Skip to main content

Advertisement

Log in

Spiking neural circuits with dendritic stimulus processors

Encoding, decoding, and identification in reproducing kernel Hilbert spaces

  • Published:
Journal of Computational Neuroscience Aims and scope Submit manuscript

Abstract

We present a multi-input multi-output neural circuit architecture for nonlinear processing and encoding of stimuli in the spike domain. In this architecture a bank of dendritic stimulus processors implements nonlinear transformations of multiple temporal or spatio-temporal signals such as spike trains or auditory and visual stimuli in the analog domain. Dendritic stimulus processors may act on both individual stimuli and on groups of stimuli, thereby executing complex computations that arise as a result of interactions between concurrently received signals. The results of the analog-domain computations are then encoded into a multi-dimensional spike train by a population of spiking neurons modeled as nonlinear dynamical systems. We investigate general conditions under which such circuits faithfully represent stimuli and demonstrate algorithms for (i) stimulus recovery, or decoding, and (ii) identification of dendritic stimulus processors from the observed spikes. Taken together, our results demonstrate a fundamental duality between the identification of the dendritic stimulus processor of a single neuron and the decoding of stimuli encoded by a population of neurons with a bank of dendritic stimulus processors. This duality result enabled us to derive lower bounds on the number of experiments to be performed and the total number of spikes that need to be recorded for identifying a neural circuit.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  • Adelson, E. H., & Bergen, J. R. (1985). Spatiotemporal energy models for the perception of motion. Journal of Optical Society of America, 2(2) 284–299.

  • Ariav, G., Polsky, A., Schiller, J. (2003). Submillisecond precision of the input-output transformation function mediated by fast sodium dendritic spikes in basal dendrites of ca1 pyramidal neurons. The Journal of Neuroscience, 23(21) 7750–77758.

  • Berlinet, A., & Thomas-Agnan, C. (2004). Reproducing Kernel Hilbert spaces in probability and statistics. Kluwer Academic Publishers.

  • Borg-Graham, L. J., & Grzywacz, N. M. (1992). A model of the directional selectivity circuit in retina: transformations by neurons signly and in concert. In T. McKenna, J. Davis, S.F. Zornetzer (Eds.), Single neuron computation (pp. 34776). Academic Press.

  • Branco, T., Clark, B. A., Häusser, M. (2010). Dendritic discrimination of temporal input sequences in cortical neurons. Science, 329, 1671–1675.

  • Brezina, V. (2010). Beyond the wiring diagram: signalling through complex neuromodulator networks. Philosophical Transactions of the Royal Society B: Biological Sciences, 365, 2363–2374.

    Article  Google Scholar 

  • de Bruyne, M., Clyne, P. J., Carlson, J. R (1999). Odor coding in a model olfactory organ: the drosophila maxillary palp. Journal of Neuroscience, 19, 4520–4532.

    CAS  PubMed  Google Scholar 

  • Fellous, J.-M., & Linster, C. (1998). Computational models of neuromodulation. Neural Computation, 10, 771–805.

    Article  CAS  PubMed  Google Scholar 

  • Friederich, U., Coca, D., Billings, S., Juusola, M. (2009). Data modelling for analysis of adaptive changes in fly photoreceptors. In Neural information processing, lecture notes in computer science (Vol. 5863, pp. 3448). Berlin: Springer.

  • Friederich, U., Coca, D., Billings, S. A., Juusola, M. (2010). Invariant contrast coding in photoreceptors. Front Neuroscience Conference Abstract: Computational and Systems Neuroscience. doi:10.3389/conf.fnins.2010.03.00051

  • Gabbiani, F., Krapp, H. G., Koch, C., Laurent, G. (2002). Multiplicative computation in a visual neuron sensitive to looming. Nature, 420(21), 320–324.

  • Hildebrandt, K. J., Benda, J., Hennig, R. M. (2011). Multiple arithmetic operations in a single neuron: the recruitment of adaptation processes in the cricket auditory pathway depends on sensory context. The Journal of Neuroscience, 31(40), 14142–14150.

    Article  CAS  PubMed  Google Scholar 

  • Izhikevich, E. M. (2007). Dynamical systems in neuroscience. The MIT Press.

  • Kim, A. J., & Lazar, A. A. (2012). Recovery of stimuli encoded with a Hodgkin-Huxley neuron using conditional PRCs. In N.W. Schultheiss, A.A. Prinz, R.J. Butera (Eds.), Response curves in neuroscience (Vol. 6, pp. 257–277). Springer.

  • Koch, C. (1999). Biophysics of computation: information processing in single neurons. Oxford University Press.

  • Lazar, A. A. (2010). Population encoding with Hodgkin-Huxley neurons. IEEE Transactions on Information Theory, 56(2).

  • Lazar, A. A., & Pnevmatikakis, E. A. (2008). Faithful representation of stimuli with a population of integrate-and-fire neurons. Neural Computation, 20(11), 2715–2744.

    Article  PubMed  Google Scholar 

  • Lazar, A. A., & Pnevmatikakis, E. A. (2011). Video time encoding machines. IEEE Transactions on Neural Networks, 22(3), 461–473.

    Article  PubMed Central  PubMed  Google Scholar 

  • Lazar, A. A., Pnevmatikakis, E. A., Zhou, Y. (2010). Encoding natural scenes with neural circuits with random thresholds. Vision Research. Special Issue on Mathematical Models of Visual Coding.

  • Lazar, A. A., & Slutskiy, Y. B. (2010). Identifying dendritic processing. Advances in Neural Information Processing Systems, 23, 1261–1269.

    Google Scholar 

  • Lazar, A. A., & Slutskiy, Y. B. (2012). Channel identification machines. Computational Intelligence and Neuroscience.

  • Lazar, A. A., & Slutskiy, Y. B. (2013). Multisensory encoding, decoding, and identification. Advances in Neural Information Processing Systems, 26, 3208–3216.

  • Lazar, A. A., & Slutskiy, Y. B. (2014). Functional identification of spike-processing neural circuits. Neural Computation, 26(2), 264–305.

    Article  PubMed  Google Scholar 

  • Lazar, A. A., & Tóth, L. T (2004). Perfect recovery and sensitivity analysis of time encoded bandlimited signals. IEEE Transactions on Circuits and Systems-I: Regular Papers, 51(10), 2060–2073.

    Article  Google Scholar 

  • Lee, T. S. (1996). Image representation using 2d gabor wavelets. IEEE Transactions on Pattern Analysis and Machine Intelligence, 18(10), 959–971.

  • London, M., & Häusser, M. (2005). Dendritic computation. Annual Review of Neuroscience, 28, 503–532.

    Article  CAS  PubMed  Google Scholar 

  • Marmarelis, V. Z. (2004). Nonlinear dynamic modeling of physiological systems. Wiley-IEEE Press.

  • Ng, S. Y. (2009). A continuous-time asynchronous Sigma Delta analog to digital converter for broadband wireless receiver with adaptive digital calibration technique. PhD thesis, Ohio State University.

  • Pillow, J. (2007). Likelihood-based approaches to modeling the neural code. In Bayesian brain: probabilistic approaches to neural coding. The MIT Press.

  • Pillow, J. W., Shlens, J., Paninski, L., Sher, A., Litke, A. M., Chichilnisky, E. J., Simoncelli, E. P. (2008). Spatio-temporal correlations and visual signaling in a complete neuronal population. Nature, 454, 995–999.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Pnevmatikakis, E. A. (2011). Spikes as projections: representation and processing of sensory stimuli in the time domain. PhD thesis, Columbia University.

  • Rugh, W. J. (1981). Nonlinear system theory. The John Hopkins University Press.

  • Song, Z., Postma, M., Billings, S. A., Coca, D., Hardie, R. C., Juusola, M. (2012). Stochastic, adaptive sampling of information by microvilli in fly photoreceptors. Current Biology, 22(22), 1–10.

    Google Scholar 

  • Ulanovsky, N., Las, L., Farkas, D., Nelken, I. (2004). Multiple time scales of adaptation in auditory cortex neurons. The Journal of Neuroscience, 17.

  • Urban, N., & Sakmann, B. (2002). Reciprocal intraglomerular excitation and intra- and interglomerular lateral inhibition between mouse olfactory bulb mitral cells. Journal of Physiology 542.2, 355–367.

  • Volterra, V. (1930). Theory of functionals and of integral and integro-differential equations. New York: Dover Publications.

  • Wang, Y. (2011). Smoothing Splines: Methods and applications. Chapman and Hall/CRC.

  • Wu, M. C.-K., David, S. V., Gallant, J. L. (2006). Complete functional characterization of sensory neurons by system identification. Annual Reviews of Neuroscience, 29, 477– 505.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The research presented here was supported by AFOSR under grant #FA9550-12-1-0232 and by NIH under grant #R021 DC012440001.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aurel A. Lazar.

Additional information

Action Editor: Simon R Schultz

Conflict of interest

The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lazar, A.A., Slutskiy, Y.B. Spiking neural circuits with dendritic stimulus processors. J Comput Neurosci 38, 1–24 (2015). https://doi.org/10.1007/s10827-014-0522-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10827-014-0522-8

Keywords

Navigation