGN from a set of
orientation-selective cortical populations, under a certain set of assumptions.

Firstly, all cortical populations are considered to receive direct input from the thalamus and, in turn,
provide direct feedback. Though it is true that the dominant input to the cortex from the LGN is in layer IV,
there is also evidence of direct geniculate input to layer VI, where corticothalamic feedback is known to
originate (Sherman and Guillery, 2001). Furthermore, experiments by Grieve and Sillito (1995) have shown
that simple cells make up the majority of layer VI projections to the LGN.

Secondly, the sum of feedback contributions from all cortical populations considered is assumed to be
circularly symmetric. This is to say that the feedback effects are independent of the absolute orientation of
the stimulus gratings. While the feedback contribution of a single cortical population is certainly anisotropic
due to the orientation-selectivity of cortical cells, the net feedback effect can be expected to be (close to)
circularly symmetric, since cortical populations cover all orientation angles. This idea is in accordance with
experimental observations of corticothalamic feedback (Cudeiro and Sillito, 1996).

The final assumption made in the derivation that we specifically mention is that corticothalamic feedback
is assumed to have a “phase-reversed, push-pull” organization. This is to say that, for example, inhibitory
feedback from a cortical ON-cell onto an LGN cell is accompanied by excitatory feedback from a cortical
OFF-cell (Wang et al, 2006).

Despite these assumptions, the eDOG model has been shown to reproduce results from several experi-
mental studies quite accurately. For a more complete exposition of all assumptions made in the derivation
of the eDOG model, as well as validation of the model against experimental results, we refer the reader to
Einevoll and Plesser (2011).

Under this set of assumptions, a general expression for the impulse-response function of an LGN cell
accounting for cortical feedback can be derived (see Equation 26 from Einevoll and Plesser (2011), which
is analogous to a Fourier transformed version of our Equation 5). Then, an expression for the space-time
receptive field (directly analogous to our Equation 5) can be generated by taking the inverse Fourier transform.

Within the eDOG framework, the spatial component F∗c,s(x) of the receptive field for an LGN cell
accounting for the effects of cortical feedback is described as:

F∗c,s(x) =
1

(2π)2

∫
eikx Ace−k2σ2

c /4−Ase−k2σ2
s /4

1−Ce−k2a2/4
dk. (8)

Here, the following parameters are defined similarly as in previous sections: Ac and As are the amplitudes of
center and surround responses, 2σc and 2σs are the sizes of these responses. Additionally, k is the wavenumber
corresponding to the spatial frequency f by k = 2π f . The feedback parameters C and a determine the strength
and spatial spread of the feedback, respectively. See Table 1 for typical values of these parameters.

We choose a circularly symmetric Gaussian function to represent the kernel corresponding to the
corticothalamic feedback loop (seen in the denominator of Equation 8; for other options, see Einevoll and
Plesser (2011)). Because there are not many physiological results guiding this decision, we make this choice
primarily for mathematical convenience.
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In particular, this modeling choice has several nice properties, due to the following approximation. Using
a series expansion, 1/(1−y) = ∑

∞
m=0 ym, with y =Ce−k2a2/4 and replacing the denominator term of the above

integral expression, we arrive at our equation of LGN spatial profiles:

F∗c,s(x) =
∞

∑
m=0

Cm

(
Ac

e−x2/(σ2
c +ma2)

π(σ2
c +ma2)

−As
e−x2/(σ2

s +ma2)

π(σ2
s +ma2)

)
. (9)

This equation is an infinite sum of DOGs, and the first term of this sum (m = 0) corresponds to the
traditional feedforward model. The following terms correspond to “corrections” of this direct term due to m
rounds of the corticothalamic loop. We truncate this sum at the twentieth-order term, since higher terms are
essentially equal to 0 for all values of |C| we consider. This series uniformly converges for |C|< 1; see, e.g.,
Appendix 1 in Einevoll and Plesser (2011).

The formulation in Equation 9 is especially convenient for two reasons. (1) It is easily related back to the
traditional DOG model described in Section 2.4. In particular, this form of the eDOG model reduces to the
DOG model (up to a constant scaling factor) when feedback parameters (C and a) are set to 0, as well as
when only the first term of the series (corresponding to 0 rounds of the corticothalamic loop) is considered.
(2) The structure of Equation 9 allows for easy separation of center and surround components for construction
of the LGN RF according to Equation 5. Specifically, the center response of the spatial LGN RF accounting
for cortical feedback (analogous to Equation 7 without feedback) is:

F∗c (x) =
∞

∑
m=0

Cm

(
Ac

e−x2/(σ2
c +ma2)

π(σ2
c +ma2)

)
, (10)

with the surround component defined analogously.
In the following section, we describe how we measure and quantify model responses, as well as provide

information as to our choice of parameters and implementation for the model described above.

3 Analysis

3.1 Quantifying the coarse-to-fine dynamic

We are interested in measuring the effects of various model parameters on dynamic SF tuning. The magnitude
of a cell’s response to various spatial frequencies forms a tuning curve which peaks at a certain frequency
SFpeak. For a set of stimuli S( f ,φi, t) with phases {φi}i∈I:

SFpeak(t) = argmax
f

R( f , t), (11)

where
R( f , t) =

1
|I|∑i∈I

R( f ,φi, t). (12)

Our choice of phases {φi}i∈I is given in Table 1, and recall that R( f ,φ , t) is defined in Equation 2. Dynamic
SF tuning refers to the changes in time of a cell’s maximal frequency during exposure to a visual stimulus.

We choose to use the shift in peak SF as a metric for the strength of the spatial coarse-to-fine process.
This is a fairly intuitive choice: cells displaying a strong coarse-to-fine response will naturally produce large
shifts, as the cell preferentially responds to low frequencies at early timepoints and to high frequencies at
later timepoints.
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Figure 3: Procedure to set the analysis window. Top panel is a representative spectrotemporal receptive field.
Bottom panel shows the variance of the cell’s response at every time slice. The boundaries of the analysis
window [tinit, tfinal] are determined as the times where this variance rises and falls to 20% of the maximum
value. This corresponds roughly to the first phase of the LGN response. Dotted lines (white for the top panel,
red for the bottom panel) mark the boundaries of the analysis window for the cell shown.

We formally define SF shift as the log ratio of SFpeak values measured at the final (tfinal) and initial (tinit)
time points of a predetermined analysis window:

∆SF = log2
SFpeak(tfinal)

SFpeak(tinit)
. (13)

Here the boundaries of the analysis window, tfinal and tinit, are calculated as the times at which the variance
of SF response rises and falls to 20% of the maximum value. This time period corresponds roughly to the
first phase of the LGN response (Allen and Freeman, 2006). See Figure 3 for an example.

Cortical peak spatial frequency is directly observed from the responses of simple cells to stimuli, averaged
across all four phases. These computations are analogous to those used in previous studies on cortical SF
tuning (Bredfeldt and Ringach, 2002; Frazor et al, 2004).

3.2 Parameter choice

We are interested in comparing the cortical coarse-to-fine dynamic at various stages of development. In order
to do this, we measure simple cell responses to input from three LGN cell populations: one representative of
kittens at 4 weeks postnatal, one of kittens at 8 weeks postnatal, and one of mature cats. All parameter values
corresponding to these populations are either directly taken or estimated from previously published, publicly
available data. In this section we detail and reason our choice of individual parameter values.

We choose spatiotemporal RF parameters based on model fits based on experimental data. Values for t1,
t2, W , τ, and STC were taken from Allen and Freeman (2006). Values for K1, K2, c1, c2, n1, n2, and As/Ac

are fixed as the geometric means of their distributions from Cai et al (1997). For parameters σc and σs, we
truncate the tail of the distribution before estimating the value. Because the distributions for τd were not
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given explicitly, we chose values which we felt best qualitatively recreated the RFs shown in Cai et al (1997),
Figure 3. Adult and kittens at 8 weeks postnatal τd were taken to be somewhat higher than, but well within
one SD of the (arithmetic) mean given in the text; the value for kittens at four weeks postnatal was fixed at
the average value given. If values for a parameter were not found to vary significantly between age groups,
values for all developmental stages were fixed using adult data.

Because there have been few conclusive experimental results regarding corticothalamic feedback in
the visual pathway, values for parameters corresponding to cortical feedback were chosen in a less exact
manner. Values for cortical feedback strength C were chosen so as to lie within the constraints of the
approximation described in Section 2.5 (namely |C|< 1).The value for spatial spread, a = 0.075 deg, was
chosen to qualitatively support results involving corticothalamic feedback—namely, that feedback serves to
strengthen the antagonistic surround response (Alitto and Usrey, 2003; Briggs and Usrey, 2008; Andolina
et al, 2012) but does not have a large effect on the size of the surround response (Andolina et al, 2012).

A table of parameter values used for each age group, as well as a range of values for parameters which
were varied, is presented in Table 1.

3.3 Randomization of LGN population parameters

In addition to characterizing the effects of certain parameters on spatial coarse-to-fine processing, we also
wish to demonstrate the robustness of the model to variability in LGN population parameters. For this,
we perform numeric experiments with randomized values for parameters. All properties of the LGN cell
population are in accordance with measurements reported by Alonso et al (2001). More details on the
motivation behind these values can be found in Allen and Freeman (2006).

Specifically, the position of an LGN cell is drawn from a normal distribution with mean equal to the
center of the cortical subregion and standard deviation 0.15◦. RF center sizes dc are drawn from a normal
distribution with mean 0.8◦ and SD 0.6◦, rectified < 0.7◦. In our randomized population, we simply shift
the temporal profile along the time axis by shifting the parameters t1 and t2 (Equation 6, in Section 2.4) by a
function of the size of the RF (Weng et al, 2005):

shift = STC

[
π

(
dc

2

)2

−π

(
dm

2

)2
]
, (14)

where dc is the center diameter of the thalamic cell, and dm is the median center diameter (Allen and Freeman,
2006). We multiply these values by a space-time constant (STC =−3.5 ms/deg2) to obtain a population of
LGN cells with latencies similar to experimental values reported in Alonso et al (2001).

3.4 Implementation

All equations were discretized and solved numerically using difference methods. For our randomized
population, average values of SF shifts were calculated from 100 trials for each parameter set.

All calculations were performed in MATLAB (R2012a Student Version, The MathWorks, Inc.). MATLAB
scripts will be made available on the web at the following URL: www.ocf.berkeley.edu/∼jnirody.

4 Results

In this section we present the results of our analysis. We study how developmental changes in the structure
of LGN spatiotemporal RFs affect dynamic SF tuning, as well as how the contribution of corticothalamic
feedback to the coarse-to-fine dynamic evolves throughout development.
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Figure 4: Top panels show representative LGN and cortical spatiotemporal RFs at the low and high end of
the interval for As/Ac considered. Bottom panel displays cortical peak SF shift for various values of relative
LGN surround strength As/Ac for each age group. All other parameters are as in Table 1. Results for adults
are shown in red, for 8-week old kittens in blue, and for 4-week old kittens in green. Circular markers are
used to denote the responses for typical As/Ac values used for each age group (which are listed in Table 1).

We organize the presentation of our results as follows. We begin by focusing on the effects of two key
model parameters: relative strength of the LGN RF surround As/Ac and cortical feedback strength C (see
Table 1 for more information). Because the simplicity of our model allows thorough study of the relationship
between model parameters and responses, we also give an overview of the effects of varying other LGN RF
structural parameters on coarse-to-fine processing. Finally, we provide evidence of the robustness of our
model to the randomization of parameters corresponding to LGN population organization.

Out of the parameters involved in the structure of the LGN RF, we choose to concentrate our analysis
on relative surround strength because it has been shown to vary significantly during development (Cai et al,
1997). We note that while the value of the center-surround delay τd has also been shown to change with age,
the effects of varying this parameter were presented in Allen and Freeman (2006). Nevertheless, the effects
of varying τd are briefly considered and reviewed in the context of development in Section 4.3.

4.1 Effect of relative surround strength

Both experimental and modeling studies have implicated the antagonistic relationship between center and
surround responses in LGN cells in facilitating coarse-to-fine processing (Enroth-Cugell et al, 1983; Allen
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and Freeman, 2006). In this section, we focus on model responses to changes in the relative strength of the
LGN surround response, As/Ac.

Figure 4 shows the effects of various surround-center ratios (As/Ac) on cortical coarse-to-fine processing.
In these calculations, all other parameters are set to the values listed in Table 1.

All three age groups exhibit a monotone increase in SF shift at low values of As/Ac. At the average values
of As/Ac reported by Cai et al (1997) (as listed in Table 1, As/Ac = 0.3,0.2,0.1 for adults, 8-, and 4-week
old kittens, respectively), the shift in SF peak is 0.443 for adults, 0.396 for 8-week old kittens, and 0.314 for
4-week old kittens. These values are specifically marked on the plot.

Interestingly, as the ratio As/Ac increases, the peak SF shift for each age group reaches a maximum and
begins to decline. Mature cats display a lower maximum SF shift (0.511) than both 8-week (0.610 ) and
4-week old kittens (0.649 ). This is likely due to the fact that kittens have a higher center-surround delay τd
than adults (see Section 4.3, Figure 6A).

This non-monotonic response is of particular note because it suggests that there is an optimal center-
surround balance which maximizes SF shift. As the relative surround strength is generally lower in kittens
(see circular markers in Figure 4), mature cats on average display As/Ac values which are relatively close
to this “optimum”. This suggests that strengthening of the antagonistic center-surround relationship (i.e.,
increasing the value of As/Ac) would have a proportionately larger effect on the peak tuning shift in kittens
than in adults.

A mechanism which has been shown to heighten the antagonistic effect of the surround response is
cortical feedback (Alitto and Usrey, 2003; Briggs and Usrey, 2008; Andolina et al, 2012). In the next section,
we explore this hypothesis by comparing how the effects of cortical feedback on coarse-to-fine processing
differ between age groups.

4.2 Effect of cortical feedback

We also consider how cortical feedback affects spatial frequency tuning in these three groups. Though only
excitatory corticothalamic connections exist, inhibitory feedback via thalamic interneurons has been observed
(Alitto and Usrey, 2003). For this reason, we consider a variety of feedback strengths ranging from strongly
negative (C =−0.75) to strongly positive (C =+0.75).

In Figure 5, we study the effect of corticothalamic feedback on SF tuning shift. Unlike As/Ac, the model
response to increasing values of C is relatively monotonic: for all three age groups, as C increases, so does
the peak SF shift. However, we find that feedback is not equally effective in facilitating dynamic SF tuning in
all age groups.

Our results show that dominantly excitatory cortical feedback affects the coarse-to-fine process during
development more strongly than in mature cats. When cortical feedback is mainly inhibitory (C < 0) or
weakly excitatory (C > 0, |C| small), there is a distinct difference in peak SF shift between age groups, with
adults clearly showing the strongest response. However, as feedback becomes more strongly excitatory, this
disparity is reduced. In fact, when |C| is sufficiently high, the peak SF shift for 8-week old kittens surpasses
that for mature cats.

These results support the hypothesis we presented in the previous section: that a strengthening of the
surround relative to the center (e.g., via cortical feedback connections) has a proportionally stronger effect on
coarse-to-fine processing early in development.
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Figure 5: As before, top panels show representative LGN and cortical spatiotemporal RFs. Bottom panel
displays cortical peak SF shift for various values of cortical feedback strength C for each age group. All
other parameters are as in Table 1. Results for adults are shown in red, for 8-week old kittens in blue, and
for 4-week old kittens in green. Circular markers are used to denote the responses when there is no cortical
feedback (analogous to those marked in Figure 4).

4.3 Effects of other thalamic RF parameters

For the sake of completeness, we also present the relationship between the model response and other
parameters related to the LGN receptive field structure. In Figure 6, we show these results concerning (1) the
delay between center and surround responses τd , (2) the center size σc, and (3) the surround size σs. The
results presented in Figure 6 emphasize the importance of the antagonistic relationship between center and
surround responses in the LGN in driving cortical dynamic SF tuning. Note that with the exception of τd , the
values of these parameters do not significantly change during development (Cai et al, 1997).

The relationship between center-surround delay τd and the coarse-to-fine process was explored in Allen
and Freeman (2006), so we only provide a brief overview here in the context of development. Increasing
the center-surround delay monotonically increases cortical peak SF shift (see Figure 6A). This explains why
peak SF shift is highest for 4-week-old kittens and lowest for adults at the same value for relative surround
strength (see Figure 4): the center-surround delay decreases during development, with kittens at 4 weeks
displaying the longest delay and adults displaying the lowest (see Table 1).

In Figures 6B and C, we show how RF center size σc and surround size σs affect coarse-to-fine processing.
We explain these results in the context of their effects on the LGN center-surround relationship as follows.
Both a moderately strong surround (but not too strong, see Figure 4) and a high center-surround delay are
necessary to facilitate dynamic SF tuning. Lowering or raising structural parameters out of an “optimal range”
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Figure 6: Results for selected LGN RF structural parameters. Top panels show representative LGN RFs
generated for parameters at either extreme. Bottom panels display cortical peak SF shift for each age group
as parameter values are varied. All non-varied parameters are as in Table 1. Results for adults are shown in
red, for 8-week old kittens in blue, and for 4-week old kittens in green. As in other figures, circular markers
are used to denote the responses for typical values of the parameters used for each age group (which are listed
in Table 1). A, Effect of center-surround delay τd . B, Effect of LGN RF center size σc. C, Effect of LGN RF
surround size σs. Note that the limits of the y-axis in A are different from those in B and C.

disrupts a balance which negatively affects the coarse-to-fine dynamic.
When the center size is too small, the surround seems to appear both too soon and too (relatively) strongly;

see, e.g., the top left panel of Figure 6B. However, the converse is far worse: the coarse-to-fine dynamic
essentially disappears when the center is too large. The reason behind this is clear from observing the LGN
RF: when the center diameter 2σc is significantly larger than the surround diameter (in Figure 6B, surround
diameter 2σs = 0.9◦), it overpowers and stifles the surround response. Indeed, the model response drops off
quickly when σc > 0.45◦ (see bottom panel of Figure 6B).

By the same reasoning, we see that a surround size significantly lower than 2σc (in Figure 6C, σc = 0.45◦)
also results in a similar-looking RF (top left panel, Figure 6C). An overly large surround size also lowers
the cortical peak SF shift. This is likely because an increase in the size of the response creates a “diffusive”
effect, effectively lowering the center-surround delay (see top right panel, Figure 6C).

4.4 Robustness to randomization of population parameters

Cortical cells receive input from a nonhomogeneous LGN cell population. For this reason, in addition to
our parameter study, we demonstrate the robustness of our model to randomization of LGN population
parameters. In Figure 7A, we show the results of varying the relative surround strength (see Figure 4 for
results when population parameters are fixed). The qualitative results are unchanged: all three age groups
exhibit a non-monotonic relationship between the parameter As/Ac and model response, with the youngest
age group showing the highest SF shift and the mature age group showing the lowest.

At the average values of As/Ac reported by Cai et al (1997) (see Table 1), the mean peak shift was 0.520
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Figure 7: Results for selected parameters when LGN population parameters are randomized. Each point
corresponds to the mean taken from 100 simulations of our thalamocortical model, and shaded regions
enclose ±1 SEM away from the mean. Results for adults are shown in red, for 8-week old kittens in blue,
and for 4-week old kittens in green. Parameters not being varied are as in Table 1. A, Cortical peak SF shift
as a function of surround-center ratio. Cortical feedback parameters are set to zero in this set of simulations.
B, Cortical peak SF shift as a function of cortical feedback strength C. Note that the limits of the y-axis in A
are different from those in B.

for adults, 0.424 for 8-week old kittens, and 0.311 for 4-week old kittens. All values were significantly
different from each other (p < 0.001 between 4-week old kittens and older age groups, p < 0.05 between
8-week old kittens and adults).

Also as in Section 4.1, the peak SF shift for each age group in the randomized population reaches a
maximum and begins to decline. Mature cats display a lower maximum SF shift (0.574) than both 8-week
(0.600) and 4-week old kittens (0.616).

In Figure 7B, we show results for the randomized LGN population when cortical feedback strength C is
varied. The qualitative results are unchanged from Section 4.2. All three age groups show increasing peak SF
shifts as cortical feedback strength goes from strongly inhibitory to strongly excitatory.

When C is large and positive, the peak SF shift for 8-week old kittens is larger (though here, not
significantly different) than for adults. Furthermore, changes in SF shift with respect to C between age groups
were found to be significantly different through a repeated-measures ANOVA at α = 0.05. These results
confirm our observations when LGN population parameters are fixed.

Results were also similar to those from non-randomized populations for other parameters considered
(figures not shown).
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5 Discussion

5.1 Developmental changes in LGN RF structure

We have presented a model to study how aspects of the LGN spatiotemporal receptive field affect the cortical
coarse-to-fine dynamic, as well as how documented changes in the structure of these RFs impact this dynamic
throughout the developmental process. Our results emphasize the importance of the antagonistic relationship
between LGN center and surround responses in facilitating coarse-to-fine processing. Furthermore, the
simplicity of our model allows us to investigate thoroughly the importance of specific features of the
center-surround relationship.

We verify the results in Allen and Freeman (2006) stating that higher center-surround delays result in a
stronger cortical peak SF shift. This result is particularly important in the context of development because
young kittens show significantly higher delays than adults (Cai et al, 1997).

We also characterize the effects of other structural features of the LGN RF on cortical coarse-to-fine
processing, which have not been explicitly considered previously. In particular, aspects of the spatial
component of the RF, such as center and surround size and relative surround strength, play a large role in
cortical SF tuning. Our results show that there is an “optimal range” for each of these parameters, suggesting
that a delicate balance between the center and surround must be maintained for coarse-to-fine processing. Of
special interest in studying the development of this process is the relative surround strength, which has been
shown to increase during maturation.

Kittens in early developmental stages have relatively weak surrounds compared to adult cats. However,
we find that, due to the high center-surround delays seen early in development, cortical peak SF shifts or
kittens at 4 and 8 weeks postnatal are higher than would be expected (see circular markers, Figure 4).

Another striking feature of our results concerning the effects of spatial RF parameters is the non-
monotonicity of the model response. Here, we focus our discussion again on relative surround strength, as
this parameter is the only one that has been shown to vary during development. Because kittens early in
development show lower values of As/Ac than adults, they are far from their “optimal range” for relative
surround strength. This result indicates that a mechanism which enhances the center-surround antagonism
would have a proportionally larger effect on young animals than on adults.

This implication is particularly interesting because cortical feedback has been shown to strengthen the
LGN center-surround relationship (Alitto and Usrey, 2003; Briggs and Usrey, 2008; Andolina et al, 2012).
In the following section, we review our results regarding how cortical feedback affects cortical spatial
coarse-to-fine processing in different stages of development.

5.2 Role of cortical feedback during development

Our results regarding the effect of LGN RF structural parameters suggest that cortical feedback may prefer-
entially facilitate coarse-to-fine processing in kittens vs. in adults. Direct study via varying our parameter
corresponding to cortical feedback verifies this: when cortical feedback is strong and dominantly positive,
the peak cortical SF shift is higher for 8 week old kittens than for adults (see Figure 5).

Because of the clear importance of the recurrent connections to the thalamus from the cortex, there
have been several experimental and computational studies involving the analysis of corticothalamic loops.
However, a conclusion about the functional role of the corticothalamic pathway has yet to be reached.

Experimental studies must precisely and specifically inactivate or remove corticothalamic connections in
order to be able to make definitive claims about the nature of cortical feedback. Techniques such as lesions
or ablation (Murphy and Sillito, 1987), pharmacological blockage (Rivadulla et al, 2003), and transcranial
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magnetic stimulation (De Labra et al, 2007) have been used for this purpose. The results of these studies are
neither in full agreement nor unequivocal in interpretation, possibly because these techniques tend to act on
large areas of the cortex and cannot comment on more localized effects.

Previous theoretical models have made use of the network structure of the corticothalamic circuit (Köhn
and Wörgötter, 1996; Wörgötter et al, 1998; Hayot and Tranchina, 2001; Yousif and Denham, 2007), making
their results difficult to interpret in a physiologically relevant way due to the sheer number of parameters.

The advantage of a simple model is clearest here: the eDOG framework contains two biologically
meaningful parameters corresponding to cortical feedback (feedback strength C and spread a; see Table
1). This very tractable number of parameters allows us to characterize how and why the effects of cortical
feedback on coarse-to-fine processing change during development.

5.3 Model assumptions and limitations

In this section, we review some assumptions and limitations of the model that may affect our specific analysis.
The thalmocortical model we present in this paper is an integration of several previously published individual
components. For this reason, we refer the reader to the papers for more details on more general limitations
of these components and justification behind their assumptions. Specifically, the structure of the LGN and
cortical populations are as given in Allen and Freeman (2006), and the eDOG model was presented initially
by Einevoll and Plesser (2011). A partial list of assumptions made in the eDOG model is also given in Section
2.5.

As the direction of the excitatory-inhibitory balance of corticothalamic connections has not been fully
characterized and is very unlikely to be static, we cannot conclude that a fixed set of parameters for this model
will be universal. The inhibitory eDOG model has been shown to be in accordance with the experimental
results of Cudeiro and Sillito (1996) and Sillito and Jones (2002). These experiments, however, generated
receptive fields using a different stimulus function (specifically, circular patch-gratings of various sizes).

Other experiments involving inactivation of recurrent connections have found results in line with dominant
excitation (De Labra et al, 2007). Additionally, the parameters chosen for the excitatory eDOG model in this
study qualitatively reproduce structural properties observed in RFs with an intact feedback circuit, namely
an increased center size and a higher surround-center ratio when compared to RFs of decorticate animals
(Andolina et al, 2012).

We also note in particular that the feedback term (modeled implicitly via modifications to the LGN RF
structure, see Section 2.5) does not change over time. Because the peak SF shift is dependent on time, a
model which incorporates dynamic cortical feedback would further elucidate the effects of these connections
on coarse-to-fine processing. However, as there are very little conclusive experimental results on the nature of
this feedback, our results are a useful first approximation. It is our hope that our results implicating cortical
feedback in the development of coarse-to-fine processing will help direct deeper study (both computational
and experimental) into this topic. We discuss this more explicitly in Section 6.

Finally, our firing-rate based model is largely conceptual, and does not include several aspects which
would be implemented in a computational model, such as intracortical connections between simple cells with
similar RF structure, non-deterministic firing rates, or spike thresholds. However, comparison of a similar
conceptual model to more realistic simulations using integrate-and-fire neurons (Troyer et al, 1998) showed
that while the addition of these mechanisms may affect exact numerical calculations, they do not alter not the
qualitative results. We have omitted these mechanisms to reduce the number of free parameters and make the
results easier to interpret.
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6 Conclusions and an open problem

We have presented a simple thalamocortical model which accounts for both feedforward and feedback
connections in order to analyze the development of cortical coarse-to-fine processing. Our results characterize
how specific aspects of the LGN RF structure affect cortical SF tuning, as well as implicate cortical feedback
in the development of this process.

Additionally, our results put forward the hypothesis that the cortical coarse-to-fine process is strong very
early in development (in the literature, 4 weeks postnatal is often the earliest time point measured for cats).
Experiments measuring the cortical peak SF shift in different age groups would be ideal to test this hypothesis.
Our results regarding cortical feedback could also be tested directly by comparing the coarse-to-fine dynamic
of decorticate animals in several stages of development to control groups. We note however that care must be
taken to use large sample sizes as there is a large variance observed for all parameters in kitten populations
(Cai et al, 1997).

Until now, experimental results regarding the role of cortical feedback have been largely inconclusive.
Because our results suggesting a specific potential role for cortical feedback in the visual system, they can be
used to direct further, deeper study into elucidating the function of these connections.
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