Skip to main content

Advertisement

Log in

Estimating characteristic phase and delay from broadband interaural time difference tuning curves

  • Published:
Journal of Computational Neuroscience Aims and scope Submit manuscript

Abstract

Characteristic delay and characteristic phase are shape parameters of interaural time difference tuning curves. The standard procedure for the estimation of these parameters is based on the measurement of delay curves measured for tonal stimuli with varying frequencies. Common to all procedures is the detection of a linear behavior of the phase spectrum. Hence a reliable estimate can only be expected if sufficiently many relevant frequencies are tested. Thus, the estimation precision depends on the given bandwidth. Based on a linear model, we develop and implement methods for the estimation of characteristic phase and delay from a single broadband tuning curve. We present two different estimation algorithms, one based on a Fourier-analytic interpretation of characteristic delay and phase, and the other based on mean square error minimization. Estimation precision and robustness of the algorithms are tested on artificially generated data with predetermined characteristic delay and phase values, and on sample data from electrophysiological measurements in birds and in mammals. Increasing the signal-to-noise ratio or the bandwidth increases the estimation accuracy of the algorithms. Frequency band location and strong rectification also affect the estimation accuracy. For realistic bandwidths and signal-to-noise ratios, the minimization algorithm reliably and robustly estimates characteristic delay and phase and is superior to the Fourier-analytic method. Bandwidth-dependent significance thresholds allow to assess whether the estimated characteristic delay and phase values are meaningful shape parameters of a measured tuning curve. These thresholds also indicate the sampling rates needed to obtain reliable estimates from interaural time difference tuning curves.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  • Agapiou, J., & McAlpine, D. (2008). Low-frequency envelope sensitivity produces asymmetric binaural tuning curves. Journal of Neurophysiology, 100 (4), 2381–2396.

    Article  PubMed Central  PubMed  Google Scholar 

  • Batra, R., & Fitzpatrick, D.C. (2002). Processing of interaural temporal disparities in the medial division of the ventral nucleus of the lateral lemniscus. Journal of Neurophysiology, 88(2), 666–675.

    PubMed  Google Scholar 

  • Batra, R., Kuwada, S., Fitzpatrick, D.C. (1997). Sensitivity to interaural temporal disparities of low- and high-frequency neurons in the superior olivary complex. I. heterogeneity of responses. Journal of Neurophysiology, 78(3), 1222–1236.

    CAS  PubMed  Google Scholar 

  • Batra, R., Kuwada, S., Stanford, T.R. (1989). Temporal coding of envelopes and their interaural delays in the inferior colliculus of the unanesthetized rabbit. Journal of Neurophysiology, 61(2), 257–268.

    CAS  PubMed  Google Scholar 

  • Bremen, P., Poganiatz, I., Campenhausen, M., Wagner, H. (2007). Sensitivity to interaural time difference and representation of azimuth in central nucleus of inferior colliculus in the barn owl. Journal of Comparative Physiology A, 193(1), 99–112.

    Article  Google Scholar 

  • Carr, C., & Konishi, M. (1990). A circuit for detection of interaural time differences in the brain stem of the barn owl. The Journal of Neuroscience, 10(10), 3227–3246.

    CAS  PubMed  Google Scholar 

  • Chan, J.C., Yin, T.C., Musicant, A.D. (1987). Effects of interaural time delays of noise stimuli on low-frequency cells in the cat’s inferior colliculus. II. Responses to band-pass filtered noises. Journal of Neurophysiology, 58(3), 543–561.

    CAS  PubMed  Google Scholar 

  • Fontaine, B., & Brette, R. (2011). Neural development of binaural tuning through Hebbian learning predicts frequency-dependent best delays. The Journal of Neuroscience, 31(32), 11692–11696.

    Article  CAS  PubMed  Google Scholar 

  • Gerstner, W., Kempter, R., van Hemmen, J.L., Wagner, H. (1996). A neuronal learning rule for sub-millisecond temporal coding. Nature, 383, 76–81.

    Article  CAS  PubMed  Google Scholar 

  • Goeckel, T., Führ, H., Lakemeyer, G., Wagner, H. (2014). Side peak suppression in responses of an across-frequency integration model to stimuli of varying bandwidth as demonstrated analytically and by implementation. Journal of Computational Neuroscience, 36(1), 1–17.

    Article  PubMed  Google Scholar 

  • Goldberg, J.M., & Brown, P.B. (1968). Functional organization of the dog superior olivary complex: an anatomical and electrophysiological study. Journal of Neurophysiology, 31(4), 639–56.

    CAS  PubMed  Google Scholar 

  • Goldberg, J.M., & Brown, P.B. (1969). Response of binaural neurons of dog superior olivary complex to dichotic tonal stimuli: some physiological mechanisms of sound localization. Journal of Neurophysiology, 32(4), 613–36.

    CAS  PubMed  Google Scholar 

  • Hancock, K., & Delgutte, B. (2004). A physiologically based model of interaural time difference discrimination. The Journal of Neuroscience, 32, 7110–7117.

    Article  Google Scholar 

  • Jeffress, L.A. (1948). A place theory of sound localization. Journal of Comparative and Physiological Psychology, 41(1), 35–39.

    Article  CAS  PubMed  Google Scholar 

  • Joris, P.X., Van De Sande, B., van der Heijden, M. (2005). Temporal damping in response to broadband noise. I. Inferior colliculus. Journal of Neurophysiology, 93(4), 1857–1870.

    Article  PubMed  Google Scholar 

  • Kelly, J.B., Glenn, S., Beaver, C.J. (1991). Sound frequency and binaural response properties of single neurons in rat inferior colliculus. Hearing Research, 56(1–2), 273–280.

    Article  CAS  PubMed  Google Scholar 

  • Köppl, C., & Carr, C.E. (2008). Maps of interaural time difference in the chicken’s brainstem nucleus laminaris. Biological Cybernetics, 98, 541–559.

    Article  PubMed Central  PubMed  Google Scholar 

  • Kuwada, S., Stanford, T.R., Batra, R. (1987). Interaural phase-sensitive units in the inferior colliculus of the unanesthetized rabbit: effects of changing frequency. Journal of Neurophysiology, 57(5), 1338–1360.

    CAS  PubMed  Google Scholar 

  • Leibold, C. (2010). Influence of inhibitory synaptic kinetics on the interaural time difference sensitivity in a linear model of binaural coincidence detection. The Journal of the Acoustical Society of America, 127(2), 931–942.

    Article  PubMed  Google Scholar 

  • Mc Laughlin, M., Van de Sande, B., van der Heijden, M., Joris, P.X. (2007). Comparison of bandwidths in the inferior colliculus and the auditory nerve. i. measurement using a spectrally manipulated stimulus. Journal of Neurophysiology, 98(5), 2566–2579.

    Article  PubMed  Google Scholar 

  • McAlpine, D., Jiang, D., Palmer, A.R. (1996). Interaural delay sensitivity and the classification of low best-frequency binaural responses in the inferior colliculus of the guinea pig. Hearing Research, 97(1–2), 136–152.

    Article  CAS  PubMed  Google Scholar 

  • McAlpine, D., Jiang, D., Shackleton, T.M., Palmer, A.R. (1998). Convergent input from brainstem coincidence detectors onto delay-sensitive neurons in the inferior colliculus. The Journal of Neuroscience, 18(15), 6026–6039.

    CAS  PubMed  Google Scholar 

  • Müller, M. (1996). The cochlear place-frequency map of the adult and developing mongolian gerbil. Hearing Research, 94(1–2), 148–156.

    Article  PubMed  Google Scholar 

  • Moiseff, A., & Konishi, M. (1981). Neuronal and behavioral sensitivity to binaural time differences in the owl. The Journal of Neuroscience, 1(1), 40–48.

    CAS  PubMed  Google Scholar 

  • Pecka, M., Brand, A., Behrend, O., Grothe, B. (2008). Interaural time difference processing in the mammalian medial superior olive: the role of glycinergic inhibition. The Journal of Neuroscience, 28(27), 6914–6925.

    Article  CAS  PubMed  Google Scholar 

  • Popelář, J., & Syka, J. (1982). Response properties of neurons in the inferior colliculus of the guinea-pig. Acta Neurobiologiae Experimentalis (Wars), 42(4-5), 299–310.

    Google Scholar 

  • Rose, J.E., Gross, N.B., Geisler, C.D., Hind, J.E. (1966). Some neural mechanisms in the inferior colliculus of the cat which may be relevant to localization of a sound source. Journal of Neurophysiology, 29(2), 288–314.

    CAS  PubMed  Google Scholar 

  • Shackleton, T.M., McAlpine, D., Palmer, A.R. (2000). Modelling convergent input onto interaural-delay-sensitive inferior colliculus neurones. Hearing Research, 149(1–2), 199–215.

    Article  CAS  PubMed  Google Scholar 

  • Shackleton, T.M., Meddis, R., Hewitt, M.J. (1992). Across frequency integration in a model of lateralization. The Journal of the Acoustical Society of America, 91(4), 2276–2279.

    Article  Google Scholar 

  • Singheiser, M., Ferger, R., von Campenhausen, M., Wagner, H. (2012). Adaptation in the auditory midbrain of the barn owl (Tyto alba) induced by tonal double stimulation. European Journal of Neuroscience, 35(3), 445–456.

    Article  PubMed  Google Scholar 

  • Spitzer, M.W., & Semple, M.N. (1995). Neurons sensitive to interaural phase disparity in gerbil superior olive: diverse monaural and temporal response properties. Journal of Neurophysiology, 73(4), 1668–1690.

    CAS  PubMed  Google Scholar 

  • Takahashi, T., & Konishi, M. (1986). Selectivity for interaural time difference in the owl’s midbrain. The Journal of Neuroscience, 6(12), 3413–3422.

    CAS  PubMed  Google Scholar 

  • Tollin, D.J., & Yin, T.C.T. (2005). Interaural Phase and Level Difference Sensitivity in Low-Frequency Neurons in the Lateral Superior Olive. The Journal of Neuroscience, 25(46), 10648–10657.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • van der Heijden, M., Lorteije, J.A., Plauṡka, A., Roberts, M.T., Golding, N.L., Borst, J.G.G. (2013). Directional hearing by linear summation of binaural inputs at the medial superior olive. Neuron, 78(5), 936–948.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Vonderschen, K., & Wagner, H. (2009). Tuning to interaural time difference and frequency differs between the auditory arcopallium and the external nucleus of the inferior colliculus. Journal of Neurophysiology, 101(5), 2348–2361.

    Article  PubMed  Google Scholar 

  • Vonderschen, K., & Wagner, H. (2012). Transformation from a pure time delay to a mixed time and phase delay representation in the auditory forebrain pathway. The Journal of Neuroscience, 32(17), 5911–5923.

    Article  CAS  PubMed  Google Scholar 

  • Wagner, H. (1990). Receptive fields of neurons in the owl’s auditory brainstem change dynamically. European Journal of Neuroscience, 2(11), 949–959.

    Article  PubMed  Google Scholar 

  • Wagner, H., Takahashi, T., Konishi, M. (1987). Representation of interaural time difference in the central nucleus of the barn owl’s inferior colliculus. The Journal of Neuroscience, 7(10), 3105–3116.

    CAS  PubMed  Google Scholar 

  • Yin, T.C., & Chan, J.C. (1990). Interaural time sensitivity in medial superior olive of cat. Journal of Neurophysiology, 64(2), 465– 488.

    CAS  PubMed  Google Scholar 

  • Yin, T.C., Chan, J.C., Carney, L.H. (1987). Effects of interaural time delays of noise stimuli on low-frequency cells in the cat’s inferior colliculus. III. Evidence for cross-correlation. Journal of Neurophysiology, 58(3), 562–583.

    CAS  PubMed  Google Scholar 

  • Yin, T.C., Chan, J.C., Irvine, D.R. (1986). Effects of interaural time delays of noise stimuli on low-frequency cells in the cat’s inferior colliculus. I. Responses to wideband noise. Journal of Neurophysiology, 55(2), 280–300.

    CAS  PubMed  Google Scholar 

  • Yin, T.C., & Kuwada, S. (1983). Binaural interaction in low-frequency neurons in inferior colliculus of the cat. III. Effects of changing frequency. Journal of Neurophysiology, 50(4), 1020–1042.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Tom C. Yin for providing the cat data. This research was supported by the Deutsche Forschungsgemeinschaft (DFG) under Grant number Wa-606/21-1.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jessica Lehmann.

Additional information

Action Editor: Catherine E Carr

Conflict of interest

The authors declare no competing financial interests.

Appendices

Appendix A: A linear weighting model

We assumed that the input neurons in the linear model are tuned exclusively to their best frequency. The jth input neuron ascends only to the integrator neuron if its best frequency ω j is contained in the stimulus. Therefore, the tonal ITD tuning curve of the jth input neuron is described by the product of the delta function, an amplituded function and a cosine term (see Eq. (1)).

However, the approache by the delta function does not correspond to the cochlear frequency tuning. Neurons also respond to frequencies in a neighborhood of their best frequency. Thus Eq. (1) is idealized and somewhat unrealistic. To include such response behavior it is possible to replace the delta function by a weighting function m j (⋅). For instance, the Gaussian function with mean ω j and the half of the half width as standard deviation can be used as weighting function. Consequently, the response of the jth input neuron to a tonal stimulus can be modeled as

$$ \text{TC}_{j}(t,\omega)= m_{j}(\omega)\cdot a(\omega)\cdot \cos\left(2\pi[\omega(t-\text{CD})-\text{CP}]\right). $$
(23)

Due to the fact that tonal as well as broadband ITD tuning curves are real valued it is necessary to assume that the weighting function m j (⋅) is positive and even, i.e. m j (ω)≥0 and m j (−ω)=m j (ω) for all j∈{1⋯M}.

The response of the integrator neuron to a white noise stimuli is again given by Eq. (4). By the use of formula (23) and the identity \(\displaystyle K(\omega ):= \sum\limits_{j=1}^{M} m_{j}(\omega )\) we obtain that

$$\begin{array}{@{}rcl@{}} \text{bTC}(t)\! &\,=\,&\! \sum\limits_{k=1}^{L}\sum\limits_{j=1}^{M}\text{TC}_{j}(t,\omega_{k})\\ &=& \sum\limits_{k=1}^{L}\sum\limits_{j=1}^{M} m_{j}(\omega_{k})a(\omega_{k})\cos\left(2\pi\!\left[\omega_{k}(t\,-\,\text{CD})\,-\,\text{CP}\right]\right)\\ &=& \sum\limits_{k=1}^{L} K(\omega_{k})a(\omega_{k})\cos\left(2\pi\left[\omega_{k}(t-\text{CD})-\text{CP}\right]\right)\\ &=& \sum\limits_{k=1}^{L} {\Delta}_{\omega} c(\omega_{k})\cos(2\pi\left[\omega_{k}(t-\text{CD})-\text{CP}\right]) \end{array} $$
(24)

where \(\displaystyle c(\omega )= {\Delta }_{\omega }^{-1} a(\omega )K(\omega )\). As we have seen in Section 2.2 Eq. (24) can be interpretated as a Riemann sum approximation of the integal in Eq. (5). Therefore, the Hilbert Transform based estimation algorithm as well as the MSE fit algorithm is also applicable to a model in volving a frequency weighting function instead of the delta function.

Appendix B: The maximal absolute value of \(\mathcal {I}_{+}\)

In the Section 2.2.1 we claimed that the maximal absolute value of the function \(\mathcal {I}\) is at the time t=CD. In this section we will proof this statement. However, we initially show the following theorem.

Theorem 1

Let c be a non-negative function with \({\int }_{-\infty }^{\infty }|c(\omega )|\:\mathrm {d}\omega <\infty \) and c ≠ 0 then the function \(f:\mathbb {R} \rightarrow \mathbb {C}\) given by

$$ f(x) = {\int}_{-\infty}^{\infty}c(\omega) e^{2\pi i\omega (x-\text{CD})}\:\mathrm{d}\omega $$
(25)

has an unique maximal absolute value at x = CD. In particular

$$\lim\limits_{x\to \infty}f(x)=0.$$

Proof

At first we show the existence of the maximal absolute value x=CD. Without loss of generality we can set the CD to zero. Furthermore, we define \(b(\omega ):=\sqrt {c(\omega )}\). Then

$$\begin{array}{@{}rcl@{}} f(x)\!\! &=&\!\! \!{\int}_{-\infty}^{\infty}|c(\omega)| e^{2\pi i\omega x}\:\mathrm{d}\omega \,=\,\! {\int}_{-\infty}^{\infty}\!|b(\omega)|^{2} e^{2\pi i\omega x}\:\mathrm{d}\omega\\ &=& {\int}_{-\infty}^{\infty}b(\omega)\overline{\left(M_{-x}b\right)(\omega)}\:\mathrm{d}\omega = \left<b,M_{-x}b\right>\end{array} $$

where (M x b)(ω)=e 2πiωx b(ω) for all \(\omega \in \mathbb {R}\). By applying Plancherel’s Theorem for functions with a finite mean square error the following equations are true

$$\begin{array}{@{}rcl@{}} \left<b,M_{-x}b\right>&=&\left<\mathcal{F}^{-1}b, \mathcal{F}^{-1}\left(M_{-x}b\right)\right>=\left<\mathcal{F}^{-1}b, \mathcal{F}\left(M_{x}\hat{\hat{b}}\right)\right>\\ &=& \left<\mathcal{F}^{-1}b, T_{x}(\mathcal{F}^{-1}b)\right>\end{array} $$

where \(T_{x}(\mathcal {F}^{-1}b)(\omega )=(\mathcal {F}^{-1}b)(\omega -x)\) for all \(\omega \in \mathbb {R}\) and \(\mathcal {F}^{-1}\) is the inverse Fourier Transform. It can be shown that the limit of \(\left <{\mathcal {F}^{-1}b, T_{x}(\mathcal {F}^{-1} b)}\right >\) as x approaches is zero. Thus

$$ \lim\limits_{x\to\infty}f(x)=0. $$
(26)

By using the Cauchy-Schwarz inequality and the fact that \(\|{\mathcal {F}^{-1}b}\|_{2}=\|{T_{x}(\mathcal {F}^{-1}b)}\|_{2}\) we are able to estimate as follows

$$\begin{array}{@{}rcl@{}} |f(x)|\!&=&\!|\left<\mathcal{F}^{-1}b, T_{x}(\mathcal{F}^{-1}b)\right>|\!\leq\! \|\mathcal{F}^{-1}b\|_{2}\!\cdot\!\|T_{x}(\mathcal{F}^{-1}b)\|_{2}\\ &=& \|\mathcal{F}^{-1}b\|_{2}^{2}=\left<\mathcal{F}^{-1}b,T_{0}(\mathcal{F}^{-1}b)\right>=f(0). \end{array} $$

Therefore the function f takes its maximal abolute value at x=CD.

Now we only have to show the unambiguity of this maximum value. Thus we assume that there is another value \(\tilde x\in \mathbb {R}\) with \(\tilde x\neq 0\) and \(|{f(\tilde x)}| = |{f(0)}|\). Due to the inequality above we get that

$$|{\left<{\mathcal{F}^{-1}b,T_{\tilde x}(\mathcal{F}^{-1}b)}\right>}|=\|{\mathcal{F}^{-1}b}\|_{2}\cdot\|{T_{\tilde x}(\mathcal{F}^{-1}b)}\|_{2}.$$

However, this equality is true if and only if \(T_{\tilde x}(\mathcal {F}^{-1}b)\) and \(\mathcal {F}^{-1}b\) are linear dependent. Hence for all \(\omega \in \mathbb {R}\)

$$T_{\tilde x}(\mathcal{F}^{-1}b)(\omega)=\alpha \cdot \mathcal{F}^{-1}b(\omega)$$

where \(\alpha \in \mathbb {C}\) with |α|=1. Furthermore, we can show by a complete induction that for all \(k\in \mathbb {N}\)

$$ T_{k\tilde x}(\mathcal{F}^{-1}b)(\omega)=\alpha^{k} \cdot \mathcal{F}^{-1}b(\omega). $$
(27)

Since |α|=1 and with Eq. (27)

$$\begin{array}{rcl} |f(k\tilde x)|&=&|\left<\mathcal{F}^{-1}b,T_{k\tilde x}(\mathcal{F}^{-1}b)\right>| = |\left<\mathcal{F}^{-1}b,\alpha^{k}\mathcal{F}^{-1}b\right>|\\ &=&|\alpha|^{k}\|\mathcal{F}^{-1}b\|_{2}^{2} = \|\mathcal{F}^{-1}b\|_{2}^{2} =f(0). \end{array}$$

Consequently,

$$\lim_{\tilde x\to \infty}|f(k\tilde x)|=f(0).$$

This is inconsistent with Eq. (26) as f(0)≠0 (otherwise a≡0). Thus the maximal absolute value is unambiguous.

In accordance with Eq. (7) the function \(\mathcal {I}_{+}\) is defined by

$$\begin{array}{@{}rcl@{}} \mathcal{I}_{+}(t)&=& {\int}_{0}^{\infty}\frac{a(\omega)}{2}\cdot e^{-2\pi i(\omega\text{CD} +\text{CP})}\cdot e^{2\pi i\omega t} \:\mathrm{d}\omega \\ &=& {\int}_{0}^{\infty}\frac{a(\omega)}{2}e^{-2\pi i \text{CP}}\cdot e^{2\pi i\omega (t-\text{CD})} \:\mathrm{d}\omega \\ &=& {\int}_{-\infty}^{\infty}c(\omega)\cdot e^{2\pi i\omega (t-\text{CD})} \:\mathrm{d}\omega \end{array} $$
(28)

with \(c(w)=\frac {a(\omega )}{2}\cdot e^{-2\pi i \text {CP}}\cdot \chi _{[0,\infty )}(\omega )\). This function c satisfies the condition from Theorem 1, so that the maximal absolute value of the function \(\mathcal {I}_{+}\) is at the time t = CD.

Appendix C: \(\mathcal {I}_{+}\) is an analytic signal

A complex signal z with z(t)=x(t)+iy(t) is an analytic signal if and only if the imaginary part is equal to the Hilbert Transform of the real part of the complex signal, i.e.

$$ y(t) = x(t) \ast \frac{1}{\pi t}=\lim\limits_{\varepsilon \downarrow 0 }{\int}_{|{\tau}|>\varepsilon}\frac{x(t-\tau)}{\pi\tau}\:\mathrm{d}\tau=: \mathcal{H}(x(t)). $$
(29)

In Eq. (28) we have seen that the function \(\mathcal {I}_{+}\) can be written as

$$\begin{array}{@{}rcl@{}} \mathcal{I}_{+}(t)&=& {\int}_{0}^{\infty}\frac{a(\omega)}{2}e^{-2\pi i \text{CP}}\cdot e^{2\pi i\omega (t-\text{CD})} \:\mathrm{d}\omega \\ &=& {\int}_{-\infty}^{\infty}G(\omega)\cdot e^{2\pi i\omega t} \:\mathrm{d}\omega \end{array} $$
(30)

where \(G(w)=\frac {a(\omega )}{2}\cdot e^{-2\pi i (\omega \cdot \text {CD}+\text {CP})}\cdot \chi _{[0,\infty )}(\omega )\). Due to the Fourier inversion theorem we know that on the one hand \(\widehat {\mathcal {I}_{+}}=G\) and on the other hand that for alle \(\omega \in \mathbb {R}\)

$$\begin{array}{@{}rcl@{}} G(\omega)=\widehat{\text{bTC}}(\omega)\cdot H(\omega) \end{array} $$
(31)

where H is the Heaviside distribution with H(ω)=1 for ω∈[0,) and H(ω)=0 in the other case. By applying the convolution theorem to expression (31) it turns out that \(\mathcal {I}_{+}\) is the convolution of the broadband ITD tuning function and the inverse Fourier Transform of the Heaviside distribution, i.e.

$$ \mathcal{I}_{+}(t)= (\text{bTC}\ast(\mathcal{F}^{-1}H))(t). $$
(32)

The inverse Fourier Transform of the Heaviside distribution is given by the following expression \( \mathcal {F}^{-1}H = \frac {1}{2}\delta _{0}+\varphi \) where δ 0 is the dirac delta function and φ is the Cauchy principal value which is defined as

$$\displaystyle\varphi(g)=\lim\limits_{\varepsilon \downarrow 0 }{\int}_{|{x}|>\varepsilon}\frac{g(x)}{x}\:\mathrm{d}x.$$

One can show that

$$\begin{array}{@{}rcl@{}} \mathcal{I}_{+}(t)&=& (\text{bTC}\ast(\mathcal{F}^{-1}H))(t)\\ &=& \left(\text{bTC}\ast\left(\frac{1}{2}\delta_{0}+\frac{i}{2\pi}\varphi\right)\right)(t)\\ &=& \frac{\text{bTC}(t)}{2} + i\cdot\lim\limits_{\varepsilon \downarrow 0 }{\int}_{|{x}|>\varepsilon}\frac{\text{bTC}(t-x)}{2\pi x}\:\mathrm{d}x\\ &=& \frac{\text{bTC}(t)}{2}+i\cdot\mathcal{H}\left(\frac{\text{bTC}(t)}{2}\right). \end{array} $$

Consequently, the function \(\mathcal {I}_{+}\) is an analytic signal.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lehmann, J., Tellers, P., Wagner, H. et al. Estimating characteristic phase and delay from broadband interaural time difference tuning curves. J Comput Neurosci 38, 143–166 (2015). https://doi.org/10.1007/s10827-014-0529-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10827-014-0529-1

Keywords

Navigation